
CHAPTER 4

VARIATIONS OF HODGE STRUCTURE ON
A SMOOTH PROJECTIVE VARIETY

Summary. The notion of a variation of C-Hodge structure on a complex mani-
fold is the first possible generalization of a C-Hodge structure. It naturally occurs
when considering holomorphic families of smooth projective varieties. Later, we
will identify this notion with the right notion of a smooth C-Hodge module. We
consider global properties of polarizable variations of C-Hodge structure on a
smooth projective variety. On the one hand, the Hodge theorem asserts that the
deRham cohomology of a polarizable variation of C-Hodge structure on a smooth
projective variety is itself a polarizable graded (�)Hodge-Lefschetz structure. On
the other hand, we show that the local system underlying a a polarizable varia-
tion of C-Hodge structure on a smooth projective variety is semi-simple, and we
classify all such variations with a given underlying semi-simple local system.

4.1. Variations of C-Hodge structure

The definition of a variation of C-Hodge structure is modeled on the behaviour of
the cohomology of a family of smooth projective varieties parametrized by a smooth
algebraic variety, that is, a smooth projective morphism f : Y ! X, that we call
below the “geometric setting”.

Let us first motivate the definition. Let X be a connected (possibly non compact)
complex manifold. In such a setting, the generalization of a vector space Ho is a
locally constant sheaf of vector spaces H on X. Let us choose a universal covering
eX ! X of X and let us denote by ⇧ its group of deck-transformations, which is
isomorphic to ⇡

1

(X, ?) for any choice of a base-point ? 2 X. Let us denote by eH the
space of global sections of the pullback eH of H to eX. Then, giving H is equivalent
to giving the monodromy representation ⇧ ! GL( eH). However, it is known that, in
the geometric setting, the Hodge decomposition in each fibre of the family does not
give rise to locally constant sheaves, but to C1-bundles.

In the geometric setting, to the locally constant sheaf Rkf⇤CX (k 2 N) is associated
the Gauss-Manin connection, which is a holomorphic vector bundle on Y endowed
with a holomorphic flat connection. In such a case, the Hodge filtration can be
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naturally defined and it is known to produce holomorphic bundles. Therefore, in the
general setting of a variation of C-Hodge structure that we intend to define, a better
analogue of the complex vector space Ho is a holomorphic vector bundle H0 equipped
with a flat holomorphic connection r : H0

! ⌦1

X ⌦OX
H0, so that the locally constant

sheaf H0 = Kerr, that we also denote by H0r, is the desired local system. Note that
we can recover (H0,r) from H0 since the natural morphism of flat bundles

(OX ⌦C H0, d⌦ Id) �! (H0,r)

is an isomorphism. A filtration is then a finite (exhaustive) decreasing filtration by
sub-bundles F •H0 (recall that a sub-bundle F pH0 of H0 is a locally free OX -submodule
of H0 such that H0/F pH0 is also a locally free OX -module; F •H0 is a filtration by
sub-bundles if each F pH0/F p+1H0 is a locally free OX -module). The main property,
known as Griffiths transversality property is that the filtration should satisfy

(4.1.1) r(F pH0) ⇢ ⌦1

X ⌦OX
F p�1H0

8 p 2 Z.

However, the analogue of a bi-filtered vector space is not a bi-filtered holomorphic
flat bundle, since one knows in the geometric setting that one of the filtrations should
behave holomorphically, while the other one should behave anti-holomorphically. This
leads to a presentation by C1-bundles.

Let H = C1
X ⌦OX

H0 be the associated C1 bundle and let D be the connection
on H defined by D(' ⌦ v) = d' ⌦ v + ' ⌦ rv (this is a flat connection which
decomposes with respect to types as D = D0 +D00 and D00 = d00 ⌦ Id). Then D00 is a
holomorphic structure on H, i.e., KerD00 is a holomorphic bundle with connection r

induced by D0: this is (H0,r) by construction. Each bundle F pH0 gives rise similarly
to a C1-bundle F 0pH which is holomorphic in the sense that D00F 0pH ⇢ E 0,1

X ⌦F 0pH

(and thus (D00)2 = 0 on F 0pH).
On the other hand, D0 defines an anti-holomorphic structure on H, and KerD0 is an

anti-holomorphic bundle with a flat anti-holomorphic connection r induced by D00.
If we wish to work with holomorphic bundle, we can thus consider the conjugate
bundle (1) H00 = KerD0, that we equip with the holomorphic flat connection r =

D00
|KerD0 . A filtration of H by anti-holomorphic sub-bundles is by definition a filtration

F 00•H by C1-sub-bundles on which D0 = 0. It corresponds to a filtration of H00 by
holomorphic sub-bundles F •H00.

Conversely, given a flat C1 bundle (H, D), we decompose the flat connection into
its (1, 0) part D0 and its (0, 1) part D00.

Exercise 4.1.2. Show that a connection D is flat if and only if it satisfies

D02 = 0, D002 = 0, D0D00 +D00D0 = 0.

1. The precise definition is as follows. Let OX denote the sheaf of anti-holomorphic functions on X

and regard OX as an OX -module: the action of an anti-holomorphic function g on an holomorphic
function f is by definition g · f := gf . Then any OX -module E00 determines an OX -module E00 by
setting E00 := OX ⌦OX

E00.
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Since, by flatness, (D00)2 = 0, the Koszul-Malgrange theorem [KM58] implies that
KerD00 is a holomorphic bundle H0, that we can equip with the restriction r to
KerD00 of the connection D0. Flatness of D also implies that r is a flat holomor-
phic connection. Similarly, KerD0 is an holomorphic bundle, equipped with a flat
holomorphic connection.

The conjugate C1 bundle H is equipped with the conjugate connection D, which
is also flat. Conjugation exchanges of course the (1, 0)-part and the (0, 1)-part, that is,
D0 = D00 and D00 = D0. Similarly, we set F 0pH = F 00pH, etc.

Definition 4.1.3 (Variation of C-Hodge structure, first definition)
A variation of C-Hodge structure H of weight w consists of the data of a flat C1

bundle (H, D), equipped with a filtration F 0•H by holomorphic sub-bundles satisfying
Griffiths transversality (4.1.1), and with a filtration F 00•H by anti-holomorphic sub-
bundles satisfying anti-Griffiths transversality, such that the restriction of these data
at each point x 2 X is a C-Hodge structure of weight w (Definition 2.4.2).

A morphism ' : H
1

! H
2

is a flat morphism of C1-bundles compatible with both
the holomorphic and the anti-holomorphic filtrations.

A polarization Q is a D-flat pairing H ⌦H ! C1
X (�w) whose restriction to each

x 2 X is a polarization of the Hodge structure Hx.

Definition 4.1.4 (Variation of C-Hodge structure, second definition)
A variation of C-Hodge structure H of weight w consists of the data of a flat C1

bundle (H, D), equipped with a Hodge decomposition by C1-sub-bundles
H =

L

p
Hp,w�p

satisfying Griffiths transversality :

D0Hp,q
⇢ ⌦1

X ⌦ (Hp,q
�Hp�1,q+1),

D00Hp,q
⇢ ⌦1

X ⌦ (Hp,q
�Hp+1,q�1).

(4.1.4 ⇤)

A morphism H
1

! H
2

is a D-flat morphism (H
1

, D) ! (H
2

, D) which is compat-
ible with the Hodge decomposition.

A polarization is a C1 Hermitian metric h on the C1-bundle H such that
• the Hodge decomposition is orthogonal with respect to h,
• The polarization form Q, defined by the property that the decomposition is Q-

orthogonal and h|Hp,w�p := (�1)piwQ|Hp,w�p , is a D-flat OX ⌦C OX -linear pairing
Q : H ⌦C H ! C1

X .

Remark 4.1.5. While it is easy, by using a partition of unity, to construct a Hermitian
metric compatible with the Hodge decomposition, the condition of flatness of Q is
a true constraint if dimX > 1. For example, any flat C1-bundle (H, D) can be
regarded as a variation of C-Hodge structure of type (0, 0), and it admits many
Hermitian metrics, but the polarization condition imposes that the Hermitian metric
is flat, which only occurs when the monodromy representation of the flat bundle is
(conjugate to) a unitary representation.
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Exercise 4.1.6. Show that Definitions 4.1.3 and 4.1.4 are indeed equivalent. [Hint : use
the standard property that, given two sub-bundles of a C1 bundle H, if the fibre
of their intersection in H has constant dimension, then their intersection is also a
sub-bundle of H.]

Definition 4.1.7 (The categories VHS(X,C, w) and pVHS(X,C, w))
Definitions 4.1.3 and 4.1.4 produce the category VHS(X,C, w) of variations of

C-Hodge structures of weight w on X. The category pVHS(X,C, w) of polarizable
variations of C-Hodge structures of weight w is the full subcategory of VHS(X,C, w)
whose objects admit a polarization.

On the other hand, the language of triples of Section 2.4.c (with a sesquilinear
pairing c) enables one to keep holomorphy for both filtrations, by putting the non-
holomorphic behaviour in the sesquilinear pairing c. This approach will be convenient
in presence of singularities.

When working with a pairing c, we start by introducing a larger category,
which can be enlarged to an abelian category by replacing the filtered flat bundles
(H0,r, F •H0) and (H00,r, F •H00) by coherent graded OX [z]-modules with a flat
z-connection (see Definition A.2.16).

Definition 4.1.8 (Flat filtered O-triples (with pairing c)). A filtered flat O-triple on X

consists of the data of
• a pair of flat holomorphic bundles (H0,r) and (H00,r) on X, equipped with de-

creasing filtrations by holomorphic sub-bundles F •H0, F •H00 (i.e., each grpFH
0, grpFH

00

is a locally free OX -module of finite rank), both filtrations satisfying Griffiths transver-
sality (4.1.1),

• a flat OX ⌦C OX -linear morphism c : H0
⌦CH00

! C1
X , i.e., for local holomorphic

sections m0,m00 of H0,H00, we have

@c(m0,m00) = c(rm0,m00),

@c(m0,m00) = c(m0,rm00).

Remark 4.1.9 (Flatness of c). The restriction c of c to the local system H0
⌦C H00 takes

values in the constant sheaf CX since for local sections m0 of H0 and m00 of H00, we
have, by the previous formulas, @c(m0,m00) = @c(m0,m00) = 0. Moreover, we can
recover c from its restriction c by OX ⌦C OX -linearity. As a consequence, we see that
if X is connected, c is non-degenerate if and only if its restriction at some point x 2 X

is a non-degenerate pairing H0
x ⌦C H00

x ! C, since this obviously holds for c.

Definition 4.1.10 (Variation of C-Hodge structure, third definition)
A variation of C-Hodge structure of weight w is a filtered flat O-triple

H = ((H0,r, F
•
H0), (H00,r, F

•
H00), c)

whose restriction Hx = ((H0
x, F

•H0
X), (H00

x, F
•H00

x), cx) at each x 2 X is a C-Hodge
triple of weight w. In particular, c is non-degenerate.



4.2. THE HODGE THEOREM 59

A polarization is a flat morphism Q : H ! H⇤(�w) inducing a polarization at
each x 2 X. Equivalently (see Remark 2.4.20), a polarized variation of C-Hodge
structure of weight w consists of the data (H,Q) = (H0,r, F •H0),Q), where Q is a
flat sesquilinear pairing on (H0,r), inducing a polarized C-Hodge structure at eavery
x 2 X.

Remark 4.1.11. One can also define VHS(X,C, w) as the full subcategory of that of
filtered flat triples whose objects are variations of C-Hodge structures of weight w

on X. The category pVHS(X,C, w) is defined correspondingly.
The category VHS can be naturally endowed with the operations Hom, tensor

product, duality, and conjugation. The full subcategory pVHS is stable by these
operations, since the polarization can be constructed in a natural way in each of these
operations (see Remark 2.4.21).

Exercise 4.1.12.

(1) Show that the category VHS(X,C, w) as defined by 4.1.10 is equivalent to
VHS(X,C, w) as defined by 4.1.3, and hence to VHS(X,C, w) as defined by 4.1.4.
Show a similar result for pVHS(X,C, w).

(2) Show that a polarization is an isomorphism H
⇠
�! H⇤(�w). [Hint : use Re-

mark 2.4.18(1).]

Corollary 4.1.13 (Abelianity). The category VHS(X,C, w) is abelian and each mor-
phism is strictly compatible with the Hodge filtration.

Proof. The statement is clear with Definition 4.1.4, since any morphism is bigraded
with respect to the Hodge decomposition, hence so are its kernel, image and cokernel.

Exercise 4.1.14 (Abelianity and semi-simplicity). Let
�

H,Q
�

be a polarized variation
of Hodge structure of weight w on X.

(1) Show that any subobject of H in VHS(X,C, w) is a direct summand of the
given variation, and that the polarization Q induces a polarization.

(2) Conclude that the full subcategory pVHS(X,C, w) of polarizable variations of
Hodge structure is abelian and semi-simple (i.e., any object decomposes as the direct
sum of its irreducible components).
[Hint : Use the C1 interpretation of Definition 4.1.4.]

4.2. The Hodge theorem

4.2.a. The Hodge theorem for unitary representations. We will extend the
Hodge theorem (Theorem 2.3.5 and the results indicated after its statement concern-
ing the polarization) to the case of the cohomology with coefficients in a unitary
representation.
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Let us start with a holomorphic vector bundle H0 of rank d on a complex projec-
tive manifold X equipped with a flat holomorphic connection r. The local system
H = H0r corresponds to a representation ⇡

1

(X, ?) ! GLd(C), up to conjugation.
The unitarity assumption means that we can conjugate the given representation in
such a way that it takes values in the unitary group.

In other words, there exists a Hermitian metric h on the associated C1-bundle
H = C1

⌦OX
H0 such that, if we denote as above by D the connection on H defined

by D(' ⌦ v) = d' ⌦ v + ' ⌦ rv, the connection D is compatible with the metric h

(i.e., is the Chern connection of the metric h).
That D is a connection compatible with the metric implies that its formal adjoint

(with respect to the metric) is obtained with a suitably defined Hodge ? operator
by the formula D⇤ = � ?D ? . This leads to the decomposition of the space of C1

k-forms on X with coefficients in H (resp. (p, q)-forms) as the orthogonal sum of the
kernel of the Laplace operator with respect to D (resp. D0 or D00), that is, the space
of harmonic sections, and its image.

As the connection D is flat, there is a C1 de Rham complex (E •
X ⌦H, D), and

standard arguments give

Hk(X,H) = Hk(X,DR(H0,r)) = Hk
�

�(X, (E •
X ⌦H, D))

�

.

One can also define the Dolbeault cohomology groups by decomposing E • into E p,q’s
and by decomposing D as D0 +D00. Then Hp,q

D00(X,H) = Hq(X,⌦p
X ⌦H0).

As the projective manifold X is Kähler, we obtain the Kähler identities for the
various Laplace operators: �D = 2�D0 = 2�D00 .

Then, exactly as in Theorem 2.3.5, we get:

Theorem 4.2.1. Under these conditions, one has a canonical decomposition

Hk(X,DR(H0,r)) =
L

p+q=k

Hp,q(X,H)

and Hq,p(X,H) is identified with Hp,q(X,H_), where H_ is the dual bundle. (2)

The Hard Lefschetz theorem also holds in this context.

4.2.b. Variation of polarized Hodge structure on a compact Kähler mani-
fold: the Hodge-Deligne theorem. Let us keep notation as in Section 4.2.a. We
do not assume anymore that H is unitary. We only assume that it underlies a vari-
ation of polarized Hodge structure of some weight w. In such a situation, we have
a flat connection D on the C1-bundle H associated to H0, with D = D0 + d00, and
we also have a Hermitian metric h on H associated with Q, but D is possibly not
compatible with the metric. The argument using the Hodge ? operator is not valid
anymore.

2. When we work with a variation of polarized Hodge structure, the polarization Q identifies
(H, D) and (H_, D_) and we recover the usual conjugation relation between Hq,p and Hp,q .
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Exercise 4.2.2. Let (H,Q) be a variation of polarized Hodge structure of weight w

on X (see Definition 4.1.3). Let h be the Hermitian metric deduced from Q and let
D = D0 + D00 be the flat C1 connection. Let H =

L

p+q=w Hp,q be the Hodge
decomposition (which is h-orthogonal by construction). Show that

(1) In the Griffiths transversality relations (4.1.4 ⇤), the composition of D0

(resp. D00) with the projection on the first summand defines a (1, 0) (resp. (0, 1))-
connection D0

h

(resp. D00
h

), and that the projection to the second summand defines a
C1-linear morphism ✓0 (resp. ✓00).

(2) Show that D
h

:= D0
h

+D00
h

is compatible with the metric h, but is possibly not
flat.

(3) Show that ✓00 is the h-adjoint of ✓0.
(4) Show that the connection D00 := D00

h

+ ✓0 has square zero, as well as the con-
nection D0 := D0

h

+ ✓00.

The decomposition D = D0+D00 is replaced with the decomposition D = D0+D00.
The disadvantage is that we loose the decomposition into types (1, 0) and (0, 1), but
we keep the flatness property. On the other hand, as D

h

is compatible with the
metric, its formal adjoint is computed with a Hodge ? operator. Using the Kähler
metric, one shows that ✓ satisfies the right relations in order to ensure the equality of
Laplace operators �D = 2�D0 = 2�D00 .

We did not really loose the decomposition into types: the operator D00 sends a
section of Hp,q to a section of (⌦1

X ⌦Hp�1,q+1) + (⌦1

X ⌦Hp,q). Counting the total
type, we find (p, q+ 1) for both terms. In other word, taking into account the Hodge
type of a section, the operator D00 is indeed of type (0, 1). A similar argument applies
to D0.

This being understood, the arguments of Hodge theory apply to this situation as
in the case considered in Section 4.2.a, to get the Hodge-Deligne theorem.

Theorem 4.2.3 (Hodge-Deligne theorem). Let (H,Q) be a polarized variation of Hodge
structure of weight w on a smooth complex projective variety X of pure dimen-
sion n and let L be an ample line bundle on X. Then

�

H•(X,H),LL ) is natu-
rally equipped with a polarizable graded (�)Hodge-Lefschetz structure centered at w+n

(see Definition 3.2.4). In particular, each Hk(X,H) is endowed with a polarized
C-Hodge structure of weight w + k.

Sketch of proof. One realizes each cohomology class in H•(X,H) by a unique �D-
harmonic section, by the arguments of Hodge theory, which extend if one takes into
account the total type, as above.

The polarization is obtained from Q and Poincaré duality as we did for Q in
Section 2.3, still using the sign ", and from it we cook up the form Q. More precisely,
the pairing

Q : H ⌦H �! C1
X
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induces for every k 6 n a pairing Q(n�k) of C-Hodge structures

Hn�k(X,H)⌦Hn+k(X,H) �! H2n(X,C)(�(w + n)) = C(�(w + n)).

Since the Lefschetz operator LL only acts on the forms and not on the sections
of H, it is an infinitesimal automorphism of Q(n�k) since it is so for the Poincaré
duality pairing. Then the family (Q(n�k))k is a sesquilinear pairing on the graded
(�)Hodge-Lefschetz structure H•(X,H).

Due to the Kähler identities and the commutation of LL with �D, a harmonic
section of E n�k

X ⌦H is primitive if and only if each of its components with respect to
the total bigrading is so, and since LL only acts on the differential form part of such
a component, this occurs if an only if its component on E p,q

X ⌦Ha,b is primitive, with
p + q = n � k and a + b = w. Fixing an h-orthonormal basis (vi)i of Ha,b, such a
component can be written in a unique way as

P

i ⌘
p,q
i ⌦ vi with ⌘p,qi primitive. Then

the positivity property of Q(n�k) on ⌘p,qi ⌦ vi amounts to the positivity of (2.3.13)
on ⌘p,qi .

Remarks 4.2.4. Let H be a variation of polarizable C-Hodge structure of weight w on
a smooth complex projective variety X.

(1) (The Hodge filtration) Consider the de Rham complex DR(H0,r). According
to the Griffiths transversality property, it comes equipped with a filtration, by setting
(see Definition A.5.1):

F p DR(H0,r) = {0 ! F pH0 r

���! ⌦1

X ⌦ F p�1H0 r

���! · · ·

r

���! ⌦n
X ⌦ F p�nH0

! 0}.

The natural inclusion of complexes F p DR(H0,r) ,! DR(H0,r) induces a morphism

(4.2.4 ⇤) Hk(X,F p DR(H0,r)) �! Hk(X,DR(H0,r)) = Hk(X,H),

whose image is the filtration F 0pHk(X,H). Working anti-holomorphically with the
filtration F 00•H by anti-holomorphic sub-bundles and the anti-holomorphic connection
induced by D00 on KerD0, one obtains the filtration F 00•Hk(X,H). The Hodge-
Deligne theorem implies that these filtrations are w + k-opposed.

(2) (Degeneration at E
1

of the Hodge-to-deRham spectral sequence)
Moreover, for every p, k, the morphism (4.2.4 ⇤) is injective. In other words, the

filtered complex R�
�

X,F • DR(H0,r)
�

is strict (see Section A.2.b). Let us denote by
✓ the morphism induced by r: ✓ = gr1r : grpFH

0
! ⌦1

X ⌦ grp�1

F H0. This morphism
is OX -linear and is equal to the restriction of ✓0 to KerD00

h

(see Exercise 4.2.2). The
graded complex grpF DR(H0,r) is the complex

grpF DR(H0,r) = {0 ! grpFH
0 ✓
��! ⌦1

X ⌦ grp�1

F H0 ✓
��! · · ·

✓
��! ⌦n

X ⌦ grp�n
F H0

! 0}.

Since each term of this complex is OX -locally free of finite rank and since ✓

is OX -linear, the hypercohomology spaces Hk(X, grpF DR(H0,r)) are finite-
dimensional. Setting grF =

L

p gr
p
F , we introduce the Dolbeault complex

Dol(grFH
0, ✓) := {0 ! grFH

0 ✓
��! ⌦1

X ⌦ grFH
0 ✓
��! · · ·

✓
��! ⌦n

X ⌦ grFH
0
! 0}.
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The strictness property is then equivalent to

8 p, k, grpFH
k(X,H) = Hk(X, grpF DR(H0,r)),

where grpFH
k(X,H) ' Hp,w+k�p(X,H). This property is also equivalent to

8 k, dimHk(X,H) = dimHk(X,Dol(grFH, ✓)).

This statement is obtained by standard arguments of Hodge theory applied to the
operators D,D0,D00 and their Laplacians.

(3) For any smooth projective variety X, the space H0(X,H) is primitive (for
any L ) and, given a polarization of H, the polarization of the pure C-Hodge structure
of weight w is independent of the choice of L .

If X is a compact Riemann surface, then H1(X,H) is also primitive, and there
is no need to choose a polarization bundle L in order to obtain the polarized pure
C-Hodge structure on H1(X,H).

(4) (The fixed-part theorem) The maximal constant subsheaf of H is the constant
subsheaf with stalk H0(X,H) at each point, by means of a natural injective morphism
H0(X,H) ⌦C CX ! H. By the Hodge-Deligne theorem 4.2.3, H0(X,H) ⌦C CX is
endowed with a constant variation of Hodge structure of weight w. We claim that
the previous morphism is compatible with the Hodge filtrations, i.e., is a morphism in
VHS(X,C, w), that is, the morphism

' : H0(X,H)⌦C OX �! H ⌦C OX = H0

is compatible with the Hodge filtration F • on both terms.
Since X is compact and F pH0 is OX -coherent (being OX -locally free of finite rank),

the space H0(X,F pH0) is finite dimensional, and we have a natural injective morphism

H0(X,F pH0)⌦C OX �! F pH0

by sending a global section of F pH0 to its germ at every point of X. On the other
hand, regarding F pH0 as a complex with only one term in degree zero, we have an
obvious morphism of complexes

F p DRH0
�! F pH0,

which induces a morphism H0(X,F p DRH0) ! H0(X,F pH0), from which we obtain
a morphism

H0(X,F p DRH0)⌦C OX �! F pH0.

For p small enough so that F pH0 = H0, we recover the morphism ' above. By the
degeneration property (2), H0(X,F p DRH0) is identified with F pH0(X,H), hence
the assertion.

As a consequence, if a global horizontal section of (H0,r), i.e., a global section
of H, regarded as a global section of H0, is in F pH0 at one point, it is a global section
of F pH0.
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Arguing similarly with the anti-holomorphic Hodge filtration, and then with the
Hodge decomposition of the C1-bundle H, we find that the natural injective mor-
phism

H0(X,H)⌦C C1
X �! H ⌦C C1

X = H

is compatible with the Hodge decomposition of each term. As a consequence, for any
global horizontal section of (H, D), i.e., any global section of H, regarded as a global
section of H, the Hodge (p, q)-components are also D-horizontal. In particular, if the
global section is of type (p, q) at one point, it is of type (p, q) at every point of X.

4.2.c. Unitary representation on a complex manifold with a complete met-
ric

The compactness assumption in Hodge theory is not mandatory. One can relax it,
provided that the metric on the manifold remains complete (see e.g. [Dem96, §12]).
Let us indicate the new phenomena that occur in the setting of Section 4.2.a.

One works with C1 sections v of E •
X ⌦ H which are globally L2 with respect to

the metric h and to the complete metric on X, and whose differential Dv is L2. The
analysis of the Laplace operator is now similar to that of the compact case. One uses
a L2 de Rham complex and a L2 Dolbeault complex (i.e., one puts a L2 condition on
sections and their derivatives).

One missing point, however, is the finite dimensionality of the L2-cohomologies
involved. In the compact case, it is ensured, for instance, by the finiteness of the
Betti cohomology Hk(X,H). So the theorem is stated as

Theorem 4.2.5. Let (X,!) be a complete Kähler manifold and (H0,r) be a holomorphic
bundle with a flat connection r corresponding to a unitary representation H0r of
⇡
1

(X, ?). Let (H, D) be the associated flat C1 bundle. Then, with the assumption
that all the terms involved are finite dimensional, one has a canonical isomorphisms

Hk
L2(X,H, D) '

L

p+q=k

Hp,q
L2 (X,H, D00), Hq,p

L2 (X,H, D) ' Hp,q
L2 (X,H_, D_).

It remains to relate the L2 de Rham cohomology with topology. If we are lucky, then
this will not only provide a relation with Betti cohomology, but the Betti cohomology
will be finite dimensional and this will also provide the finiteness assumption needed
for the L2 de Rham cohomology.

There will also be a need for the finiteness of the L2 Dolbeault cohomology. In the
case that will occupy us later, where X is a punctured compact Riemann surface, this
will be done by relating L2 Dolbeault cohomology with the cohomology of a coherent
sheaf on the compact Riemann surface.

We will indicate in Sections 5.3 and 5.4 the way to solve these two problems in
dimension one, by means of the L2 Poincaré lemma and the L2 Dolbeault lemma.
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4.3. Semi-simplicity

4.3.a. A review on completely reducible representations. We review here
some classical results concerning the theory of finite-dimensional linear representa-
tions. Let ⇧ be a group and let ⇢ be a linear representation of ⇧ on a finite-dimensional
k-vector space V . In other words, ⇢ is a group homomorphism ⇧ ! GL(V ). We will
say that V is a ⇧-module (it would be more correct to introduce the associative al-
gebra k[⇧] of the group ⇧, consisting of k-linear combinations of the elements of ⇧,
and to speak of a left k[⇧]-module). The subspaces of V stable by ⇢(⇧) correspond
thus to the sub-⇧-modules of V .

We say that a ⇧-module V is irreducible if it does not admit any nontrivial sub-⇧-
module. Then, any homomorphism between two irreducible ⇧-modules is either zero,
or an isomorphism (Schur’s lemma). If k is algebraically closed, any automorphism of
an irreducible ⇧-module is a nonzero multiple of the identity (consider an eigenspace
of the automorphism).

Proposition 4.3.1. Given a ⇧-module V , the following properties are equivalent:

(1) The ⇧-module V is semi-simple, i.e., every sub-⇧-module has a supplementary
sub-⇧-module.

(2) The ⇧-module V est completely reducible, i.e., V has a decomposition (in gen-
eral non unique) into the direct sum of irreducible sub-⇧-modules.

(3) The ⇧-module V is generated by its irreducible sub-⇧-modules.

Proof. The only nonobvious point is (3) ) (1). Let then W be a sub-⇧-module of V .
We will show the result by induction on codimW , this being clear for codimW = 0.
If codimW > 1, there exists by assumption a nontrivial irreducible sub-⇧-module
V
1

⇢ V not contained in W . Since V
1

is irreducible, we have W \V
1

= {0}, so W
1

:=

W � V
1

is a sub-⇧-module of V to which one can apply the inductive assumption.
If W 0

1

is a supplementary ⇧-module of W
1

, then W 0 = W 0
1

� V
1

is a supplementary
⇧-module of W .

It follows then from Schur’s lemma that a completely reducible ⇧-module has a
unique decomposition as the direct sum

V =
L

i

Vi =
L

i

(V o
i ⌦ Ei),

in which the isotypic components Vi are sub-⇧-modules of the form V o
i ⌦ Ei, where

V o
i is an irreducible ⇧-module, V o

i is not isomorphic to V o
j for i 6= j, and Ei is a

trivial ⇧-module, i.e., on which ⇧ acts by the identity.
One also notes that if W is a sub-⇧-module of a completely reducible ⇧-module V ,

then W is completely reducible and its isotypical decomposition is

W =
L

i

(W \ Vi),
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in which W \ Vi = V o
i ⌦ Fi for some subspace Fi of Ei. A ⇧-module supplementary

to W can be obtained by choosing for every i a k-vector space supplementary to Fi

in Ei.

Remarks 4.3.2. The previous properties have easy consequences.
(1) A k-vector space V is a semi-simple ⇧-module if and only if the associated

complex space VC = C⌦V is a semi-simple ⇧-module (for the complexified represen-
tation).

Indded, let us first recall that the group Aut(C) acts on VC: if " = ("
1

, . . . , "n) is
some k-basis of V then, for a

1

, . . . , an 2 C and � 2 Aut(C), one sets �
�

P

i ai"i
�

=
P

i �(ai)"i. A subspace WC of VC is “defined over k”, i.e., of the form C ⌦ W for
some sub-espac W of V , if and only if it is stable by any automorphism � 2 Aut(C):
indeed, if d = dimC WC, one can find, up to renumbering the basis ", a basis e

1

, . . . , ed
of WC such that

e
1

= "
1

+ a
1,2"2 + · · ·+ a

1,d"d + · · ·+ a
1,n"n

e
2

= "
2

+ · · ·+ a
1,d"d + · · ·+ a

2,n"n

...
ed = "d + · · ·+ ad,n"n,

with ai,j 2 C; one then shows by descending induction on i 2 {d, . . . , 1} that, if WC
is stable by Aut(C), then ai,j are invariant by any automorphism of C over k, i.e.,
belong to k since C is separable over k.

Let us now prove the assertion. Let us first assume that V is irreducible and
let us consider the subspace WC of VC generated by the sub-⇧-modules of minimal
dimension (hence irreducible). Since the representation of ⇧ is defined over k, if EC
is a ⇧-module, so is �(EC) for every � 2 Aut(C); therefore the space WC is invariant
by Aut(C), in other words takes the form C ⌦ W for some subspace W of V . It is
clear that W is a sub-⇧-module of V , hence W = V . According to 4.3.1(3), VC is
semi-simple.

Conversely, let us assume that VC is semi-simple. Let us choose a k-linear form
` : C ! k such that `(1) = 1. It defines a k-linear map L : VC ! V which is
⇧-invariant and which induces the identity on V . Let W be a sub-⇧-module of V .
We have a ⇧-invariant projection VC ! WC, hence a composed projection p which is
⇧-invariant:

VC // WC
L // W

V
� ?

OO

p

66

from which one obtains a ⇧-module supplementary to W in V .
(2) If ⇧00

! ⇧ is a surjective group-homomorphism and ⇢00 is the composed rep-
resentation, alors V is a semi-simple ⇧-module if and only if it is a semi-simple
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⇧00-module. Indeed, the ⇧-module structure only depends on the image ⇢(⇧) ⇢

GL(V ).
(3) Let ⇧0 C ⇧ be a normal subgroup, and let V be a ⇧-module. Then, if V

is semi-simple as a ⇧-module, it so as a ⇧0-module. Indeed, if V 0 is an irreducible
sub-⇧0-module of V , then ⇢(⇡)V 0 remains so for every ⇡ 2 ⇧. If V is ⇧-irreducible
and if V 0 is a nonzero irreducible sub-⇧0-module, the sub-⇧0-module generated by the
⇢(⇡)V 0 is a ⇧-module, hence coincides with V . As a consequence, V is generated by
its irreducible sub-⇧0-modules, hence is ⇧0-semi-simple, according to 4.3.1(3).

(4) A real representation ⇧ ! Aut(VR) is simple if and only if the associated
complexified representation ⇧ ! Aut(VC) has at most two simple components. [Hint :
any simple component of the complexified representation can be summed with its
conjugate to produce a sub-representation of the real representation.]

4.3.b. The semi-simplicity theorem. Let X be a smooth projective variety. Let
H = (H, F 0•H, F 00•H, D,Q) be a variation of polarized C-Hodge structure of weight w
on X (see Definition 4.1.3), and let H = KerD be the associated complex local system.

Theorem 4.3.3. Under these assumptions, the complex local system H is semi-simple.

Let us already note that the result is easy for unitary local systems (underlying
thus polarized variations of type (0, 0), as in Section 4.2.a). The general case will
use the objects introduced in Section 4.2.b, and will not be specific to variations of
polarized Hodge structures. The proof of the semi-simplicity theorem will apply to
more general objects called harmonic bundle, and will be given in Sections 4.3.d–
4.3.f. Moreover, we can relax the property that the smooth variety is projective, and
only assume that it is a compact Kähler manifold, since we will only use the Kähler
identities.

Remarks 4.3.4.

(1) If H is obtained from a local system HQ defined over Q, then HQ is also
semi-simple as such, according to Remark 4.3.2(1).

(2) We claim that, under these assumptions, the polarization is unique up to a
positive multiplicative constant. Indeed, the polarization induces a morphism H ! H⇤

between two irreducible local systems, hence is uniquely determined as such up to a
nonzero multiplicative constant. The positivity condition on the polarization (i.e., on
the associated Hermitian form h) implies that the constant must be positive.

4.3.c. Structure of variations of polarized C-Hodge structure

Let X be a complex manifold. We will say that two variations of polarized C-Hodge
structures are equivalent if one is obtained from the other one by a Tate twist (k, `)

(see Exercise 2.4.19) and by multiplying the polarization form by a positive constant.
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Lemma 4.3.5. There exists at most one equivalence class of variations of polarized
C-Hodge structure on a simple (i.e., irreducible) C-local system H on a compact com-
plex manifold X.

Remark 4.3.6. A criterion for the existence of a variation of polarized C-Hodge struc-
ture on a simple C-local system H is given in [Sim92, §4] in terms of rigidity.

Proof. If we are given two polarizable variations of C-Hodge structure on an irre-
ducible local system H, we deduce such a polarizable variation on End(H) (Remark
4.1.11), and the dimension-one vector space End(H) := H0(X,End(H)) is endowed
with a C-Hodge structure of some type (k, `) by the Hodge-Deligne theorem 4.2.3.
The identity morphism IdH2End(H) defines thus a morphism of type (k, `) between
the two variations. Therefore, the first one is obtained from the second one by a Tate
twist (k, `). It remains to check that, on a given polarizable variation of C-Hodge
structure on an irreducible local system H, there exists exactly one polarization up to
a positive multiplicative constant. Note that such a polarization is an isomorphism
H

⇠
�! H⇤, so one polarization is obtained from another one by multiplying by a

nonzero constant. This constant must be positive, by the positivity property of the
associated Hermitian form.

Let X be a compact complex manifold and let H = (H, F 0•H, F 00•H, D,Q) be
a variation of polarized C-Hodge structure of weight w on X. If the associated
local system H is semi-simple, which is the case when X is Kähler, according to
Theorem 4.3.3, it decomposes as H =

L

↵2A Hn↵
↵ , where H↵ are irreducible and

pairwise non isomorphic, and Hn↵
↵ means the direct sum of n↵ copies of H↵. Sim-

ilarly, (H, D) =
L

↵2A(H↵, D)n↵ , and the polarization Q, being D-horizontal, de-
composes with respect to ↵ 2 A as Q =

L

Q↵,n↵
. Let us set Ho

↵ := Cn↵ and let us
write H =

L

↵2A Ho
↵ ⌦H↵. If we are given a basis Q↵ of the dimension-one vector

space Hom(H↵,H
⇤
↵), there exists a unique morphism Qo

↵ 2 Hom(Ho
↵,H

o⇤
↵ ) such that

Q↵,n↵ = Qo
↵ ⌦Q↵.

Proposition 4.3.7. Under these conditions, the following holds:

(1) For every ↵ 2 A, there exists a unique equivalence class of variation of polarized
C-Hodge structure of weight w on H↵.

(2) For every ↵ 2 A, let us fix a representative H↵ = (H↵, F
0•H↵, F

00•H↵, D,Q↵)

of such an equivalence class. There exists then a polarized C-Hodge structure

Ho
↵ = (Ho

↵, F
0•Ho

↵, F
00•Ho

↵,Q
o
↵)

of weight 0 with dimHo
↵ = n↵ such that

(4.3.7 ⇤) H =
L

↵2A

(Ho
↵ ⌦C H↵).
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Proof of Proposition 4.3.7.

(1) The uniqueness statement in 4.3.7(1) is given by Lemma 4.3.5. In order to
prove the existence in 4.3.7(1), it is enough to exhibit for every ↵ 2 A a sub-variation
of Hodge structure of H of weight w with underlying local system H↵. The polariza-
tion Q will then induce a polarization Q↵, according to Exercise 4.1.14(1). For that
purpose, it is enough to exhibit H↵ as the image of an endomorphism H ! H which
is compatible with the Hodge structures: by abelianity (Corollary 4.1.13), this image
is an object of VHS(X,C, w). Let us therefore analyze End(H) = H0(X,End(H)).

If we set Ho
↵ = Cn↵ , so that H =

L

↵(H
o
↵⌦CH↵), we have an algebra isomorphism

End(H) '

Q

↵ End(Ho
↵) (where u↵u� = 0 if u↵ 2 Ho

↵, u� 2 Ho
� and ↵ 6= �). We

know that the local system End(H) underlies a variation of polarized C-Hodge struc-
ture of weight 0. Therefore, End(H) underlies a C-Hodge structure of weight 0 by
the Hodge-Deligne theorem 4.2.3. It is then enough to show that each Ho

↵ underlies
a C-Hodge structure Ho

↵ of weight 0 such that the equality End(H) =
Q

↵ End(Ho
↵) is

compatible with the Hodge structures on both terms. Indeed, choose then any rank-one
endomorphism p↵ of some nonzero vector space H

o,(k,�k)
↵ . Extend it as a rank-one

endomorphism of Ho
↵ of type (0, 0) by mapping every other summand H

o,(`,�`)
↵ to

zero, and extend it similarly as a rank-one endomorphism of
L

� H
o
� of type (0, 0).

One obtains thus a rank-one endomorphism in End(H)0,0. With respect to this iden-
tification, its image is (Im p↵)⌦C H↵ ' H↵, as wanted.

Let us prove the assertion, which reduces to proving the existence of a grading
of each Ho

↵ giving rise to the Hodge grading of End(H). By the product formula
above, the C-algebra End(H) is semi-simple, with center Z =

Q

↵ C · IdHo
↵
. An

algebra automorphism ' of End(H) induces an automorphism of the ring Z, whose
matrix in the basis above only consists of zeros and ones. By the Skolem-Noether
theorem (see e.g. [Bou12, §14, No 5, Th. 4]), algebra automorphisms for which the
corresponding matrix is the identity are interior automorphisms, that is, products of
interior automorphisms of each End(Ho

↵). Any algebra automorphism can be com-
posed with an automorphism with matrix having block entries Id or 0 in order that the
matrix on Z is the identity. As a consequence, the identity component of the group of
algebra automorphisms Autalg(End(H)) is identified with

Q

↵2A(Aut(Ho
↵)/C⇤ Id↵).

As in Remark 2.4.13, the C-Hodge structure of weight 0 on End(H) defines a con-
tinuous representation ⇢ : S1

! Aut(End(H)), such that ⇢(�) = �p on End(H)p,�p.
Since the grading is compatible with the algebra structure, the continuous repre-
sentation ⇢ takes values in the group of algebra automorphisms Autalg(End(H)).
Since ⇢(1) = Id, it takes values in the identity component of Autalg(End(H)), i.e.,
in

Q

↵2A(Aut(Ho
↵)/C⇤ Id↵). By the argument given in Remark 2.4.13, it defines a

grading, up to a shift, on each Ho
↵, as wanted.

(2) Let us now endow Ho
↵ with a polarized C-Hodge structure of weight 0 so

that (4.3.7 ⇤) holds. We already have obtained a grading, i.e., a C-Hodge structure
of weight 0. In order to obtain a polarization of this C-Hodge structure satisfying
(4.3.7 ⇤), we note that Ho

↵ = Hom(H↵,H), and since Hom(H↵,H) underlies a varia-
tion of polarized Hodge structure of weight 0 according to 4.3.7(1), Ho

↵ comes equipped
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with a polarized Hodge structure of weight 0. By definition, the natural morphism
Ho

↵ ⌦H↵ ! H underlies a morphism of variations of polarized Hodge structure.

4.3.d. Harmonic bundles. Let X be a complex manifold, let (H, D) be a flat C1

bundle on X, and let h be a Hermitian metric on H. We decompose D into its (1, 0)

and (0, 1) parts: D = D0 +D00.

Lemma 4.3.8. Given (H, D, h), there exists a unique connection D
h

= D0
h

+D00
h

on H

and a unique C1-linear morphism ✓ = ✓0 + ✓00 : H ! E 1

X ⌦H satisfying the following
properties:

(1) D
h

is a Chern connection for h, i.e., dh(u, v) = h(D
h

u, v) + h(u,D
h

v), or
equivalently, decomposing into types,

d0h(u, v) = h(D0
h

u, v) + h(u,D00
h

v), d00h(u, v) = h(D00
h

u, v) + h(u,D0
h

v).

(2) ✓ is self-adjoint with respect to h, i.e., h(✓u, v) = h(u, ✓v), or equivalently,
decomposing into types,

h(✓0u, v) = h(u, ✓00v), h(✓00u, v) = h(u, ✓0v).

(3) D = D
h

+ ✓, or equivalently, decomposing into types,

D0 = D0
h

+ ✓0, D00 = D00
h

+ ✓00.

Remark 4.3.9. In 4.3.8(1), we have extended the metric h in a natural way as a
sesquilinear operator (E 1

X ⌦H)⌦H ! E 1

X resp. H ⌦ (E 1

X ⌦H) ! E 1

X .

Proof. Let D
h

be a Chern connection on H. Let A be a C1
X -linear morphism

A : H ! E 1
X ⌦H which is skew-adjoint with respect to h, that is, such that

h(Au, v) = �h(u,Av) = 0 for every local sections u, v of H. Then the connection
D

h

+A is also compatible with the metric. So let us choose any Chern connection eD
h

and let us set A = D �

eD
h

. Let us decompose A as A+ + A�, with A+ self-adjoint
and A� skew-adjoint. We can thus set D

h

= eD
h

+ A� and ✓ = A+. Uniqueness is
seen similarly.

Remark 4.3.10. Iterating 4.3.8(2), we find that ✓00 ^ ✓00 is h-adjoint to �✓0 ^ ✓0 and
✓0 ^ ✓00 + ✓00 ^ ✓0 is skew-adjoint. By applying d0 or d00 to 4.3.8(1) and (2), we see that
D002

h

is adjoint to �D02
h

, D00
h

(✓0) is adjoint to �D0
h

(✓00), D00
h

(✓00) is adjoint to �D0
h

(✓0),
and D0

h

D00
h

+D00
h

D0
h

is skew-adjoint with respect to h.

Exercise 4.3.11. Let (H, D) be a flat bundle and let h be a Hermitian metric on H.
(1) Show that there exist a unique (1, 0)-connection bD0 and a unique (0, 1)-

connection bD00 such that D0 + bD00 and bD0 +D00 preserve the metric h.
(2) Show that bD0 = D0

h

� ✓0 and bD00 = D00
h

� ✓00.
(3) We set Dc := bD00

�

bD0. Show that 1

2

(D +Dc) = D00
h

+ ✓0 and that

DDc +DcD = 2D(✓0 � ✓00).
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Definition 4.3.12 (Harmonic flat bundle). Let (H, D, h) be a flat C1-bundle endowed
with a Hermitian metric h. We say that (H, D, h) is a harmonic flat bundle if the
operator D00

h

+ ✓0 = 1

2

(D +Dc) has square 0.

By looking at types, this is equivalent to

D002
h

= 0, D00
h

(✓0) = 0, ✓0 ^ ✓0 = 0.

By adjunction, this implies

D02
h

= 0, D0
h

(✓00) = 0, ✓00 ^ ✓00 = 0.

Moreover, the flatness of D implies then

D0
h

(✓0) = 0, D00
h

(✓00) = 0, D0
h

D00
h

+D00
h

D0
h

= �(✓0 ^ ✓00 + ✓00 ^ ✓0).

Lemma 4.3.13. Let (H, D) be a flat bundle and let h be a Hermitian metric on H.
Then

(D00
h

+ ✓0)2 = 0 =) DDc +DcD = 0.

Proof. Since D2 = 0, it is a matter of proving (Dc)2 = 0. From the vanishing above,
we find ( bD0)2 = 0, ( bD00)2 = 0. We also get bD00

bD0 + bD0
bD00 = 0.

Let E = KerD00
h

: H ! H. If (H, D, h) is harmonic, E is a holomorphic vector
bundle equipped with a holomorphic End(E)-valued 1-form ✓0 satisfying ✓0 ^ ✓0 = 0.
It is called a Higgs bundle and ✓0 is its associated Higgs field.

Proposition 4.3.14. Let (H, D, h) be a flat bundle with metric underlying a polarized
variation of C-Hodge structure on X. Then (H, D, h) is a harmonic flat bundle.

Proof. This is the content of Exercise 4.2.2.

4.3.e. The energy functional. We now fix the metric h on the C1-bundle H.
The group of C1 automorphisms g of H acts on a given connection D by the formula
gD := g � D � g�1 = D � D(g) � g�1, where we have extended the action of D

in a natural way on the bundle End(H). If D is flat, then so is gD. We then set
gD = gDh

+ g✓. Let us also set bD = D
h

� ✓.

Lemma 4.3.15. We have g✓ = ✓� 1

2

�

D(g)g�1 + g⇤�1

bD(g⇤)
�

, where g⇤ is the h-adjoint
of g.

Proof. We have

gD = D
h

+ ✓ �
�

D
h

(g)g�1 + [✓, g]g�1

�

= D
h

�D
h

(g)g�1 + g�1✓g.

It follows that g✓ is the self-adjoint part of �D
h

(g)g�1 + g�1✓g, that is, taking into
account that the adjoint of D

h

(g) is D
h

(g⇤) (by working in a local h-orthonormal
basis),

(4.3.16) g✓ =
1

2

�

�(D
h

(g)g�1 + g⇤�1D
h

(g⇤)) + g�1✓g + g⇤✓g⇤�1

�

.

The lemma follows from a straightforward computation.
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If we fix a metric on X, we deduce with h a metric on E 1

X ⌦H and then a metric
k · k on Hom(H,E 1

X ⌦H) with associated scalar product (· , ·). We then denote by
h· , ·i the integrated product using the volume form on X:

h· , ·i =

Z

X

(· , ·) d vol .

Definition 4.3.17. The energy of g 2 Aut(H) with respect to (H, D, h) is defined as

E
(H,D,h)(g) := kg✓k

2 = hg✓, g✓i.

Let ⇠ 2 End(H) and let ⇠ = ⇠+ + ⇠� be its decomposition into its self-adjoint part
⇠+ = 1

2

(⇠ + ⇠⇤) and its skew-adjoint part ⇠� = 1

2

(⇠ � ⇠⇤).

Proposition 4.3.18. For t varying in R, we have

d

dt
E
(H,D,h)(e

t⇠)
�

�

t=0

= 2hD
h

⇠+, ✓i.

Proof. We have D(et⇠)e�t⇠ = tD⇠ mod t2 and e�t⇠⇤
bD(et⇠

⇤
) = t bD⇠⇤ mod t2. From

Lemma 4.3.15 we deduce
d

dt
E
(H,D,h)(e

t⇠)
�

�

t=0

= �hD⇠ + bD⇠⇤, ✓i � h✓, D⇠ + bD⇠⇤i

= �hD
h

⇠+ + [✓, ⇠�], ✓i � h✓, D
h

⇠+ + [✓, ⇠�]i

= �2RehD
h

⇠+, ✓i = �2hD
h

⇠+, ✓i,

since h✓⇠�, ✓i = �h✓, ✓⇠�i, h⇠�✓, ✓i = �h✓, ⇠�✓i, and both ✓ and D
h

⇠+ are self-
adjoint.

The property of being semi-simple or not for (H, D) is seen on the energy functional.

Proposition 4.3.19. Let (H, D) be a flat bundle. Assume that there exists a metric h

such that the energy function g 7! E
(H,D,h)(g) has a critical point at g = Id. Then

(H, D) is semi-simple.

Proof. Let us argue by contraposition and let us assume that (H, D) is not semi-
simple. Let h be any metric on H. We will prove that Id is not a critical point for
g 7! E

(H,D,h)(g). It is enough to prove that there exists ⇠ 2 End(H) such that the
function

f : R �! R, t 7�! E
(H,D,h)(e

t⇠)

has no critical point at t = 0. By assumption, there exists a sub-bundle H
1

of H

stable by D such that its orthogonal H
2

is not stable by D. Set ni = rkHi (i = 1, 2).
With respect to this decomposition we have

D =

✓

D
1

2⌘

0 D
2

◆

,
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with ⌘ : H
2

! E 1

X ⌦H
1

nonzero. Set ⇠ = n
2

IdH1
�n

1

IdH2
and g = et⇠ (t 2 R). We

have

D(et⇠)e�t⇠ =

✓

0 2⌘

0 0

◆

,

✓

en2t 0

0 e�n1t

◆�

·

✓

e�n2t 0

0 en1t

◆

=

✓

0 2⌘

0 0

◆

�

✓

e�n2t 0

0 en1t

◆✓

0 2⌘

0 0

◆✓

en2t 0

0 e�n1t

◆

=

✓

0 2(1� e�(n1+n2)t)⌘

0 0

◆

,

so

gD = D �D(et⇠)e�t⇠ =

✓

D
1

2e�(n1+n2)t⌘

0 D
2

◆

,

and

g✓ =

✓

✓
1

e�(n1+n2)t⌘

e�(n1+n2)t⌘⇤ ✓
2

◆

.

It follows that
f(t) = c

0

+ c
1

e�(n1+n2)t, c
0

> 0, c
1

> 0,

and it is clear that f 0(0) 6= 0.

4.3.f. Proof of the semi-simplicity theorem. In view of Proposition 4.3.19, the
semi-simplicity theorem is a consequence of the following.

Proposition 4.3.20. Assume that X is compact Kähler and that (H, D, h) is a harmonic
flat bundle. Then g 7! E

(H,D,h)(g) has a critical point at g = Id.

Proof. According to Proposition 4.3.18, it is enough to show that D⇤
h

✓ = 0, where D⇤
h

denotes the formal adjoint of D
h

. Setting Dc

h

:= D00
h

�D0
h

, the Kähler identities for a
Hermitian vector bundle imply that D⇤

h

is a multiple of [⇤, Dc

h

]. Since ✓ is a matrix of
1-forms and ⇤ is an operator of type (�1,�1), we have ⇤✓ = 0. On the other hand,
by the properties after Definition 4.3.12, we have Dc

h

(✓) = 0.

4.4. Comments

Although one can trace back the notion of variation of Hodge structure to the
study of the Legendre family of elliptic curves in the nineteenth century, the modern
approach using the Gauss-Manin connection goes back to the fundamental work of
Griffiths [Gri68, Gri70a, Gri70b] motivated by the properties of the period domain
(see also [Del71c], [CMSP03]), a subject that is not considered in the present text.
In the work of Griffiths, the transversality property (4.1.1) has been emphasized.
From the point of view of D-modules, this property is now encoded in the notion of
a coherent filtration, and is at the heart of the notion of filtered D-module, which is
part of a Hodge module as defined by Saito.

The notion of a variation of polarized Hodge structure can be regarded as equivalent
to the notion of a smooth polarized Hodge module. However, this equivalence is
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not obvious since the definition of a polarized Hodge module imposes properties on
nearby cycles along any germ of holomorphic function, while the notion of variation
only requires to consider coordinate functions.

The C1 approach as in Definition 4.1.4 proves useful for extending the Hodge
theorem on smooth complex projective varieties and constant coefficients to the case
when the coefficient system is a unitary local system (see [Dem96]) and the more gen-
eral case when it underlies a variation of polarized Hodge structure (Hodge-Deligne
theorem 4.2.3 explained in the introduction of [Zuc79]). It is also well-adapted to
the extension of this theorem to harmonic flat bundles, as explained by Simpson in
[Sim92]. In this smooth context, the flat sesquilinear pairing c gives rise in a natural
way to the (non-flat in general) Hermitian Hodge metric. The fixed-part theorem,
proved in Remark 4.2.4(4), is originally due to Griffiths [Gri70a] in a geometric set-
ting, and has been proved in a more general context by Deligne [Del71b, Cor. 4.1.2],
and also by Schmid [Sch73, Th. 7.22].

We have also mentioned the case of complete Kähler manifolds, going back to
Andreotti and Vesentini [AV65] and Hörmander [Hör65, Hör66]. Theorem 4.2.5 is
taken from [Dem96, §12B]. They are useful for understanding the L2 approach as in
Zucker’s theorem 5.1.1 of [Zuc79].

It is remarkable that the local system underlying a variation of polarized Hodge
structure on a smooth complex projective variety (or a compact Kähler manifold) is
semi-simple. This property can be regarded as a special case of a result of Corlette
[Cor88] and [Sim92], since the Hodge metric is a pluri-harmonic metric on the cor-
responding flat holomorphic bundle. These articles are at the source of Sections 4.3.b
and 4.3.d–4.3.f.

Lastly, the structure theorem for variations of polarized Hodge structure (Propo-
sition 4.3.7) is nothing but [Del87, Prop. 1.13].


