
CHAPTER 5

VARIATIONS OF HODGE STRUCTURE ON CURVES

Summary. We consider polarizable variations of C-Hodge structure on a punc-
tured smooth projective curve, and we indicate the proof of the corresponding
Hodge theorem, as well as the semi-simplicity theorem proved in Chapter 4 for
smooth projective varieties. This is the first occurrence of polarizable variations
of C-Hodge structure with singularities. It is essential to understand their local
behaviour in the neighbourhood of a singular point. This is provided by the
theorems of Schmid, that we also explain in this chapter.

5.1. Introduction

A Hodge structure, as explained in Section 2.4, can be considered as a Hodge
structure on a vector bundle supported by a point, that is, a vector space. The
case where the underlying space is a complex manifold is called a variation of Hodge
structure. It has been explained in Section 4.1 from a local point of view. The global
properties have been considered in Section 4.2.

The question we address in this chapter is the definition and properties of Hodge
structures on a vector bundle on a punctured complex projective curve (punctured
compact Riemann surface) in the neighbourhood of the punctures (also called the
singularities of the variation). The notion of a variation of polarized Hodge structure
on a non-compact curve is analytic in nature, and a control near the punctures is
needed in order to obtain interesting global results.

Our aim in this chapter is to sketch the proof of the Hodge-Zucker theorem 5.1.1 on
a punctured compact Riemann surface, which is a Hodge theorem “with singularities”.
We mix the setting of Sections 4.2.b and 4.2.c, that is, we consider a variation of
polarized Hodge structure (H,Q) of weight w on a punctured compact Riemann
surface X⇤ ,

j
�! X.

Theorem 5.1.1 (Hodge-Zucker, [Zuc79]). In such a case, the cohomology Hk(X, j⇤H)

carries a natural polarized Hodge structure of weight w + k (k = 0, 1, 2).

The way of using L2 cohomology is the exactly the same as in Section 4.2.c, pro-
vided that we replace D0 and D00 with D0 and D00. Then we are left with the corre-
sponding L2 Poincaré and Dolbeault lemmas.
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In any case, it is important to extend in some way the variation to the projective
curve in order to apply algebraic techniques. What kind of an object should we
expect on the projective curve? On the one hand, the theorems of Schmid enable us
to extend each step of the Hodge filtration as an algebraic bundle over the curve. On
the other hand, Zucker selects the interesting extension among all possible extensions
in order to obtain the Hodge-Zucker theorem. This is the middle extension (V

mid

,r)

of the variation of polarized Hodge structure. This selection is suggested by the L2

approach to the Hodge theorem. Let us emphasize that this approach is mainly local
(except for the L2 Dolbeault lemma, however), and we will mainly restrict the study
to a local setting, where the base manifold is a disc � centered at the origin in C (or
simply the germ of � at the origin), and we will denote by t its coordinate.

5.2. Variation of Hodge structure on a punctured disc

We now consider the behaviour of a variation of C-Hodge structure near a singular
point. From now on, we will work on a disc � with coordinate t, as indicated in the
introduction of this chapter and we will denote by �⇤ the punctured disc � r {0}.
Assume that H is a variation of Hodge structure on �⇤. Our goal is to define a
suitable restriction of these data to the origin. As for the case of a point in �⇤, the
underlying vector space of the restricted object should have a dimension equal to the
rank of the bundle on �⇤.

5.2.a. The holomorphic vector bundle with connection. If we are given a
holomorphic bundle with connection (V,r) on �⇤, there exists a canonical mero-
morphic extension, called the Deligne meromorphic extension, of the bundle V to a
meromorphic bundle V⇤ (that is, a free sheaf of O

�

[1/t]-modules) equipped with a
connection r. It consists of all local sections of j⇤V (where j : �⇤ ,! � is the inclu-
sion) whose coefficients in some (or any) basis of multivalued r-horizontal sections
have moderate growth in any sector with bounded arguments. Equivalently, it is char-
acterized by the property that the coefficients of any multivalued horizontal section
expressed in some basis of V⇤ are multivalued functions on �⇤ with moderate growth
in any sector with bounded arguments.

Similarly, there exists a canonical free O
�

-submodule V0

⇤ of V⇤, called the Deligne
canonical lattice, consisting of all local sections of j⇤V whose coefficients in any basis
of horizontal sections on any bounded sector are holomorphic functions on this sector
with at most logarithmic growth. On this bundle V0

⇤, the connection r has a pole
of order one. The residue R of the connection on V0

⇤ is an endomorphism of the
vector space V0

⇤/tV
0

⇤. The real part of its eigenvalues belong to [0, 1). The latter
two properties also characterize V0

⇤ among all lattices of V⇤ (i.e., free O
�

-submodules
of V⇤ which generate V⇤ as a O

�

[t�1]-module).
The existence of a free O

�

-submodule V0

⇤ of V⇤ such that O
�

[t�1]⌦ V0

⇤ = V⇤ and
on which r has a pole of order one is by definition the condition ensuring that (V⇤,r)

has a regular singularity at the origin of �.
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A classical result (see e.g. [Mal91, (2.6) p. 24]) asserts that V0

⇤ has an O
�

-basis
with respect to which the matrix of r is constant. More precisely, any C-basis of
V0

⇤/tV
0

⇤ can be lifted to an O
�

-basis of V0

⇤, and the matrix of r is then equal to the
matrix of the residue R in the given basis of V0

⇤/tV
0

⇤. These results can be reformulated
as follows.

Theorem 5.2.1. The construction (V,r) 7! (V⇤,r) induces an equivalence between the
category of vector bundles with connection on the punctured disc �⇤ and that of free
O

�

[1/t]-modules with a connection r having a regular singularity at the origin.

Of course, an inverse functor is the restriction of (V⇤,r) to �⇤. Notice also that this
result implies that any morphism ' : (V

1

,r)! (V
2

,r) can be extended in a unique
way as a morphism (V

1⇤,r) ! (V
2⇤,r). The proof is obtained by interpreting '

as a horizontal section of HomO�⇤ (V1

,V
2

) and by using the property that, for a
connection with regular singularity (as r on HomO�[1/t](V1⇤,V2⇤)), any horizontal
section on �⇤ extends in a unique way as a r-horizontal section on � (see Exercise
5.2.2(4) below).

Exercise 5.2.2 (The structure of (V⇤,r)).
(1) Show that (V⇤,r) is a successive extension of rank-one meromorphic connec-

tions. [Hint : Use a Jordan basis for R of V0

⇤/tV
0

⇤.]
(2) Assume that V has rank one. Let v� be an O

�

-basis of V0

⇤ in which the matrix
of tr@t is constant. Show that tr@tv� = �v� with Re � 2 [0, 1). Identify Vr with the
subsheaf of ⇢⇤Oe

�

⇤ consisting of multiples of some (or any) branch of the multivalued
function t�� , by sending ct�� to ct��v� .

(3) For Re � 2 [0, 1) and p > 0, set J�,p = (O
�

[1/t]p+1,r), where the matrix ofr@t

in the canonical basis v�,p = (v�,0, . . . , v�,p) is given by tr@tv�,k = �v�,k � v�,k�1

(so
that v�,p is a generating section with respect to tr@t). Show that (V⇤,r) has a
decomposition

(5.2.2 ⇤) (V⇤,r) '
L

�2[0,1)

h

L

p
(J�,p,r)

i

.

[Hint : Use a Jordan decomposition for R.]
(4) Compute Kerr on V⇤ in terms of this decomposition.
(5) Show that there is no nonzero morphism J�1,p ! J�2,q if �

1

6= �
2

2 [0, 1), and
conclude that the decomposition indexed by � above is unique.

We will assume from now on that the eigenvalues of R are real. We can then more
generally consider a whole family of Deligne canonical lattices: for every � 2 R, we
denote by V

�
⇤ the lattice defined by the property that the eigenvalues of the residue

of the connection belong to [�,� + 1). If we set V
>�
⇤ =

S

�0>� V
�0

⇤ , then V
>�
⇤ is the

Deligne canonical lattice for which the eigenvalues of the residue of the connection
belong to (�,� + 1]. We use the notation

(5.2.3) gr�V⇤ := V�
⇤/V

>�
⇤ .
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Exercise 5.2.4. Show the following properties.

(1) V
�+k
⇤ = tkV�

⇤ for every k 2 Z.
(2) gr�V⇤ can be identified with the generalized �-eigenspace of the residue of r

on V
[�]
⇤ /tV

[�]
⇤ .

(3) The map induced by r@t
sends gr�V⇤ to gr��1V⇤ and, if � 6= 0, it is an

isomorphism. [Hint : use that the composition tr@t : gr�V⇤ ! gr�V⇤ is identified
with the restriction of the residue of r on V

[�]
⇤ /tV

[�]
⇤ to its generalized �-eigenspace.]

(4) The map r@t : V�
⇤ ! V

��1

⇤ is onto [equivalently, tr@t : V�
⇤ ! V

�
⇤ is onto]

provided that � > 0. [Hint : Reduce to the case where V⇤ has rank one by using
Exercise 5.2.2 and has a basis v� which satisfies tr@t

v� = �v� for some � 2 [0, 1),
and show that V

�+k
⇤ = tkO

�

v� for k 2 Z.]
(5) With respect to a decomposition of (V⇤,r) as in Exercise 5.2.2(3), show that,

for � 2 [0, 1), we have, for k 2 Z,

V�+k
⇤ =

L

i, �i>�

tkO
�

· v�i,pi
�

L

i, �i<�

tk+1O
�

· v�i,pi
.

(6) The subsheaf
P

p>0

(r@t
)pV�

⇤ of V⇤ is an O
�

-module and
• does not depend on � provided � > �1, or provided � 6 �1,
• in the latter case, it is equal to V⇤,
• in the former case, we call it the middle extension of (V,r) and denote

it by V
mid

; then r@t
: V

mid

! V
mid

is onto and has kernel equal to the sheaf
j⇤(V

r).

If we denote by V>�1

⇤ the lattice on which Resr has eigenvalues in (�1, 0],
and if � 2 (�1, 0], gr�V⇤ is identified with the generalized eigenspace of Resr on
V>�1

⇤ /tV>�1

⇤ corresponding with the eigenvalue �. We set N = � 2⇡i(Resr)nilp

(nilpotent part). This is the endomorphism induced by � 2⇡i(t@t � �) on gr�V⇤.
[This choice is suggested by the property that the unipotent part of the monodromy
operator on Vr can be identified with expN.]

5.2.b. Reminder on Hermitian bundles on the punctured disc. Let V be a
holomorphic vector bundle on �⇤ and let h be a Hermitian metric on the associated
C1-bundle H := C1

�

⇤ ⌦O�⇤ V. We denote by V
mod

the subsheaf of j⇤V consisting
of local sections whose h-norms have moderate growth in the neighbourhood of the
origin. This is an O

�

[1/t]-module, which coincides with V when restricted to �⇤.
The parabolic filtration V•

mod

is the decreasing filtration, indexed by R, consisting
of local sections such that: for any compact neighbourhood K of the origin, in the
punctured neighbourhood of which the local section is defined, and for every " > 0,
there exists C = C(K, ") > 0 such that the h-norm on K⇤ := K r {0} of the local
section is locally bounded by C|t|•�". By definition, we have V

�
mod

=
T

�0<� V
�0

mod

.
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Clearly, each V
�
mod

is an O
�

-submodule of V
mod

, which coincides with V when
restricted to �⇤, and we have

V
mod

=
S

�

V
�
mod

, and 8 k 2 Z, tkV
•
mod

= V
•
+k

mod

.

A jump (or, more correctly, jumping index) of the parabolic filtration is a real num-
ber � such that the quotient V

�
mod

/V>�
mod

6= 0, where V
>�
mod

:=
S

�0>� V
�0

mod

. Clearly,
if � is a jump, then � + k is a jump for every k 2 Z. We denote by J(�) the set of
jumping indices which belong to [�,�+1). We have J(�+k) = J(�) for every k 2 Z.

Definition 5.2.5. We say that the metric is moderate if V
mod

is O
�

[1/t]-locally free
and each V

�
mod

is O
�

-locally free.

When the metric is moderate, J(�) is finite for every � 2 R and we have

V
�
mod

/tV�
mod

=
L

�02J(�)

gr�
0
(V

mod

).

5.2.c. The theorems of Schmid. Let us consider a variation of polarized
C-Hodge structure (H,Q) of weight w on the punctured disc �⇤. We set
H = (H, D, F 0•H, F 00•H). We thus have a positive definite Hermitian metric h

on H. On the other hand, we set V = KerD00, on which the filtration F 0•H induces
a filtration F •V by holomorphic sub-bundles.

Theorem 5.2.6 (Schmid). The metric h on H is moderate and the meromorphic ex-
tension V

mod

of V with respect to the metric h is equal to the canonical Deligne
meromorphic extension V⇤ of (V,r).

Remark 5.2.7. In particular, the connection on the meromorphic extension V
mod

must
have a regular singularity at the origin.

Example 5.2.8 (The unitary case). Let us consider the simple case where the connection
is compatible with the Hermitian metric h. This corresponds to a variation of Hodge
structure of pure type (0, 0). Then the norm of any horizontal section of V is constant,
hence bounded. By definition of the Deligne meromorphic extension, the norm of any
section of V⇤ has thus moderate growth. Hence V⇤ ⇢ V

mod

.
In fact, both extensions are then equal, and therefore the metric is moderate, as

asserted in the general case by Schmid’s theorem. Indeed, given any section v of V, we
express it on a unitary frame of multivalued horizontal sections, and the norm of the
section has moderate growth if and only if the coefficients are multivalued functions
with moderate growth in any bounded angular sector. Similarly, we can express an
O

�

[t�1]-basis of V⇤ on this unitary frame, and the coefficients have moderate growth.
Expressing now v in the chosen O

�

[t�1]-basis of V⇤, we find univalued coefficients
with moderate growth, that is, meromorphic functions. In other words, V

mod

⇢ V⇤.
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From now on, we will not distinguish between V
mod

and V⇤. One can go fur-
ther, and analyze the parabolic filtration. But first, we need a result, due to Borel
(see [Sch73, Lem. 4.5]), which asserts:

Lemma 5.2.9. For such a variation, the eigenvalues of the monodromy have absolute
value equal to one.

With such a result, we can define the lattices V
�
⇤ for � 2 R. The next result is:

Theorem 5.2.10 (Schmid). The parabolic filtration V•
mod

on V⇤ induced by the metric h

is equal to the filtration V•
⇤.

Exercise 5.2.11. Prove the result in the unitary case of Example 5.2.8.

Remark 5.2.12. This result justifies the need of considering the filtration V•
⇤ indexed

by R and the graded spaces (5.2.3).

This result characterizes sections of V
�
⇤ in terms of growth of their norm with

respect to real powers of |t|. In order to analyze the L2 behaviour of the norm, we
will need to refine this result by using a logarithmic scale. Recall that we can lift the
monodromy filtration M•gr

�V⇤ to M•V
�
⇤ .

Theorem 5.2.13 (Schmid). A germ of section of M`V
�
⇤ has a non-zero image in

grM` gr�V⇤ if and only if its norm has the same order of growth as |t|�L(t)`/2.

Remark 5.2.14. In Section 5.2.a, when extending the vector bundle V with holomorphic
connection r from �⇤ to �, we have chosen Deligne’s meromorphic extension, that is,
we have chosen the (unique) meromorphic extension on which the extended connection
is meromorphic and has regular singularities. Such a choice, while being canonical
and, in some sense, as simple as possible, was not the only possible one. We could have
chosen other kinds of meromorphic extensions, on which the extended meromorphic
connection has irregular singularities. A posteriori, when considering variations of
polarized Hodge structures, the theorems of Schmid strongly justify the previous
choice.

5.3. The de Rham complexes

5.3.a. The meromorphic de Rham complexes. Let (V,r) be any holomorphic
bundle with connection. Recall that, on �⇤, the holomorphic de Rham complex
DR(V,r) is the complex

0 �! V
r

���! ⌦1

�

⇤ ⌦ V �! 0,

whose cohomology is nonzero only in degree zero, with H 0 DR(V,r) = Hr := Kerr.
Let us now consider the meromorphic de Rham complex DR(V⇤,r), defined as the

complex

0 �! V⇤
r

���! ⌦1

�

⌦ V⇤ �! 0.
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Its restriction to �⇤ coincides with DR(V,r), hence has nonzero cohomology in degree
zero only. In other words, H 1 DR(V⇤,r) is a skyscraper sheaf supported at the origin,
and H 0 DR(V⇤,r) is some sheaf extension (across the origin) of the locally constant
sheaf Vr. We will determine these sheaves.

One can filter the de Rham complex, so that each term of the filtration is a complex
whose terms are free O

�

-modules of finite rank. For every �, we set

V � DR(V⇤,r) = {0 �! V�
⇤
r

���! ⌦1

�

⌦ V��1

⇤ �! 0}.

Since the action of t is invertible on V⇤, the latter complex is quasi-isomorphic to the
complex

V � DR(V⇤,r) = {0 �! V�
⇤

tr
���! ⌦1

�

⌦ V�
⇤ �! 0}.

Lemma 5.3.1 (The de Rham complex of the canonical meromorphic extension)
The inclusion of complexes V � DR(V⇤,r) ,! DR(V⇤,r) is a quasi-isomorphism

provided � 6 0. Moreover, the germs at the origin of these complexes can be computed
as the complex of finite dimensional vector spaces

0 �! gr0V⇤
t@t
���! gr0V⇤ �! 0.

As a consequence, the natural morphism (in the derived category)

DR(V⇤,r) �! Rj⇤j
�1 DR(V⇤,r) = Rj⇤ DR(V,r)

⇠
 � Rj⇤V

r

is an isomorphism.

Proof. For the first statement, we notice that it is enough to check that for every
� 6 0 and any � < �, the inclusion of complexes V � DR(V⇤,r) ,! V � DR(V⇤,r) is
a quasi-isomorphism. This amounts to showing that the quotient complex

0 �! V�
⇤/V

�
⇤

@t
���! V��1

⇤ /V��1

⇤ �! 0

is quasi-isomorphic to zero for such pairs (�, �), and an easy inductive argument
reduces to proving that, for every � < 0, the complex

0 �! gr�V⇤
@t
���! gr��1V⇤ �! 0

is quasi-isomorphic to zero. The result is now easy since t@t�� is nilpotent on gr�V⇤.
For the second statement, we are reduced to proving that the germ at the origin

of the complex

0 �! V>0

⇤
t@t
���! V>0

⇤ �! 0

is quasi-isomorphic to zero. (1)

Arguing as in Exercise 5.2.2, one can assume that V⇤ has rank one, and has a
basis v� (� 2 [0, 1)) such that tr@t

v� = � · v� .

1. This is obviously not true away from the origin.
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(1) If � 6= 0, then V>0

⇤ = V0

⇤ = O
�

v� and, setting O = O
�,0, the result follows

from the property that (t@t + �) : O ! O is an isomorphism (easily checked on series
expansions).

(2) If � = 0, then V>0

⇤ = tV0

⇤ = tO
�

v
0

, and the result follows from the property
that (t@t + 1) : O ! O is an isomorphism, proved as above.

For the last statement, we first note that the morphism is functorial in (V,r). We
can therefore reduce to the case of rank one by the argument of Exercise 5.2.2. If
� 6= 0, the isomorphism is obvious since both complexes are quasi-isomorphic to zero.
If � = 0, the isomorphism is checked in a straightforward way.

We now compute the deRham complex of the middle extension (V
mid

,r). Re-
call (Exercise 5.2.4(6)) that V

mid

is the O
�

-submodule of V⇤ which is r@t -generated
by V>�1

⇤ . We then set

V
�
mid

=

(

V
�
⇤ if � > �1,

Pk
p=0

(r@t
)pV�

⇤ if k > 0, � 2 (�1, 0], and � = � � k,

and define similarly V
>�
mid

. Then V�1

mid

= @tV
0

⇤ + V>�1

⇤ and t : V�1

mid

! tV�1

mid

is an
isomorphism (i.e., t : V�1

mid

! V0

mid

is injective).

Exercise 5.3.2. Show the following properties.

(1) V
�
mid

is an O
�

-coherent module, which is free of rank equal to rkV, since, being
included in V⇤, it is torsion-free.

(2) V
�
mid

= V
mid

\ V
�
⇤ . [Hint : use that @kt : gr�V⇤ ! gr��kV⇤ is injective for every

� 6 �1 and k > 0.]
(3) For � < 0, @t : gr�V

mid

! gr��1V
mid

is bijective. [Hint : for the injectivity,
use (2) to show that gr�V

mid

⇢ gr�V⇤.]
(4) gr�1V

mid

⇢ gr�1V⇤ ' gr0V⇤ is identified with the image of t@t : gr0V⇤ ! gr0V⇤.

Definition 5.3.3 (The morphisms can and var). We define can : gr0V
mid

! gr�1V
mid

as
the homomorphism induced by �@t and var : gr�1V

mid

! gr0V
mid

as that induced
by 2⇡i t, so that var � can = N : gr0V

mid

! gr0V
mid

and can � var = N : gr�1V
mid

!

gr�1V
mid

. By the definition of V
mid

, can is onto and var is injective.

The complex DR(V
mid

,r) is similarly filtered by the subcomplexes V � DR(V
mid

,r)

whose terms are thus O
�

-free of finite rank.

Lemma 5.3.4 (The de Rham complex of the middle extension)
The inclusion of complexes V � DR(V

mid

,r) ,! DR(V
mid

,r) is a quasi-
isomorphism provided � 6 0. Moreover, the germs at the origin of these complexes
can be computed as the complex of finite dimensional vector spaces

0 �! gr0V
mid

@t
���! gr�1V

mid

�! 0.
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As a consequence, H 1 DR(V
mid

,r) = 0 and the natural morphism

H 0 DR(V
mid

,r) �! j⇤V
r

is an isomorphism.

Proof. For the first statement, we argue as in Lemma 5.3.1, together with Exercise
5.3.2(3). The second statement is obtained similarly by using Exercise 5.3.2(4). The
last statement follows then from that of Lemma 5.3.1.

In particular,

(5.3.5) V 0 DR(V
mid

,r) := {0! V0

⇤
tr@t
�����! ⌦1

�

⌦ (t@tV
0

⇤ + V>0

⇤ )! 0}
⇠
�! DR(V

mid

,r).

We can refine the presentation (5.3.5) by using the lifted monodromy filtration
M•V

0

⇤. Indeed, the finite dimensional vector space gr0V⇤ is equipped with the nilpotent
endomorphism induced by N = � 2⇡i t@t, hence is endowed with the corresponding
monodromy filtration M•gr

0V⇤ (see Lemma 3.1.1). We then define the lifted mon-
odromy filtration M`V

0

⇤ as the pullback of M`gr
0V⇤ by the projection V0

⇤ ! gr0V⇤.

Lemma 5.3.6. The complex DR(V
mid

,r) is quasi-isomorphic to

{0 �! M
0

V0

⇤
tr@t
�����! ⌦1

�

⌦M�2

V0

⇤ �! 0}.

Proof. Clearly, the complex in the lemma is a subcomplex of (5.3.5). Let us consider
the quotient complex. This is

(5.3.7) 0 �! (gr0V⇤/M0

gr0V⇤)
t@t
���! (image t@t/M�2

gr0V⇤) �! 0.

Applying Lemma 3.1.11, we find that this complex is quasi-isomorphic to 0 (i.e., the
middle morphism is an isomorphism).

5.3.b. The local L2 condition. The Hodge-Zucker theorem 5.1.1 relies on the L2

computation of the hypercohomology of a de Rham complex, since this L2 approach
naturally furnishes a Hermitian form on the hypercohomology spaces. In order to
analyze the global L2 condition on a Riemann surface, it is convenient to introduce it
in a local way, in the form of an L2 de Rham complex. We will find in Theorem 5.3.10
the justification for focusing on the de Rham complex of the middle extension.

Hermitian bundle and volume form. Assume that the holomorphic vector bundle V

is endowed with a metric h (equivalently, the C1 bundle H = C1
X ⌦OX

V is endowed
with such a metric). If we fix a metric on the punctured disc, with volume element
vol, we can define the L2-norm of a section v of V on an open set U ⇢ �⇤ by the
formula

kvk
2

2

=

Z

U

h(v, v) d vol .
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In order to be able to apply the techniques of Section 4.2.c, we choose a metric
on �⇤

t which is complete in the neighbourhood of the puncture. We will assume that,
near the puncture, it takes the form

(5.3.8) d vol =
dx2 + dy2

|t|2L(t)2
, with x = Re t, y = Im t, L(t) :=

�

�log |t|2
�

� = � log tt.

Let us be more explicit concerning the Poincaré metric. Working in polar coor-
dinates t = rei✓ and volume element d✓ dr/r, we find a characterization of the L2

behaviour of forms near the puncture:
(0) f 2 L2(d vol), |log r|

�1

f 2 L2(d✓ dr/r);
(1) ! = f dr/r + g d✓ 2 L2(d vol), f and g 2 L2(d✓ dr/r);
(2) ⌘ = h d✓ dr/r 2 L2(d vol), |log r|h 2 L2(d✓ dr/r).
On the other hand, for every integer `, we have |log r|

`/2
2 L2(d✓ dr/r) if and only

if ` 6 �2.
The holomorphic L2 deRham complex. We will consider the holomorphic L2 deRham
complex

DR(V⇤,r)
(2)

= {0! V⇤(2)
r

���! (⌦1

�

⌦ V⇤)
(2)

! 0},

which is the subcomplex of the meromorphic de Rham complex DR(V⇤,r) defined in
the following way:

• (⌦1

�

⌦V⇤)
(2)

is the subsheaf of ⌦1

�

⌦V⇤ consisting of sections which are L2 (with
respect to the metric h on V⇤ and the volume d vol on �⇤),

• V⇤(2) is the subsheaf of V⇤ consisting of sections v which are L2, and such that
rv belongs to (⌦1

�

⌦ V⇤)
(2)

defined above.
Let us note that, by the very definition, we get a complex.

Exercise 5.3.9.

(1) Let r
0

2 (0, 1), let � 2 R and ` 2 Z. Show that the integral
Z r0

0

r2�+1L(r)`dr

is finite iff � > �1 or � = �1 and ` 6 �2 (recall that L(r) := 2 |log r| = �2 log r).
(2) Deduce from Schmid’s theorem 5.2.13 and the characterization of L2(d vol)

given above for 1-forms that, when (V,r, h) underlies a polarized variation of C-Hodge
structure, (⌦1

�

⌦ V⇤)
(2)

= dt⌦M�2

V�1

⇤ .
(3) Similarly, show that the holomorphic sections of V which are L2 near the origin

are the sections of M
0

V0

⇤.
(4) Conclude that (in the Hodge case) V⇤(2) = M

0

V0

⇤ (use that tM�2

V�1

⇤ = M�2

V0

⇤
and that t@t(M0

V0

⇤) ⇢ M�2

V0

⇤).

According to Lemma 5.3.6, we get

Theorem 5.3.10 (Zucker). If (V,r, h) underlies a polarized variation of C-Hodge struc-
ture, we have (DRV⇤)

(2)

' DRV
mid

= j⇤V
r.

This theorem is the first step toward a L2 computation of j⇤Vr.



5.3. THE DE RHAM COMPLEXES 87

The L2 deRham complex. We now work with the associated C1 bundle H =

C1
�

⇤ ⌦O�⇤ V. It is equipped with a flat C1 connection D = D0 + D00, with
D00 = d00⌦ Id and D0 induced by r. We can similarly define the L2 de Rham complex

0 �! L 0

(2)

(H)
D
���! L 1

(2)

(H)
D
���! L 2

(2)

(H) �! 0,

where the upper index refers to the degree of forms. One should give a precise
definition of each term. Let us only say that we consider sections of H having as
coefficients forms of degree k which are L1

loc

on �⇤ and the norm of these sections
should be locally L2 on the disc �. Moreover, we have to ensure that the differential
of theses sections, in the sense of currents (i.e., in the weak sense) are also L2, in
order to get a complex.

Theorem 5.3.11 (L2 Poincaré lemma, Zucker). If (V,r, h) underlies a polarized
variation of C-Hodge structure, the natural inclusion of complexes (DRV⇤)

(2)

,!

L •
(2)

(H, D) is a quasi-isomorphism.

Indication for the proof of Theorem 5.3.11. The following two statements have to be
shown:

(1) The L2 complex L •
(2)

(H, D) has nonzero cohomology in degree zero at most,
(2) The inclusion of the H 0 of the complexes is an isomorphism.
Away from the origin, the second statement follows from Dolbeault-Grothendieck’s

lemma, while the first one is obtained by solving the @ Neuman’s problem.[1] [1] vérifier et donner une
référenceAt the origin of the disc, the main observation is the following lemma.

Lemma 5.3.12 (see [Zuc79, Prop. 6.4]). Let L be a holomorphic line bundle on �⇤

(equipped with the complete metric (5.3.8)) with Hermitian metric h and having a
frame v such that kvkh ⇠ L(t)k for k 2 Z. Then, if k 6= 1, any germ ⌘ = fdt ⌦ v of
section of L (0,1)

(2)

(L, h) at the origin is equal to @ ⌦ v for some local section  ⌦ v of
L 0

(2)

(L, h).

This is a @ equation with logarithmically twisted L2 conditions. It is proved using
the decomposition in Fourier series and Hardy inequalities.

Once this lemma is proved, the proof of Theorem 5.3.11 follows (this is not com-
pletely straightforward) from Schmid’s theorem 5.2.13.

Applying the hypercohomology functor to Theorems 5.3.11 and 5.3.10, we obtain:

Theorem 5.3.13 (Zucker). Let j : X⇤ ,! X be the inclusion of the complement of a
finite set in a compact Riemann surface X. If (V,r, h) underlies a polarized variation
of C-Hodge structure on X⇤, the cohomology H•(X, j⇤V

r) is equal to the L2 coho-
mology of the C1-bundle with flat connection (H, D) associated with the holomorphic
bundle (V,r), the L2 condition being taken with respect to the Hodge metric h on H

and a complete metric on X⇤, locally equivalent near each puncture to the Poincaré
metric.
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5.4. The Hodge filtration

Our aim in this section is to define a Hodge filtration on the cohomology
H•(X, j⇤V

r), and to prove that it endows this cohomology with a polarized Hodge
structure. The method will be of a local nature, in a way similar to the computation
of the L2 cohomology.

5.4.a. The holomorphic Hodge filtration. We wish to extend the filtration F •V

as a filtration F •V
mid

by sub-bundles satisfying the Griffiths transversality property
with respect to the meromorphic connection r. A first natural choice would be to set

F pV
mid

:= j⇤F
pH \ V

mid

,

where j : �⇤ ,! � denotes the inclusion. This choice can lead to a non-coherent
O

�

-module: for example, if p ⌧ 0, we have F pV = V and we would get F pV
mid

=

V
mid

, which is not O
�

-coherent. Being more clever, one first defines

(5.4.1) F pV>�1

mid

:= j⇤F
pH \ V>�1

mid

.

If this sheaf is O
�

-coherent, it will then be natural to define, for every p, in order to
obtain Griffiths transversality,

(5.4.2) F pV
mid

=
X

j>0

(r@t)
jF p+jV>�1

mid

.

Indeed, with this definition, the relation r@t
F pV

mid

⇢ F p�1V
mid

is clearly satisfied.

Exercise 5.4.3 (Extension of the filtration). Show that, with Definitions given by (5.4.1)
and (5.4.2),

(1) for every � > �1, we have F pV
mid

\ V
�
mid

= j⇤F
pH \ V

�
mid

and for every
� > �1, F pV

mid

\ V
>�
mid

= j⇤F
pH \ V

>�
mid

;
(2) if F pV>�1

mid

is O
�

-coherent, it is O
�

-locally free, hence free (use that F pV>�1

mid

⇢

V>�1

mid

);
(3) F pV

mid

is an O
�

-module;
(4) under the assumption in (2), F pV

mid

is O
�

-coherent, and thus O
�

-free, and
each F pV

mid

\ V
�
mid

is so;
(5)

S

p F
pV

mid

= V
mid

.

[Hint : Recall that there exists an integer p
0

�0 such that F p0V=0 and F�p0V=V.]

Exercise 5.4.4 (Relations between F •V
mid

and V•
mid

). We now consider the filtra-
tion V•

mid

indexed by R (see Section 6.2.c).

(1) Assume that each F pV
mid

defined by (5.4.2) is O
�

-coherent. Prove that the
filtration F •V

mid

satisfies the following properties:
(a) for every � > �1, t(F pV

mid

\ V
�
mid

) = F pV
mid

\ V
�+1

mid

;
(b) for every � < 0, @tF pgr�(V

mid

) = F p�1gr��1(V
mid

).
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[The inclusions ⇢ are easy; the remarkable property is the existence of inclusions �;
we will call the conjunction of (1a) and (1b) the property of strict R-specializability,
see Section 7.3.c.] Show moreover that

(c) Property (1b) also holds for � = 0.
(2) Conversely, show that a filtration F •V

mid

by coherent O
�

-submodules which
satisfies (5.4.1), (1b) and (1c) also satisfies (5.4.2).

We will mainly consider � 2 [�1, 0]. The properties of the filtration F •V
mid

are
thus governed by those of the filtration F •V>�1

mid

, and since V>�1

mid

= V>�1

⇤ , they do
not need the notion of middle extension to be considered. We also notice that the
nilpotent endomorphism N shifts by �1 the Hodge filtration on gr�V

mid

, since so
does �t@t.

5.4.b. The limiting Hodge-Lefschetz structure. The main result, due to
Schmid in the case where the monodromy is unipotent in [Sch73], asserts that the
limit Lefschetz structure (at t = 0) of a polarizable variation of C-Hodge structure
on �⇤ is a polarizable Hodge-Lefschetz structure, called the limit Hodge-Lefschetz
structure. We will first construct the limit Lefschetz structure. We will only consider
polarizable variations, so we can fix a polarization and use the simplified setting as
in Proposition 2.4.37.

Let (H,Q) be a variation of polarized C-Hodge structure of weight w on �⇤, that
we now write as ((V,r, F •V), c) (see Definition 4.1.10, and 4.1.8 for c). For every
� 2 (�1, 0], we will define the object gr�(H,Q) as follows. We set

gr�H = (gr�V⇤, F
•
gr�V⇤),

which is endowed with the nilpotent endomorphism N induced by the action of
� 2⇡i(t@t � �):

(gr�V⇤, F
•
gr�V⇤)

N
��! (gr�V⇤, F [�1]

•
gr�V⇤).

In order to obtain a candidate Hodge-Lefschetz structure, we need to define a sesquilin-
ear pairing gr�c : gr�V⇤ ⌦C gr�V⇤ ! C and to check its compatibility with N.

We keep the notation of Exercise 5.2.2(3), but we choose the indices in (�1, 0]

instead of [0, 1). Let �0,�00
2 (�1, 0] and let c : J�0,p|�⇤

⌦ J�00,q|�⇤
! C1

�

⇤ be
a sesquilinear pairing as in Definition 4.1.8. We denote by v0

�0,p (resp. v00
�00,q) the

basis considered in Exercise 5.2.2. Recall also (see (5.3.8)) that we have set L(t) =

� log |t|2 = � log tt. Notice that �t@tL(t)k/k! = �t@tL(t)k/k! = L(t)k�1/(k � 1)!.

Lemma 5.4.5. For i = 0, . . . , p and j = 0, . . . , q, there exist complex numbers ck(i, j)

such that

c(v0�0,i, v
00
�00,j) =

8

<

:

0 if �0
6= �00,

|t|2�
P

min(i,j)
k=0

ck(i, j)
L(t)k

k!
if �0 = �00 =: �.
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Proof. Let us first assume that i = j = 0. If we restrict on an open sector cen-
tered at the origin on which t�

0
and t�

00
are univalued holomorphic functions, then

c(t��0
v0�0,0, t

��00v00�00,0) is constant since it is annihilated by @t and @t. Therefore,
c(v0�0,0, v

00
�00,0) = ct�

00
t�

0
on such a sector. But c(v0�0,0, v

00
�00,0) is a C1 function on

the whole �⇤, hence �0
� �00

2 Z unless c(v0�0,0, v
00
�00,0) = 0. Since we assume

�0,�00
2 (�1, 0], we obtain the assertion in this case.

In general, we argue similarly by using that, if ⌘ 2 C1(�⇤) satisfies (t@t)
i+1⌘ =

(t@t)
j+1⌘ = 0, then ⌘ =

P

min(i,j)
k=0

ckL(t)
k/k!.

We conclude that any sesquilinear pairing c : J�0,p|�⇤
⌦ J�00,q|�⇤

! C1
�

⇤ is zero if
�0
6= �00, and we are reduced to considering sesquilinear pairings

c : J�,p|�⇤
⌦ J�,q|�⇤

�! C1
�

⇤ .

Let us notice that, due to the explicit expression of c, we have

c(v0, t@tv00) = c(t@tv
0, v00).

We still denote by v0
�,p (resp. v00

�,q) the basis induced on gr�J0�,p = O
�

v0
�,p/tO�

v0
�,p

(resp. gr�J00�,q). We define gr�c by the formula

(5.4.6) gr�c(v0�,i, v
00
�,j) = c

0

(i, j).

We conclude from the previous remark that gr�c(v0,Nv00) = �gr�c(Nv0, v00) (with N

induced by � 2⇡i(t@t � �).
We can now define the pairing gr�c : gr�V⇤⌦C gr�V⇤ ! C by choosing a decompo-

sition (5.2.2 ⇤) for (V⇤,r) and by applying (5.4.6) to each pair of terms corresponding
to the same � 2 (�1, 0]. This can also be obtained by a residue formula, without
explicitly referring to such a decomposition and showing also the independence with
respect to it.

Exercise 5.4.7 (A residue formula for gr�c). Let �(t) be a C1 function with compact
support on � which is ⌘ 1 near t = 0. Assume that �(t) only depends on |t|

(e.g. �(t) = µ(|t|2) where µ is C1).
(1) Show that

s 7�! (s� 1)

Z

C
|t|2s�(t) i

2⇡ dt ^ dt

is holomorphic for Re s > �1 and extends as an entire function. Show that

Ress=�1

Z

C
|t|2s�(t) i

2⇡ dt ^ dt = 1.

[Hint : by expressing the integrand with respect to the real variables x, y with
t = x+ iy, check the sign of the left-hand side; then compute with polar coordinates
up to sign.]

(2) Differentiating k times for Re s > �1, show that
Z

C
|t|2s

L(t)k

k!
�(t) i

2⇡ dt ^ dt =
(�1)k

(s� 1)k+1

+ Fk(s),
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where Fk(s) is holomorphic for Re s > �1 and extends as an entire function. Conclude
that, for k > 1,

Ress=�1

Z

C
|t|2s

L(t)k

k!
�(t) i

2⇡ dt ^ dt = 0.

(3) Show the formula

gr�c(v0, v00) = Ress=���1

Z

C
|t|2sc(v0, v00)�(t) i

2⇡ dt ^ dt.

Example 5.4.8 (A symbolic identity). Let ⌘ 2 C1
c

(�) be any test function. Exercise
5.4.7(1) shows that the function

F (s) =

Z

�

|t|2s�2 ⌘(t) dt ^ dt

is holomorphic on the half space Re s > 0 and extends as a meromorphic function on
the s-plane with a simple pole at s = 0. An integration by parts gives

(5.4.8 ⇤) F (s) =
1

s2

Z

�

|t|2s @t@t⌘(t) dt ^ dt,

[apply Stokes formula first to d(|t|2s⌘(t)dt/t) and then to d(|t|2s@t⌘(t)dt)] and ex-
panding with respect to s (taking into account that |t|2s = e�sL(t)) gives the residue:

Ress=0

F (s) = �

Z

�

L(t) @t@t⌘(t) dt ^ dt.

Note that, by Exercise 5.4.7(1) and the residue interpretation, if � is a cut-off function,
we have

Z

�

L(t) @t@t�(t) dt ^ dt = 2⇡i .

We are interested in rewriting the symbolic expression, where N is a nilpotent
element of some C-algebra,

Z

�

|t|2s�2�2N ⌘(t) dt ^ dt =

1
X

n=0

✓

Z

�

L(t)n

n!
|t|2s�2 ⌘(t) dt ^ dt

◆

Nn

in a way that lets us analyze how it behaves near s = 0. Let us already note that, if
As long as Re s > 0, differentiation under the integral sign gives

(�1)n
F (n)(s)

n!
=

Z

�

L(t)n

n!
|t|2s�2 ⌘(t) dt ^ dt,

and since F (s) has a simple pole at s = 0, we have Ress=0

F (n)(s) = 0 for n > 1.
Consequently,

Z

�

|t|2s�2�2N ⌘(t) dt ^ dt =

1
X

n=0

(�1)nNn F (n)(s)

n!
,

and this function of s has residue at s = 0 equal to that of F (s).
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On the other hand, we can expand the expression (5.4.8 ⇤) for F (s) into a power
series near s = 0; the result is that

F (s) =
1

s2

1
X

p=0

(�1)psp
Z

�

L(t)p

p!
@t@t⌘(t) dt ^ dt.

After we insert this into the previous expression and simplify the result, we eventually
arrive at the symbolic identity

(5.4.8 ⇤⇤)
Z

�

|t|2s�2�2N ⌘(t) dt ^ dt =

Z

�

|t|2s�2N
� 1

(N � s)2
@t@t ⌘(t) dt ^ dt.

It should be understood as an identity between two families of holomorphic functions
– namely the coefficients at Np on both sides – on the half space Re s > 0.

Lemma 5.4.9. The pairing gr�c induces a pairing grM• gr�V⇤ ⌦C grM• gr�V⇤ ! C, which
is non-degenerate if and only if c is non-degenerate.

Proof. We can regard gr�c as a morphism of Lefschetz pairs (gr�V⇤,N)! (gr�V⇤,N)⇤,
as N is skew-adjoint with respect to c. It is therefore compatible with the monodromy
filtrations (see Section 3.1.a). For the second assertion, we can assume that only
terms J�,p (with the same � 2 (�1, 0]) occur in the decomposition (5.2.2 ⇤). Note
that grMgr�c is an isomorphism if and only if gr�c is so. In order to conclude, we can
now interpret Lemma 5.4.5 as giving an asymptotic expansion of c when |t|! 0, and
(5.4.6) as taking its dominant part. We then clearly obtain that c is non-degenerate
near the origin if and only if gr�c is non-degenerate. The equivalence with non-
degeneracy on the whole disk follows then from Remark 4.1.9.

Theorem 5.4.10 (Schmid [Sch73]). Let (H,Q) be a variation of polarized C-Hodge struc-
ture of weight w on �⇤. Then for every � 2 (�1, 0], the data

(gr�H,N, gr�Q)

form a polarized Hodge-Lefschetz structure centered at w.

5.4.c. The L2 Dolbeault lemma. One of the important points in order to prove
the E

1

-degeneration of the Hodge-to-deRham spectral sequence in the context of
the Hodge-Zucker theorem 5.1.1 is the Dolbeault lemma, making the bridge between
the holomorphic world and the L2 world of harmonic sections. We will briefly give
indications on its proof.

Recall that the Dolbeault lemma on a complex manifold X says that Hq(X,⌦p
X) '

Hp,q
d00 (X) = Hq

�

�(X,E p,•
X ), d00

�

.
If we now consider a variation of polarized Hodge structure on X, as in Sec-

tion 4.2.b, the complex E •
X(H) is filtered by taking into account the holomorphic

degree of the form and the Hodge degree of the section. Moreover, this filtration
splits as direct sum of terms E i,j

X ⌦Hk,`, and each of these terms is a summand in
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the p, q term of the decomposition if p = i+ k and q = j + `. The Dolbeault lemma
then says that

Hq
�

X, grpF DR(V,r)
�

= Hq
�

�(X, grpFE •
X(H))

�

.

Let us note that the differential in the complex grpFE •
X(H) is induced by D00, as

introduced in Exercise 4.2.2(4).
Let us now come back to the context of the Hodge-Zucker theorem 5.1.1. The first

point to be settled is the freeness of each step of the F -filtration of V
mid

. Recall that
it is defined with (5.4.1) and (5.4.2).

Let us first consider F pV⇤(2) := j⇤F
pV\V⇤(2). According to Exercise 5.3.9(4), this

is also j⇤F
pV \M

0

V0

⇤. If we show its coherence, then F pV0

⇤ will be coherent as well,
as V0

⇤/M0

V0

⇤ is finite dimensional. In the same way, F pV>�1

⇤ will be coherent. It will
then also be locally free of rank equal to rkF pV, and F pV

mid

defined by (5.4.2) will
be a filtration of V

mid

satisfying F pV
mid

\ V⇤(2) = F pV⇤(2).

Proposition 5.4.11 ([Zuc79, Prop. 5.2]). The O
�

-module F pV⇤(2) is coherent.

This is shown using results of Schmid [Sch73]. We can thus apply the results of
Exercises 5.4.3 and 5.4.4.

From Proposition 3.2.25 we obtain a nearby/vanishing Hodge-Lefschetz quiver on
( t,1Vmid

,�t,1Vmid

).
It is not difficult to filter the complex DRV

mid

by the usual procedure as in (2.3.4)
from the filtration of V

mid

. On the other hand, according to Theorem 5.3.10, the inclu-
sion (DRV⇤)

(2)

,! DRV
mid

is a quasi-isomorphism. Is it a filtered quasi-isomorphism?
Firstly, we have to define the filtration F •(DRV⇤)

(2)

. Using the interpretation
of Exercise 5.3.9, we are reduced to defining the filtration on M

0

V0

⇤ and M�2

V�1

⇤ .
The natural choice is simply to induce the filtration F •V

mid

on these submodules.
Therefore, answering the question above amounts to answering the following ones:

(5.4.12) Is (5.3.5) a filtered quasi-isomorphism, when the terms are equipped with
the induced filtration?

(5.4.13) Is the quasi-isomorphism of Lemma 5.3.6 a filtered quasi-isomorphism,
when the terms are equipped with the induced filtration?

The answer to both questions is yes. For the first question, we have to show that,
for every � < 0 and any p, the complex

0 �! F pgr�V Vmid

@t
���! F p�1gr��1

V V
mid

�! 0

is quasi-isomorphic to zero. This is Exercise 5.4.4(1b). Using now Exercise 5.4.4(1a),
we can replace the filtered complex F •H0 DRV

mid

with the filtered complex corre-
sponding to (5.3.5).

For the second question, we have to prove the filtered analogue of Lemma 5.3.6.
This is done by an argument of strictness: both terms in (5.3.7) are shown to be mixed
Hodge structures, and the morphism between them (if one Tate-twists the right-hand
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term by �1) a morphism of mixed Hodge structures, hence is strictly compatible with
the Hodge filtration.

Let us come back to the Dolbeault lemma. On the holomorphic side, we have
Hq(X, grpF DRV

mid

), that we now can write as Hq(X, grpF (DRV
mid

)
(2)

), a form which
will help us to compare with the L2 side.

The L2 Dolbeault complex has to be taken with respect to the differential D00 and
the L2 condition on a section ⌘ ⌦ v concerns the derivative D00(⌘ ⌦ v).

By using Lemma 5.3.12, one gets

Theorem 5.4.14 (L2 Dolbeault lemma, Zucker). With the assumptions of The-
orem 5.3.13, the natural morphism (induced by the inclusion of complexes)
Hq(X, grpF (DRV

mid

)
(2)

)! Hq(X, grpFL
(2)

(H,D00)) is an isomorphism.

Remarks 5.4.15.

(1) As in Remark 4.2.4(4), a consequence of the Hodge-Zucker theorem 5.1.1 is
that the maximal constant subsheaf of H has stalk H0(X⇤,H) = H0(X, j⇤H), and
thus underlies a constant variation of polarizable Hodge structure of weight w which
is a direct summand in H.

(2) We could also express the Hodge-Zucker theorem 5.1.1 in terms of a polarizable
graded (�)Hodge-Lefschetz structure of weight w+1, but the previous remark shows
that the only interesting cohomology is H1(X, j⇤H). It is primitive, so the polarization
on it can be expressed without referring to an ample line bundle. The positivity
property of the polarization is proved exactly as in Theorem 4.2.3 in the case of
compact Riemann surfaces, by replacing C1 sections with L2 sections with respect
to the complete metric fixed on X⇤, and using the pairing (??). There is no need here
to argue on primitivity of L2 sections.

(3) (Degeneration at E
1

of the Hodge-to-deRham spectral sequence)
One checks that the filtered complex R�

�

X,F •(DRV
mid

)
(2)

�

is strict, exactly as
in Remark 4.2.4(2).

5.5. Semi-simplicity

We extend in this section the results of Section 4.3 to the case of a punctured
projective curve.

5.5.a. The semi-simplicity theorem. Let X be a smooth projective curve and
let X⇤ be a Zariski open subset of X (i.e., the complement of a finite set of points).
Let H = (H, F 0•H, F 00•H, D,Q) be a variation of polarized C-Hodge structure of
weight w on X⇤ (see Definition 4.1.3), and let H = Kerr be the associated complex
local system.

Theorem 5.5.1. Under these assumptions, the complex local system H is semi-simple.
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5.5.b. Structure of variations of polarized C-Hodge structure

Let X,X⇤ be as in Section 5.5.a and let (H, F 0•H, F 00•H, D,Q) be a variation of
polarized C-Hodge structure of weight w on X⇤. We now use on X⇤ the same notation
as in Section 4.3.c.

We note that Proposition 4.3.7 and Lemma 4.3.5 hold in this setting. Indeed,
the reference to Theorem 4.3.3 is replaced with a reference to Theorem 5.5.1, so
the new argument needed only concerns the existence of a pure Hodge structure on
H0(X⇤,End(H)), which is provided by the Hodge-Zucker theorem 5.1.1, according to
Remark 5.4.15(1).

5.6. Comments

Here come the references to the existing work which has been the source of inspi-
ration for this chapter.




