
CHAPTER 3

HODGE-LEFSCHETZ STRUCTURES

Summary. We develop the notion of a Hodge-Lefschetz structure as the first
example of a mixed Hodge structure. The total cohomology of a smooth complex
projective variety, together with the Chern class of an ample line bundle, gives
rise to the notion of graded Hodge-Lefschetz structure. On the other hand, de-
generations of one-parameter families of smooth complex projective varieties are
the main provider of possibly non graded Hodge-Lefschetz structures. Vanishing
cycles of holomorphic functions with isolated critical points also produce such
structures.

3.1. The Lefschetz decomposition

3.1.a. A-Lefschetz structures. We fix an abelian category A. Let H be an object
of A equipped with a nilpotent endomorphism N (i.e., Nk+1 = 0 for k large).

Lemma 3.1.1 (Jakobson-Morosov). There exists a unique increasing exhaustive filtra-
tion of H indexed by Z, called the monodromy filtration relative to N and denoted by
M•(N)H or simply M•H, satisfying the following properties:

(a) For every ` 2 Z, N(M`H) ⇢ M`�2

H,
(b) For every ` > 1, N` induces an isomorphism grM` H

⇠
�! grM�`H.

Definition 3.1.2 ((Graded) Lefschetz structure).
(1) We call such a pair (H,N) an A-Lefschetz structure. A morphism between two

such pairs is a morphism in A which commutes with the nilpotent endomorphisms.
(2) Assume moreover that H is a graded object in A. We then say that (H,N) a

graded A-Lefschetz structure if H` = grM` H for every `.

For a pair (H,N), we will denote by grN the induced morphism grM` H ! grM`�2

H.
Therefore, an A-Lefschetz structure (H,N) gives rise to a graded A-Lefschetz struc-
ture, namely, the graded pair (grM• H, grN). Any morphism ' : (H

1

,N
1

)!(H
2

,N
2

) is
compatible with the monodromy filtrations and induces a graded morphism of degree
zero gr' : (grM• H

1

, grN
1

) ! (grM• H
2

, grN
2

).
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The proof of Lemma 3.1.1 is left as an exercise. In case of finite-dimensional vector
spaces, one can prove the existence by using the decomposition into Jordan blocks
and Example 3.1.3. In general, one proves it by induction on the index of nilpotence.
The uniqueness is interesting to prove. In fact, there is an explicit formula for this
filtration in terms of the kernel filtration of N and of its image filtration (see [SZ85]).

Example 3.1.3. If H is a finite dimensional vector space and if N consists only of one
lower Jordan block of size k + 1, one can write the basis as ek, ek�2

, . . . , e�k, with
Nej = ej�2

. Then M` is the space generated by the ej ’s with j 6 `.

Exercise 3.1.4 (Inductive construction of the monodromy filtration)
Assume N`+1 = 0 on H. Show the following properties:

(1) M`H = H, M`�1

H = KerN`, M�`H = ImN`, M�`�1

H = 0.
(2) Set H 0 = KerN`/ ImN` and N0 : H 0

! H 0 is induced by N. Then N0` = 0 and
for j 2 [�`+ 1, `� 1], MjH is the pullback of MjH

0 by the projection H ! H 0.
(3) Conclude that any morphism of A-Lefschetz structures is compatible with the

monodromy filtrations.

Remark 3.1.5 (Primitive parts and Lefschetz decomposition)
For vector spaces, the choice of a splitting of the filtration (which always exists for

a filtration on a finite dimensional vector space) corresponds to the choice of a Jordan
decomposition of N. The decomposition (hence the splitting) is not unique, although
the filtration is. In general, there exists a decomposition of the graded object, called
the Lefschetz decomposition (see Figure 1). For every ` > 0, we set

(3.1.5 ⇤) P`(H) := Ker(grN)`+1 : grM` (H) �! grM�`�2

(H).

Then for every k > 0, we have

(3.1.5 ⇤⇤) grMk (H) =
L

j>0

NjPk+2j(H) and grM�k(H) =
L

j>0

Nk+jPk+2j(H).

Exercise 3.1.6. Assume that ` > 0. Show that

P`(H)�NP`+2

(H) = Ker(grN)`+2 : grM` (H) �! grM�`�4

(H).

[Hint : consider the rough Lefschetz decomposition

gr`(H) = P`(H)�NP`+2

(H)� (grN)2gr`+4

H,

and show that the first two terms are contained in Ker(grN)`+2, while (grN)`+2 is
injective on the third term.]

We can apply the above results to the category of Hodge structures HS(C, w), to
the category of mixed Hodge structures MHS(C), or to the category of holonomic
D-modules for instance.
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grM` = P`

⌅⌅

grM`�1 = P`�1

⇤⇤

� 0

grM`�2 = P`�2 � 0 � NP`

⌅⌅

...
...

...

...
...

...

grM2 = P2

⌅⌅

� 0

grM1 = P1

⌅⌅

� 0 � NP3 � . . .

grM0 = P0 � 0 � NP2

⇧⇧

� 0 � N2P4� . . .

grM�1 = NP1 � 0 � N2P3 � . . .

grM�2 = N2P2 � 0

...
...

...

⌃⌃

...
...

⇧⇧

...

grM�`+2= 0 � N�`+1P�`

⇧⇧

grM�`+1= N`�1P`�1 � 0

grM�` = N`P`

Figure 1. A graphical way of representing the Lefschetz decomposition:
the arrows represent the isomorphisms induced by N; each grM` (H) is the
direct sum of the terms of its line, where empty places are replaced with 0.

Lemma 3.1.7. Let H
1

, H
2

be two objects of an abelian category A, equipped with nilpo-
tent endomorphisms N

1

,N
2

. Let ' : (H
1

,N
1

) ! (H
2

,N
2

) be a morphism which is
strictly compatible with the corresponding monodromy filtrations M(N

1

),M(N
2

). Then

ImN
1

\Ker' = N
1

(Ker') and ImN
2

\ Im' = N
2

(Im').

Proof. Let us first consider the graded morphisms grM` ' : grM` H
1

! grM` H
2

. One eas-
ily checks that it decomposes with respect to the Lefschetz decomposition. It follows
that the property of the lemma is true at the graded level.
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Let us now denote by M(N
1

)• Ker' (resp. M(N
2

)• Coker') the induced filtration
on Ker' (resp. Coker'). Since ' is strictly compatible with M(N

1

),M(N
2

), we have
for every ` an exact sequence

0 �! grM(N1)

` Ker' �! grM(N1)

` H
1

grM` '
�����! grM(N2)

` H
2

�! grM(N2)

` Coker' �! 0,

from which we conclude that M(N
1

)Ker' (resp. M(N
2

) Coker') satisfies the char-
acteristic properties of the monodromy filtration of N

1|Ker' (resp. N
2|Coker'). As a

consequence, Ker' \M(N
1

)` = M(N
1|Ker')` and Im' \M(N

2

)` = M(N
2| Im')` for

every `.
Let us show the first equality, the second one being similar. By the result at the

graded level we have

ImN
1

\Ker' \M(N
1

)` = N
1

�

Ker' \M(N
1

)`+2

�

+ ImN
1

\Ker' \M(N
1

)`�1

,

and we can argue by induction on ` to conclude.

Lemma 3.1.8 (Strictness of N : (H,M•H) ! (H,M[2]•H)). The morphism N, regarded
as a filtered morphism (H,M•H) ! (H,M[2]•H) is strictly compatible with the filtra-
tions, i.e., for every `, N(M`) = ImN \M`�2

.

Proof. By looking at Figure 1, one shows that
(1) if ` 6 1, N : M`H ! M`�2

H is onto,
(2) if ` > �2, N : H/M`+2

H ! H/M`H is injective.
The lemma follows.

The following criterion is at the heart of the decomposition theorem 13.1.5, whose
proof will not be reproduced here.

Theorem 3.1.9 (Deligne’s criterion). Let A be an abelian category and let C • be an
object of Db(A) endowed with an endomorphism L : C •

! C •
+2. Assume that

(
L

k H
k(C •),L) is a graded A-Lefschetz structure (see Definition 3.1.2 and set

H�k(C
•) = Hk(C •)). Then C • is isomorphic to

L

k H
k(C •)[�k] in Db(A).

Remark 3.1.10 (Nilpotent �-endomorphisms). We will have to apply the previous re-
sults in a slightly more general setting. We assume that the abelian category A is
endowed with an automorphism � : A 7! A. By a �-endomorphism of an object H

of A we mean a morphism N : H ! ��1H. It defines for every k a morphism
��kN : ��kH ! ��k�1H. We say that N is nilpotent if there exists k > 0 such
that ��kN � · · · � ��1N �N = 0. The previous results extend in an obvious way to
the setting of �-endomorphisms.

Let us now take up the notation of Section A.2.b on strictness. We equip the cate-
gory Modgr( fA ) of graded fA -modules with the automorphism � shifting the grading
by one, so that �(H) = H(1) (see Definition A.2.3). Let H be an object of Modgr( fA )
and let N : H ! H(�1) = ��1H be a nilpotent endomorphism.
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Proposition 3.1.11. Let M•(N)H be the monodromy filtration of (H,N) in the abelian
category Modgr( fA ). Assume that H is strict. Then the following properties are
equivalent:

(1) For every ` > 1, N` : H ! H(�`) is a strict morphism.
(2) For every ` 2 Z, grM` H is strict.
(3) For every ` > 0, P`H is strict.

Proof. The equivalence between (2) and (3) comes from the Lefschetz decomposition
in the category Modgr( fA ).

(2) ) (1) Assume ` > 1. The Lefschetz decomposition implies that each morphism
gr�2`N

` on grM• H is strict. Since N`, regarded as a filtered morphism (H,M•H) !
(H(�`),M[2`]•) is strictly compatible with the filtrations M (Lemma 3.1.8), the result
follows from Lemma A.2.9(2).

(1) ) (2) We will use the inductive construction of the monodromy filtration given
in Exercise 3.1.4. We argue by induction on the order of nilpotence of N. Assume
that N`+1 = 0. The strictness of H implies that M`H, M`�1

H, M�`H = grM�`H and
P`H = grM` H ' grM�`H are strict. The strictness of and H 0 := H/M�`H = CokerN`

follows from the strictness of N`. Moreover, (H 0,N0) satisfies (1) with N0` = 0, hence
by induction each grMj H 0 is strict. Now, the relation between grM• H 0 and grM• H

is easily seen from the Lefschetz decomposition (see Figure 1), and (2) for grM• H

follows.

Definition 3.1.12 (Adjoint and pre-polarization). Assume that A is equipped with a
contravariant involution ⇤ : A 7! Aop (i.e., such that ⇤⇤ = Id).

• The adjoint of an A-Lefschetz structure (H,N) is the A-Lefschetz structure
(H,N)⇤ := (H⇤,�N⇤). We have grM` (H⇤) = (grM�`H)⇤ and, for a morphism,
gr`('

⇤) = (gr�`')
⇤.

• The adjoint of a graded A-Lefschetz structure (H,N) is the graded A-Lefschetz
structure (H•,N)⇤ := (H⇤

• ,�N⇤), with H⇤
` := (H�`)⇤.

• A pre-polarization of an A-Lefschetz structure (H,N) is an isomorphism
k : (H,N) ! (H,N)⇤. It is said to be ±-Hermitian if k⇤ = ±k.

If k is a pre-polarization of (H,N), then for every `, grM` k is an isomorphism
grM` H ! (grM�`H)⇤ which satisfies (grM` k)⇤ = grM�`(k

⇤).

3.1.b. Nearby/vanishing Lefschetz quivers

By a nearby/vanishing quiver on an abelian category A we mean a data (H,G, c, v)
consisting of a pair (H,G) of objects of A and a pair of morphisms

(3.1.13) H

c
%%
G

v

ee
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such that c�v is nilpotent (on G) and v�c is nilpotent (on H). We denote by NH ,NG

the corresponding nilpotent endomorphisms.
We say that a nearby/vanishing quiver (H,G, c, v) is a middle extension if c is

an epimorphism and v is a monomorphism. We say that it has a punctual support if
H = 0. (1) We say that a nearby/vanishing quiver (H,G, c, v) is Support-decomposable,
or simply S-decomposable, if it can be decomposed as the direct sum of a middle
extension quiver and a quiver with punctual support.

Exercise 3.1.14.

(1) Show that the nearby/vanishing quivers on A form an abelian category in an
obvious way.

(2) Show that there is no nonzero morphism from a middle extension to an object
with punctual support.

(3) Show that there is no nonzero morphism from an object with punctual support
to a middle extension.

(4) Show that a nearby/vanishing quiver (H,G, c, v) is S-decomposable if and only
if G = Imc�Ker v. Show then that the decomposition is unique.

(5) Show that the latter condition is also equivalent to the conjunction of the
following two conditions:

• The natural morphism Im(v � c) ! Imv is an isomorphism.
• The natural morphism Ker c ! Ker(v � c) is an isomorphism.

Let (H,N) be an A-Lefschetz structure. Set G = ImN and NG = N|G. The
nearby/vanishing quiver

(3.1.15) (H,N)

c = N
**

(G,NG)

v = incl.

jj

is called the middle extension quiver attached to (H,NH).

Lemma 3.1.16 (The middle extension quiver). We have the following properties.
(a) M•(NG) = G \M[1]•(N) = N(M[�1]•(N)).
(b) c(M•H) ⇢ M•�1

G, v(M•G) ⇢ M•�1

H,
(c) the morphisms

c : (H,M•(N)) �! (G,M[1]•(NG)) and v : (G,M•(NG)) �! (H,M[1]•(N))

are strictly filtered and the associated graded morphisms are the corresponding canon-
ical morphisms at the graded level. More precisely,

(d) gr(c) is an epimorphism grM`+1

(H) ! grM` (G) and gr(v) is a monomorphism
grM` (G) ! grM`�1

(H),

1. The present terminology is justified by Exercise 6.4.1.
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(e) grM` (G)
⇠
�! Im

⇥

grN : grM`+1

(H) ! grM`�1

(H)
⇤

'

(

grM`+1

(H) if ` > 0,

grM`�1

(H) if ` 6 0,
(f) P`(G) ' grN(P`+1

(H)) for ` > 0.

Proof. Assume that ` > 0. We first check that the morphism N` : ImN\M`�1

(N) !
ImN\M�`�1

(N) is an isomorphism. By Lemma 3.1.8, this amounts to showing that
N` : N(M`+1

) ! N(M�`+1

) is an isomorphism. This is a consequence of the following
properties: N : M`+1

! N(M`+1

) is an isomorphism, N : M�`+1

! M�`�1

is onto,
and N`+1 : M`+1

! M�`�1

is an isomorphism. Now, (b) and (c) follow from the
strictness of N : (H,M•H) ! (H,M[2]•H). The remaining part of the lemma is
straightforward.

Lemma 3.1.17 (Pre-polarization of (G,NG)). Let ((H,N), (G,NG), c, v) be a middle
extension quiver, and let k be a pre-polarization of (H,N). There exists a unique
pre-polarization kG of (G,NG) which satisfies

kG � c = v⇤ � k.

Moreover, its adjoint k⇤G satisfies

k⇤G � c = �v⇤ � k⇤.

In particular, if k is ±-Hermitian, then kG is ⌥-Hermitian.

Proof. We have G⇤ = H⇤/KerN⇤ =: Coim(N⇤), and a diagram

H
k //

c
✏✏

H⇤

v⇤
✏✏

G
kG
// G⇤

In order to check the existence and uniqueness of kG, it suffices to prove that
v⇤ � k|KerN

= 0. Since c is an epimorphism, c⇤ is a monomorphism and it is enough
to check that c⇤v⇤ � k|KerN

= 0. This follows from c⇤v⇤ � k = N⇤
� k = �k �N.

It follows that c⇤ � k⇤G = k⇤ � v, and thus

c⇤ � k⇤G � c = k⇤ �N = �N⇤
� k⇤ = �c⇤(v⇤ � k⇤).

Since c⇤ is a monomorphism we conclude that k⇤G � c = �v⇤ � k⇤.

3.1.c. Graded C-Lefschetz structures and representations of sl
2

. We now
consider the category A of finite dimensional C-vector spaces. Let (H•,N) be a graded
Lefschetz structure on a C-vector space H =

L

` H`. Hence N is a morphism H` !

H`�2

, and for every ` > 1, N` : H` ! H�` is an isomorphism, so that H comes with
its Lefschetz decomposition in terms of the primitive spaces PH` (` > 0).
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Remark 3.1.18. The Lefschetz operator in cohomology (see (2.3.10)) arises as a graded
morphism of degree two L : H`

! H`+2. Given a graded vector space H =
L

` H
`

endowed with a graded endomorphism of degree two, we associate to it the graded
space

L

` H`, with H` := H�`, to recover the previous setting.

The following operations can be done on graded C-Lefschetz structures:
(a) Morphisms. A morphism ' : (H

1,•,N1

) ! (H
2,•,N2

) is a graded morphism
H

1,• ! H
2,• of degree zero which commutes with N

1

,N
2

.
(b) Conjugation. We set (H•,N) = (H•,N).
(c) Tensor product. We define (H•,N) = (H

1,•,N1

)⌦ (H
2,•,N2

) by

H` =
L

`1+`2=`

H
1,`1 ⌦H

2,`2 and N = (N
1

⌦ Id)� (Id⌦N
2

).

(d) Duality. We define the dual (H•,N)_ as (H_
• ,�N_), with H_

` := (H�`)_.
(e) Hermitian adjunction. The Hermitian adjoint (H•,N)⇤ is defined as (H⇤

• ,�N⇤),
with H⇤

` := (H�`)⇤ = (H�`)_ and N⇤ := N_.
(f) Internal Hom. We set

Hom
�

(H
1,•,N1

), (H
2,•,N2

)
�

= (H
1,•,N1

)_ ⌦ (H
2,•,N2

).

Remark 3.1.19 (Compatibility with grading). Of course, one can define similar opera-
tions for C-Lefschetz structures without grading, and one recovers the previous ones
by grading with respect to the monodromy filtration. Note however that the kernel,
image and cokernel of morphisms behave well only with the assumption of strictness
with respect to M•. This is the case for N itself, and for the morphisms c and v, as
remarked in Lemma 3.1.8 and Lemma 3.1.16. In particular, we have

grM• (ImN,N
ImN

) = ((ImgrN)•, grNIm grN

).

For example, the tensor product (H,N) = (H
1

,N
1

) ⌦ (H
2

,N
2

) is defined as
H = H

1

⌦H
2

and N = (N
1

⌦ Id)� (Id⌦N
2

). We have M`(N) =
P

`1+`2=` M`1(N1

)⌦
M`2(N2

): this is proved by showing that the right-hand side satisfies the char-
acteristic properties of the monodromy filtration. It follows that (grM• H, grN) =
(grM

1,•H, grN
1

)⌦ (grM
2,•H, grN

2

) as defined by (c) above.
Similarly, (H,N)⇤ := (H⇤,�N⇤) has monodromy filtration M`(�N⇤) = M�`(N)⇤

and we have grM• (H,N)⇤ =
⇥

grM�•(H,N)
⇤⇤ as defined by (e) above.

Recall that sl
2

(C) is the Lie algebra generated by the three elements usually de-
noted by X,Y,H which satisfy the relations

[X,Y] = H, [H,X] = 2X, [H,Y] = �2Y.

Lemma 3.1.20.

(1) Let (H•,N) be a graded C-Lefschetz structure. There exists a unique represen-
tation of sl

2

on H (i.e., a Lie algebra morphism sl
2

! End(H)) such that Y acts
by N and such that H` is the eigenspace corresponding to the eigenvalue ` of H for
every ` 2 Z. Moreover, X sends H` to H`+2

for every ` 2 Z and, for ` > 0, we
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have P`H = Ker[X : H` ! H`+2

]. Lastly, any endomorphism Z 2 End(H) which
commutes with Y and H also commutes with X.

(2) Conversely, given X,Y,H 2 End(H) satisfying the relations of sl
2

and such
that H is semi-simple with integral eigenvalues, the grading by eigenspaces H•, together
with Y, defines a graded C-Lefschetz structure.

We abuse notation by denoting by the same letters X,Y,H and their images in
End(H).

Sketch of proof. If X exists, the relation [H,X] = 2X implies that X sends H` to H`+2

for every ` 2 Z. For ` > 0, let e` be a basis of PH`. Then one can easily find constants
aj,` such that for every e` 2 e`, if we define X by X(Yje`) = aj,`Yj�1e` (with the
convention that Y�1e` = 0), then X satisfies the desired relations. For the uniqueness
it suffices to check that if [Z,Y] = 0 and [H, Z] = 2Z, then Z = 0. For ` > 0, the
composition Y`+2Z : PH` ! H�`�2

, being equal to ZY`+2, is zero, so Z is zero on
PH`. It is then easy to conclude that Z is zero on each YjPH` (j > 0).

Let now Z 2 End(H) be such that Z commutes with Y and H. Then for every
t 2 R, (e�tZXetZ ,Y,H) is also an sl

2

triple, and by uniqueness the function t 7!

e�tZXetZ �X is identically zero, so [X, Z] = 0.
The second part of the lemma is proved similarly.

Exercise 3.1.21.

(1) Show the following identities in End(H):

eYHe�Y = H+ 2Y, e�XYeX = Y �H�X,

e�XHeX = H+ 2X, eYXe�Y = X�H�Y.

[Hint : denote by adY : End(H) ! End(H) the Lie algebra morphism A 7! [Y, A];
show that eYHe�Y = eadY(H) = H+ [Y,H] + 1

2

[Y, [Y,H]] + · · · and conclude for the
first equality; argue similarly for the other ones.]

(2) Set w := e�XeYe�X

2 Aut(H). Show that

wH = �Hw, wX = �Yw, wY = �Xw.

Conclude that w sends H` to H�` for every `.
(3) For ` > 0, show that w|P`H = Y`

|P`H
/`!. [Hint : use (2) to avoid any computa-

tion.]
(4) Deduce that, for ` > 0 and 0 6 k 6 `,

wYk
|P`H

=
(�1)k

`!
XkY`

|P`H
=

(�1)k

(`� k)!
Y`�k

|P`H
.

Exercise 3.1.22 (The sl
2

representation on End(H)).
(1) Let (H•,N) be a graded C-Lefschetz structure. Consider the grading End•(H)

defined by End`(H) :=
L

k Hom(Hk,Hk+`), and the nilpotent endomorphism adN =
[N, • ]. Show that this defines the sl

2

representation for which H acts by adH, X by
adX, and w by Adw := w •w�1.



36 CHAPTER 3. HODGE-LEFSCHETZ STRUCTURES

(2) Show that if d 2 End�`(H) (` > 0) commutes with N, then w�1dw 2 End`(H)
belongs to P` End(H), i.e., commutes with X.

Exercise 3.1.23. Let ' : (H
1,•,N1

) ! (H
2,•,N2

) be a morphism of graded C-Lefschetz
structures.

(1) Show that ' commutes with the action of X. [Hint : equip Hom(H
1

,H
2

) with
an sl

2

-action as in 3.1.22(1) above; with respect to this action, show that H(') = 0,
i.e., ' 2 Hom

0

(H
1

,H
2

), and Y(') = 0, i.e., N
2

� ' � ' � N
1

= 0, and deduce that
' 2 P

0

Hom(H
1

,H
2

); conclude that X(') = 0.]
(2) Show that the internal Hom of 3.1.c(f) is nothing but P

0

Hom(H
1

,H
2

).

3.1.d. Polarized (graded) C-Lefschetz structures

Definition 3.1.24 (Polarization of a (graded) C-Lefschetz Hodge structure)
(1) A polarization of a graded C-Lefschetz structure (H•,N) is a morphism (in fact

an isomorphism, see Proposition 3.1.26 below)

k : (H•,N) �! (H•,N)⇤

such that, for every ` > 0, the induced composed morphism

P`k := N⇤`
� k : PH` �! (N⇤`PH⇤

` ) = (P`H)⇤

is a positive definite Hermitian form.
(2) A polarization of a C-Lefschetz structure (H,N) is a morphism (in fact an

isomorphism)

k : (H,N) �! (H,N)⇤

such that the graded morphism grM• k : grM• (H,N) ! grM•
⇥

(H,N)⇤
⇤

=
⇥

grM�•(H,N)
⇤⇤

is a polarization of the graded C-Lefschetz structure grM• (H,N) (see Remark 3.1.19).

Let us make explicit this definition in the graded case. Since k is a morphism,
it is graded. If we regard k as a sesquilinear pairing k : H ⌦H ! C, this means that
k = 0 when restricted to Hk ⌦ H` with ` 6= �k. For every ` 2 Z, the restriction
k` : H` ! H⇤

` = (H�`)⇤ of k is a sesquilinear pairing k` : H` ⌦ H�` ! C which
satisfies k`(u,Nv) = �k`+2

(Nu, v) for u 2 H`, v 2 H�`+2

. Lastly, the positivity
condition reads as follows: for ` > 0, the form P`k(u, v) := k`(u,N`v) on P`H is
Hermitian and positive definite.

Remark 3.1.25. The conditions above imply that the adjoint k⇤` : H�` ⌦ H` ! C is
equal to (�1)`k�`. Indeed, assume ` > 0 for example. For j, k > 0, for u`+2j 2

PH`+2j and v`+2k 2 PH`+2k, we have

k`(N
ju`+2j ,N`+kv`+2k) = 0 if k 6= j
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since N`+2i+1 vanishes on PH`+2i, and

k`(N
ju`+2j ,N`+jv`+2j) = (�1)jk`+2j(u`+2j ,N`+2jv`+2j)

= (�1)jk`+2j(v`+2j ,N`+2ju`+2j)

= (�1)`k�`(N`+jv`+2j ,Nju`+2j).

Proposition 3.1.26 (A positive definite Hermitian form on H)
Let (H•,N) be a graded C-Lefschetz structure. Let Y act by N and let H correspond

to the grading. Let k : (H•,N) ! (H•,N)⇤ be a morphism. Then k is a polarization of
(H•,N) if and only if the sesquilinear form h(u, v) := k(u,wv) is Hermitian positive
definite on H. If k is a polarization, then k is an isomorphism and the Lefschetz
decomposition of H is orthogonal with respect to h.

Proof. For the first statement and the “only if” part, it is enough to check that,
for u, v 2 H`, we have k(v,wu) = k(u,wv) and u 6= 0, k(u,wu) > 0. Let us set
u =

P

j>0

Nju`+2j with u`+2j 2 PH`+2j and let us decompose v similarly. Then we
have

k(u,wv) =
X

j,k>0

k(Nju`+2j ,wNkv`+2k) =
X

j,k>0

(�1)k

(`+ k)!
k(Nju`+2j ,N`+kv`+2k)

=
X

j,k>0

(�1)j+k

(`+ k)!
k(u`+2j ,N`+j+kv`+2k).

Notice that k(u`+2j ,N`+j+kv`+2k) = 0 for k 6= j. As a consequence,

k(u,wv) =
X

j>0

1

(`+ j)!
k(u`+2j ,N`+2jv`+2j),

and the assertion follows. The “if” part is obtained similarly, and the h-orthogonality
of the Lefschetz decomposition is proved similarly. Since h is positive definite, it is
non-degenerate, hence so is k, that is, k : H ! H⇤ is an isomorphism.

Proposition 3.1.27 (Polarization of ImN). Let (H,N, k) be a polarized C-Lefschetz struc-
ture and set (G,NG) = ImN. Let us define kG : (G,NG) ! (G,NG)⇤ by

kG(u, v) := k(x,Ny) = �k(Nx, y), x, y 2 H, u = Nx, v = Ny,

i.e., kG is the pre-polarization induced by k on G (see Lemma 3.1.17). Then kG is a
polarization of (G,NG).

Proof. That N is skew-Hermitian with respect to k clearly implies that kG(u, v) does
not depend on the choice of x, y and NG is skew-Hermitian with respect to kG. We have
(grMk)

gr

MG = grM(kG), and we still denote it by kG. For u, v 2 P`G (` > 0), we have
u = Nx, v = Ny, with x, y 2 P`+1

H, according to Lemma 3.1.16(f). Hence

P`kG(u, v) = kG(u,N`v) = k(x,N`+1y) = P`+1

k(x, y).
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Let (H,N, k) and (H0,N0, k0) be polarized graded C-Lefschetz structures. Let c, v
be graded morphisms of degree �1:

c : H` �! H0
`�1

, v : H0
` �! H`�1

such that N = v � c and N0 = c � v.

Proposition 3.1.28. Assume that, for every `, the following diagram commutes:

H`
k` //

c
✏✏

H⇤
�`

v⇤
✏✏

H0
`�1

k0`�1

// H0⇤
�`+1

that is, the two sesquilinear forms

k`(•, v•) : H` ⌦H0
�`+1

�! C

k0`�1

(c•, •) : H` ⌦H0
�`+1

�! C

are equal. Then we have a decomposition

H0 = Imc�Ker v

as a graded C-Lefschetz structure.

Proof. Recall that N : H` ! H`�2

is injective for ` > 1, and similarly for N0. There-
fore, c : H` ! H0

`�1

and v : H0
` ! H`�1

are also injective for ` > 1. Notice also that,
for ` > 1, c(PH`) ⇢ Ker[N0` : H0

`�1

! H0
�2`�1

], and similarly for v(PH0
`�1

). From
Exercise 3.1.6 we deduce that, for ` > 0,

c(PH`) ⇢ PH0
`�1

�N0(PH0
`+1

),(3.1.29)
v(PH0

`) ⇢ PH`�1

�N(PH`+1

),(3.1.30)

if we set PH�1

= 0 and PH0
�1

= 0. Let us check this for v(PH0
0

) for example:
we have v(PH0

0

) ⇢ H�1

\ KerN since NvPH0
0

= vN0PH0
0

= 0; on the other hand,
H�1

= NPH
1

�N2PH
3

� · · · and H�1

\KerN = NPH
1

, hence the assertion.
We will prove by induction the following two properties.

(a) for all ` > 0, c(PH`) ⇢ PH0
`�1

,
(b) for all ` > 2, c(PH`) = PH0

`�1

.

Step one: Proof of (b)`+2

) (a)` (` > 0). By (b)`+2

we have PH0
`+1

= c(PH`+2

), so

c(PH`) ⇢ PH0
`�1

� cN(PH`+2

).

Since c(PH`) ⇢ KerN`v and, by (3.1.30), PH0
`�1

⇢ KerN`v, it is enough to prove
KerN`v \ cN(PH`+2

) = 0, that is, KerN`+2

\ PH`+2

= 0, which is by definition.
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Step two: Proof that v(PH0
`)\PH`�1

= 0. The assumption implies that, with obvious
notation,

k(u`�1

, vw0
�`+2

) = k0(cu`�1

, w0
�`+2

).

We have to prove
u0
` 2 PH0

` and vu0
` 2 PH`�1

=) u0
` = 0.

Assume u0
` 6= 0. By the positivity property for k0, we have k0(u0

`,N
0`u0

`) > 0. On the
other hand, vu0

` 2 PH`�1

, so k(vu0
`,N

`�1vu0
`) > 0. We have

k(vu0
`,N

`�1vu0
`) = k0(N0u0

`,N
`�1u0

`) (by the assumption)

= �k0(u0
`,N

`u0
`) (by 3.2.19(1))

< 0,

a contradiction.

Step three: Proof that PH` = 0 ) PH0
`�1

= 0 for ` > 2. By (3.1.30), PH` = 0
implies v(PH0

`�1

) ⇢ PH`�2

, hence v(PH0
`�1

) = 0 by the previous step. Since ` > 2,
this implies that PH0

`�1

= 0 because v is injective on H0
`�1

.
As a consequence, (b)` holds for ` � 0. Indeed, for ` � 0 we have PH` = 0, so (b)`

amounts to PH0
`�1

= 0.

Step four: Proof that (a)` ) (b)` for ` > 2. Let u0
`�1

2 PH0
`�1

. We have vu0
`�1

2

PH`�2

� NPH` by (3.1.30), that is, vu0
`�1

= u`�2

+ vcu`. By (a)`, cu` 2 PH0
`�1

.
Therefore, since v(u0

`�1

� cu`) = u`�2

2 PH`�2

and since ` > 2, Step two implies
u`�2

= 0, and by the injectivity of v on H0
`�1

, this implies u0
`�1

= cu`. This ends the
proof of (a) and (b).

We can now conclude the proof of the proposition. We notice that (a) implies
that c decomposes with respect to the Lefschetz decomposition. Similarly, Step two
together with (3.1.30) implies that v(PH0

`) ⇢ NPH`+1

, so v is also compatible with
the Lefschetz decomposition. Proving the decomposition H0 = Imc�Ker v amounts
thus to proving it on each primitive subspace PH0

` (` > 0). For ` > 1, we have
PH0

` = c(PH`+1

) by (b)`+1

, and Ker v = 0 so the decomposition is trivial. We are
left to prove

PH0
0

= c(PH
1

)�Ker v|PH0
0
.

This follows from the exercise below.

Exercise 3.1.31. Let P
1

, P
2

, P
3

be objects of an abelian category A. Let c : P
1

! P
2

and v : P
2

! P
3

be two morphisms such that v�c : P
1

! P
3

is an isomorphism. Show
that P

2

= Im c � Ker v. [Hint : check that it amounts to proving that the composed
morphism ' : Im c ! P

2

/Ker v is an isomorphism; use the commutative diagram

P
1

c
✏✏✏✏

⇠

v � c // P
3

Im c
'
// P

2

/Ker v
� ?

v

OO
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show that Ker' = Ker v �' = c(Ker v � c) = 0, and similarly, Im v �' = Im v �'� c =
Im v � c = P

3

, hence conclude that v � ' is an epimorphism, then that v is both an
epimorphism and a monomorphism, thus an isomorphism, and ' is an isomorphism.]

Definition 3.1.32 (Differential polarized graded C-Lefschetz structure)
Let (H•,N, k) be a polarized graded C-Lefschetz structure. A differential on

(H•,N, k) is a graded morphism d : H• ! H•�1

, which is self-adjoint with respect
to k and such that d � d = 0 and [N, d] = 0.

Let (H•,N, k, d) be a differential polarized graded C-Lefschetz structure. The co-
homology Ker d/ Im d is naturally graded, and N induces a nilpotent endomorphism
on it, which is a graded morphism of degree �2, since N commutes with d. Moreover,
since d is k-self-adjoint, k induces a sesquilinear pairing on Ker d/ Im d.

Proposition 3.1.33. If (H•,N, k, d) is a differential polarized graded C-Lefschetz struc-
ture, then its cohomology Ker d/ Im d, endowed with the previous grading, nilpotent
endomorphism and sesquilinear pairing, is a polarized graded C-Lefschetz structure.

Proof. The point is to prove that, for ` > 1, N` : (Ker d/ Im d)` ! (Ker d/ Im d)�` is
an isomorphism. Let h denote the positive definite Hermitian form k(u,wv). Then
the h-adjoint d? of d is equal to w�1dw and has degree 1. Consider the “Laplacian”
� := dd? + d?d. It is graded of degree zero. Due to the positivity of h, we have, in a
way compatible with the grading,

Ker d/ Im d = Ker d \Ker d? = Ker�, H = Ker�
?
� Im�

where the sum is orthogonal with respect to h. It enough to prove that � com-
mutes with N, since this implies that N preserves this decomposition, and thus
N` : (Ker�)` ! (Ker�)�` is an isomorphism. Similarly, P(Ker�)` = PH` \Ker�,
and the Lefschetz decomposition of H also decomposes with respect to the above de-
composition of H. Since all direct sums are h-orthogonal, we deduce that h|P(Ker�)`

is positive definite, and it is equal to the pairing induced by k(u,N`v) on P(Ker�)`,
proving that k induces a polarization on

�

(Ker d/ Im d)•,N
�

.
Let us consider the graded subspace D = Cd? � Cd of EndH. It is stable by

the action of sl
2

and, with respect to it, we have D = D
1

� D�1

, X(d?) = 0, d =
w(d?) = Y(d?) (see Exercise 3.1.22). Let us consider the composition morphism
Comp : D ⌦ D ! EndH. Note that D ⌦ D is an sl

2

-representation, defined by
3.1.c(c) and Lemma 3.1.20(1). The composition clearly commutes with H. It also
commutes with Y, since, for ','0

2 End(H), we have [N,'0'] = [N,'0]' + '0[N,'].
It commutes then with X (by the same argument or by Exercise 3.1.23(1)). The image
of d? ⌦ d+ d⌦ d? is equal to �. We wish to prove that � 2 P

0

EndH (see Exercise
3.1.23(2)). Since Comp sends P

0

(D⌦D) into P
0

EndH, the assertion will follow from
the property

(3.1.34) d? ⌦ d+ d⌦ d? 2 P
0

(D⌦D) + KerComp.
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The Lefschetz decomposition of the four-dimensional vector space D ⌦ D is easy to
describe (a particular case of the Clebsch-Gordan formula):

• (D⌦D)
2

= C(d? ⌦ d?),
• (D⌦D)�2

= C(d⌦ d),
• (D⌦D)

0

= YC(d? ⌦ d?)� P
0

(D⌦D).
The assumption d�d=0 implies that Comp(D⌦D)�2

=0, hence Comp(D⌦D)
2

=0,
CompY(D⌦D)

2

= 0. In other words, D⌦D = P
0

(D⌦D) + KerComp, so (3.1.34)
is clear.

3.1.e. Bi-graded C-Lefschetz structures. We will encounter the following bi-
graded situation when dealing with spectral sequences. A bi-graded C-Lefschetz
structure on a vector space H consists of the data of a bi-grading H•,• and of two com-
muting nilpotent endomorphisms N

1

,N
2

such that, for every `
1

, `
2

, (H•,`2 ,N1

) and
(H`1,•,N2

) are graded C-Lefschetz structures. We thus have two sl
2

actions that we
denote by (X

1

,Y
1

,H
1

) and (X
2

,Y
2

,H
2

). The assumption means that Y
1

(resp. H
1

)
commutes with Y

2

and H
2

. Lemma 3.1.20 implies that Y
1

(resp. H
1

) also commutes
with X

2

, and then that X
2

commutes with X
1

. In particular, w
1

and w
2

commute.
We note that X := X

1

+X
2

, Y := Y
1

+Y
2

and H := H
1

+H
2

form an sl
2

-triple, hence
(Lemma 3.1.20) defines a graded C-Lefschetz structure, with H` =

L

`1+`2=` H`1,`2 .
The corresponding w is w

1

w
2

, due to the commutation properties. For `
1

, `
2

> 0,
the bi-primitive subspace PH`1,`2 of H`1,`2 is KerN`1+1

1

\ KerN`2+1

2

and we have a
corresponding Lefschetz decomposition. We define the adjoint bi-graded C-Lefschetz
structure (H•,•,N1

,N
2

)⇤ as (H⇤
•,•,�N⇤

1

,�N⇤
2

) with (H⇤
`1,`2

= (H�`1,�`2)
⇤. The notion

of polarization is similarly adapted from Definition 3.1.24.

Proposition 3.1.35. Let (H•,•,N1

,N
2

, k) be a polarized bi-graded C-Lefschetz structure.
Then the associated graded C-Lefschetz structure (H•,N), equipped with the same
sesquilinear pairing k, is a polarized graded C-Lefschetz structure.

Proof. By the same argument as in Proposition 3.1.26, one checks that the sesquilinear
form k(u,w

1

w
2

v) is Hermitian positive definite on H. Since w = w
1

w
2

Proposition
3.1.26 in the reverse direction gives the assertion.

Remark 3.1.36. The use of w enables us not to compute PH` explicitly (with respect
to N).

We now have the bi-graded analogue of Proposition 3.1.33. Let (H•,•,N1

,N
2

, k)
be a polarized bi-graded C-Lefschetz structure. A differential d on it is a bi-graded
morphism of bi-degree (�1,�1), which is self-adjoint with respect to k, and which
commutes with N

1

,N
2

.

Proposition 3.1.37. If (H•,•,N1

,N
2

, k, d) be a differential polarized bi-graded C-
Lefschetz structure, then its cohomology Ker d/ Im d, endowed with the natural
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bi-grading, nilpotent endomorphisms and sesquilinear pairing, is a polarized bi-graded
C-Lefschetz structure.

Proof. As above, we consider the positive definite Hermitian form k(u,wv) with w :=
w

1

w
2

and the corresponding Laplacian � = dd? + d?d, with d = w�1dw. Then � is
bi-graded of bi-degree zero. As in Proposition 3.1.33, we consider the bi-graded space
D = Cd? � CY

1

(d?) � Y
2

(d?) � Cd, with d = Y
1

Y
2

(d?). Arguing similarly, we only
need to prove that

(3.1.38) (d⌦ d? + d? ⌦ d) 2 P
0,0(D⌦D) + KerComp,

where P
0,0(D⌦D) = KerY

1

\KerY
2

\ (D⌦D)
(0,0). We have

KerComp 3 Y
1

Y
2

(d? ⌦ d?) = (d⌦ d? + d? ⌦ d) +
⇥

(Y
1

d? ⌦Y
2

d?) + (Y
2

d? ⌦Y
1

d?)
⇤

.

On the other hand,

Y
1

⇥

(Y
1

d? ⌦Y
2

d?) + (Y
2

d? ⌦Y
1

d?)
⇤

= (Y
1

d? ⌦Y
1

Y
2

d?) + (Y
1

Y
2

d? ⌦Y
1

d?)

= Y
1

⇥

(d? ⌦Y
1

Y
2

d?) + (Y
1

Y
2

d? ⌦ d?)
⇤

= Y
1

(d⌦ d? + d? ⌦ d),

and similarly with Y
2

, so we obtain

(d⌦ d? + d? ⌦ d)�
⇥

(Y
1

d? ⌦Y
2

d?) + (Y
2

d? ⌦Y
1

d?)
⇤

2 P
0,0(D⌦D),

and therefore (3.1.38) holds.

3.2. Polarizable Hodge-Lefschetz structures

3.2.a. Hodge-Lefschetz structures. We adapt the general framework of Sec-
tion 3.1 on the Lefschetz decomposition to the case of Hodge structures. The ambient
abelian category A is the category of triples considered in Remark 2.4.12 or that
of triples of Definition 2.4.24, and we choose for � the symmetric Tate twist (1)
(see Notation 2.4.26).

In the case of Hodge structures, as we expect that the nilpotent operator
N : H ! H will send F k into F k�1 (an infinitesimal version of Griffiths transversality
property, see Section 4.1), we will regard N as a morphism H ! H(�1), using
the symmetric Tate twist notation. As a consequence, N commutes with the Weil
operator C.

Definition 3.2.1 (Hodge-Lefschetz structure). Set " = ±1. Let H = (H, F 0•H, F 00•H)
be a bi-filtered vector space and let N : H ! H(�") be a nilpotent endomorphism.
Let M•H denote the monodromy filtration in the abelian category of filtered triples
(see Remark 2.4.12). We say that (H,N) is an "Hodge-Lefschetz structure centered
at w if for every `, the object grM` H belongs to HS(C, w + "`).

By a Hodge-Lefschetz structure, we simply mean an "Hodge-Lefschetz structure
with " = +1.
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For an "Hodge-Lefschetz structure (H,N), the restriction to z = 1 of M•H is
the monodromy filtration M•H associated to the restriction of N to H. Moreover
(see Remark 2.4.25(5)), for F = F 0 or F 00, the filtration F •grM` H is the filtration
naturally induced by F •H on grM` H, that is,

F pgrM` H :=
F pH \M`H

F pH \M`�1

H
.

Let us consider the graded object grMH =
L

` gr
M

` H. It is an object of HS(C),
that is, the Hodge structure is pure on each graded piece, with a weight depend-
ing on the grading index. This graded space is also equipped with a nilpotent
"-endomorphism of degree �2, that we denote by grN, which sends grM` H to
grM`�2

H(�") for every `, and which is naturally induced by N. From the definition
above, it has the following property: for every ` 2 Z,

(3.2.2) grN : grM` H �! grM`�2

H(�")

is a morphism of Hodge structures. In particular (according to Proposition 2.4.5(1)),
for every ` > 1,

(3.2.3) (grN)` : grM` H �! grM�`H(�"`)

is an isomorphism and, for every ` > 0, the primitive subspace Ker(grN)`+1 is a Hodge
substructure of weight ` in grM` H. It will be denoted by P`H.

Definition 3.2.4. We say that the "Hodge-Lefschetz structure is graded if it is endowed
with a grading, i.e., an isomorphism with its graded structure with respect to the
monodromy filtration.

Exercise 3.2.5. Show that a graded "Hodge-Lefschetz structure is completely deter-
mined by the Hodge structures P`H (` > 0).

Exercise 3.2.6. The goal of this exercise is to show that any Hodge-Lefschetz structure
is isomorphic (non-canonically) to its associated graded Hodge-Lefschetz structure
with respect to the monodromy filtration. In (1)–(4) below, the filtration F is either F 0

or F 00.

(1) For every ` > 0 and p, choose a section sj,p : grpFP`H ! F pM`H of the
projection F pM`H ! grpF gr

M

` H and show that ImN`+1s`,p ⇢ F p�`�1M�`�3

H. The
next questions aim at modifying this section in such a way that its image is contained
in KerN`+1.

(2) Show that, for every j > 0, and any p, ` � 0

F p�`�1M�`�3�jH ⇢ N`+j+3F p+j+2M`+j+3

H + F p�`�1M�`�3�(j+1)

H.

(3) Conclude that, for every j > 0,

F p�`�1M�`�3�jH ⇢ N`+1F pM`�1

H + F p�`�1M�`�3�(j+1)

H.



44 CHAPTER 3. HODGE-LEFSCHETZ STRUCTURES

(4) Show that if for some j > 0 we have constructed a section s
(j)
`,p such that

ImN`+1s
(j)
`,p ⇢ F p�`�1M�`�3�jH, then one can find a section s

(j+1)

`,p such that
ImN`+1s

(j+1)

`,p ⇢ F p�`�1M�`�3�(j+1)

H. Use then s`,p = s
(0)

`,p to obtain a section s
(1)

`,p

such that N`+1s
(1)

`,p = 0.
(5) Use the Lefschetz decomposition to obtained the desired isomorphism.

Remark 3.2.7 (Hodge-Lefschetz structures are mixed Hodge structures)
The symmetry between the cases " = +1 and " = �1 is only apparent. The

Hodge-Lefschetz structures are examples of mixed Hodge structures, with (increasing)
weight filtration W• defined by

Ww+`H = M`H.

The symmetry (3.2.3) reads

(grN)` : grWw+`H
⇠
�! grWw�`H(�`),

justifying the expression “centered at w”. On the other hand, the "Hodge-Lefschetz
structures with " = �1 are not necessarily mixed Hodge structures. They are so in
the graded case. In fact, we will only encounter graded "Hodge-Lefschetz structures
when " = �1. On the other hand, we will encounter (non graded) Hodge-Lefschetz
structures in the theory of nearby/vanishing cycles, see Section 7.4.

Example 3.2.8. The cohomology H• = Hn�•(X,C) of a smooth complex projective
variety, equipped with the nilpotent endomorphism NL = LL , is naturally graded.
We define the filtration F •H•(X,C) as being the direct sum of the Hodge filtration
on each term. Then grM` H = Hn�`(X,C) equipped with its filtration is a Hodge
structure of weight n � `. The cohomology Hn�•(X,C) is thus a graded (�)Hodge-
Lefschetz structure centered at n = dimX.

Exercise 3.2.9 (Tate twist of Hodge-Lefschetz structures). Define the Tate twist (k, `)
of an "Hodge-Lefschetz structure (H,N) centered at w as (H(k, `),N) and leav-
ing N unchanged. Show that (H,N)(k, `) is an "Hodge-Lefschetz structure centered
at w � "(k + `).

Definition 3.2.10 (Category of Hodge-Lefschetz structures). The category HLS of
Hodge-Lefschetz structures is the category whose objects consist of Hodge-Lefschetz
structures (" = +1) centered at some w 2 Z, and whose morphisms are morphisms
of mixed Hodge structures compatible with N. The category HLS(w) is the full
sub-category consisting of objects centered at w.

Similarly, the category of graded "Hodge-Lefschetz structures is the category
whose objects consist of graded "Hodge-Lefschetz structures and whose morphisms
are graded morphisms of Hodge structures, of degree zero with respect to the grading.
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Exercise 3.2.11 (The category HLS(w) is abelian). Show the folowing properties.
(1) In the category HLS, any morphism is strict with respect to the filtrations F •

and the filtration W•. [Hint : Use Proposition 2.5.5.]
(2) N :

�

H,N) ! (H,N)(�1) is a morphism in this category. In particular,
N(F pH) = F p�1H \ ImN for F = F 0 or F 00.

(3) The filtration M•(N)H is a filtration in the category of mixed Hodge structures.
(4) Consider the category MHS� whose objects are H� :=

L

k,`2Z H(k, `),
where H is a mixed Hodge structure, and morphisms '� : H�

1

! H�
2

are the direct
sums of the same morphism of mixed Hodge structures ' : H

1

! H
2

(ko, `o) for some
(ko, `o), twisted by any (k, `) 2 Z. Show that

(a) the category MHS� is abelian,
(b) for (H,N) in HLS(w), N defines a nilpotent endomorphism N� in the

category MHS� on H�,
(c)

L

k,` M•(N)H(k, `) is the monodromy filtration of N� in the abelian cat-
egory MHS�.

(5) Let ' : (H
1

,N
1

) ! (H
2

,N
2

) be a morphism in HLS. Then ' = 0 if w
1

> w
2

.
[Hint : Use that ' is compatible with both M• and W•.]

(6) Let ' be a morphism in HLS(w). Show that ' is strictly compatible with M•.
Conclude that HLS(w) is abelian.

(7) Show that, for such a ', the conclusion of Lemma 3.1.7 holds in the category of
mixed Hodge structures. [Hint : Use the auxiliary category MHS� and the nilpotent
endomorphisms N�

1

,N�
2

.]
(8) Similar results hold for graded "Hodge-Lefschetz structures.

Exercise 3.2.12 (Sub-Hodge-Lefschetz structure). Let (H
1

,N
1

) ! (H
2

,N
2

) be a mor-
phism in HLS(w) which is injective on H

1

. Show that it is a monomorphism (i.e.,
the filtrations F •H

1

and M•H1

are those induced from H
2

). [Hint : use Proposition
2.4.5(1).]

Show a similar result for graded "Hodge-Lefschetz structures.

Proposition 3.2.13. Let (H,N) be an object in HLS(w). Then (G := ImN,NG) is an
object of HLS(w + 1).

Proof. The image of N is considered in the abelian category A considered at the
beginning of this section, but we can as well work with the image of N� in the
abelian category MHS�, that is, considering the image of H in MHS. The proposition
amounts to identifying the weight filtration W•G := N(W•H) with Mw+1+`G. This
follows from Lemma 3.1.16 applied to the category MHS�.

The definition of a nearby/vanishing Hodge-Lefschetz quiver will be a little different
from the general definition (3.1.13) of a nearby/vanishing quiver, since we will impose
that the nilpotent morphisms NH ,NG are those of the corresponding Hodge-Lefschetz
structures, hence are (1)-morphisms (we use the terminology of Remark 3.1.10).



46 CHAPTER 3. HODGE-LEFSCHETZ STRUCTURES

Definition 3.2.14 (Nearby/vanishing Hodge-Lefschetz quiver)
A nearby/vanishing Hodge-Lefschetz quiver centered at w consists of data

(H,N), (G,N), c, v,

such that
• (H,N) is a Hodge-Lefschetz structure centered at w,
• (G,N) is a Hodge-Lefschetz structure centered at w + 1,
• we have morphisms of Hodge-Lefschetz structures:

c : (H,N) �! (G,N), v : (G,N) �! (H,N)(�1) (right case),

• c � v = NG and v � c = NH .

We will use the notation reminiscent to that of (3.1.13):

(3.2.15) (H,N)

c
&&

(G,N).

v

ff

(�1)

Example 3.2.16. According to Proposition 3.2.13, the data
�

(H,N), (ImN,N|ImN

),N, incl.
�

form a middle extension quiver. Similarly, we have the notion of S-decomposable
quiver.

Exercise 3.2.17. Show that the properties of Exercise 3.1.14 extend to nearby/vani-
shing Hodge-Lefschetz quivers and that, forgetting the filtration one recovers a
nearby/vanishing quiver of C-vector spaces.

3.2.b. Polarization. Let (H,N) be an "Hodge-Lefschetz structure centered at w,
which is graded in the (�) case. The adjoint object (H,N)⇤ is the object (H⇤,�N⇤),
where N⇤ is the nilpotent endomorphism adjoint to N. One checks, by using the
characteristic property of the monodromy filtration, that grM` (H⇤) = (grM�`H)⇤. Since
grM�`H is pure of weight w�"`, grM` (H⇤) is pure of weight �w+"`, hence H⇤ is a mixed
Hodge structure with weight filtration M(N⇤)[w], and (H,N)⇤ is a Hodge-Lefschetz
structure centered at �w.

Let
Q : H ⌦H �! C(�w)

be a bi-filtered morphism. Assume that N is an infinitesimal automorphism of Q,
that is, Q(•,N•) + Q(N•, •) = 0. Equivalently, we can regard Q as a morphism

Q : (H,N) �! (H,N)⇤(�w).

Then, for every `, Q induces a morphism of C-Hodge structures

grM` Q : grM` H �! grM` (H⇤)(�w) = (grM�`H)⇤(�w),
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that is, a sesquilinear pairing of C-Hodge structures

grM` Q : grM�`H ⌦ grM` H �! C(�w).

Let us assume ` > 0. Composing grM` Q with N⇤` gives a morphism

N⇤`
� grM` Q : grM` H �! grM�`(H

⇤)(�w � "`) = (grM` H)⇤(�w � "`).

In other words, if we set

Q`,`(x, y) := grM` Q(x, (grN)`y),

we define a pairing
Q`,` : gr

M

` H ⌦ grM` H �! C(�w � "`)

and we can restrict this pairing to the primitive part to get a pairing

P`Q : P`H ⌦ P`H �! C(�w � "`).

Lemma 3.2.18. Q is non-degenerate if and only if P`Q are non-degenerate for ` > 0.

Proof. Since (H,N)⇤ is a Hodge-Lefschetz structure centered at �w, (H,N)⇤(�w) is
such a structure centered at w, and Q : H ! H⇤(�w) is a morphism of mixed Hodge
structures. Therefore, it is strictly compatible with the weight filtrations, and Q is an
isomorphism if and only if grQ is an isomorphism between the corresponding graded
Hodge-Lefschetz structures. By the Lefschetz decomposition, this is equivalent to
P`Q being an isomorphism.

Definition 3.2.19 (Polarization of a Hodge-Lefschetz structure)
We say that the pairing Q : H ⌦ H ! C(�w) is a polarization of the "Hodge-

Lefschetz structure (H,N) centered at w (graded in the (�) case) if

(1) N is an infinitesimal automorphism of Q,
(2) P`Q is a polarization of the Hodge structure P`H of weight w + "` for every

` > 0.

Exercise 3.2.20. Show that if Q is a polarization of (H,N), then

(1) Q is a polarization of (H,N)(k) for every k 2 Z,
(2) Q is nondegenerate, [Hint : use Lemma 3.2.18]
(3) Q is (�1)w-Hermitian. [Hint : Argue as in Remark 3.1.25.]

Exercise 3.2.21. Let
�

(H,N),Q
�

be a polarized Hodge-Lefschetz structure centered
at w, and let (H

1

,N) be a sub-object in HLS(w) (see Exercise 3.2.12). Show that Q
induces a polarization Q

1

on (H
1

,N) and that
�

(H
1

,N),Q
1

�

is a direct summand
of

�

(H,N),Q
�

. Conclude that the category pHLS(w) of polarizable Hodge-Lefschetz
structures of weight w is semi-simple. [Hint : Use Exercise 3.2.12 to show that P`H

0

is a sub-object of P`H in HS(w + `), and conclude with Exercise 2.4.22.]
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Remark 3.2.22 (Simplified data for a polarized Hodge-Lefschetz structure)
We can simplify the data of a polarized Hodge-Lefschetz structure centered at w

by giving ((H, F •H),N) (with N : (H, F •H) ! (H, F •H)(�1)) and an isomorphism
Q : ((H, F •H),N) ! ((H, F •H),N)⇤(�w) in such a way that, defining F 00•H as in
Remark 2.4.20, we obtain data (H,N,Q) as in Definition 3.2.19.

Remark 3.2.23 (Polarized mixed Hodge structure). The terminology polarized mixed
Hodge structure is also used in the literature for a polarized Hodge-Lefschetz structure.

Remark 3.2.24. The definition of polarized graded (�)Hodge-Lefschetz structure is
the analogue of the geometric Hodge structure of Section 2.3: the cohomology H• :=
Hn�•(X,C), equipped with NL = LL , is a polarizable graded (�)Hodge-Lefschetz
structure centered at n.

Proposition 3.2.25 (Polarization on ImN). Let (H,N) be a Hodge-Lefschetz structure
centered at w with polarization Q. Let (G,NG) = (ImN,N|ImN

) be the image of N
regarded as an object of HS(w + 1) (Proposition 3.2.13), and define QG on G by

QG(Nx,Ny) := Q(x,Ny) = �Q(Nx, y)

(see Lemma 3.1.17). Then QG is a polarization of (G,NG).

Proof. Recall that, for ` > 0, grN induces an isomorphism P`+1

H
⇠
�! P`G (Lemma

3.1.16(f)). Since Q, v, c and c⇤ are morphisms of mixed Hodge structures, so is QG,
and we argue as in Lemma 3.2.18 to obtain that grQG is equal to (grQ)G. We can
thus assume that (H,N,Q), and thus (G,NG,QG), are graded. For u, v 2 P`G and
x, y 2 P`+1

H with u = Nx, v = Ny, we have

P`QG(Cu, v) := QG(CNx,N`(Ny)) = QG(NCx,N(N`y))

= Q(Cx,N`+1y) = P`+1

Q(Cx, y).

Remark 3.2.26 (Hodge-Lefschetz triples). Let us make explicit the notion of (graded)
"Hodge-Lefschetz structure in the language of filtered triples (see Section 2.4.c). Let
H = ((H0, F •H0), (H00, F •H00), c) be a filtered triple, equipped with a nilpotent endo-
morphism N = (N0,N00) : H ! H(�"), that is,

N0 : (H0, F
•
H0) �! (H0, F [�"]•H0) and N00 : (H00, F

•
H00) �! (H00, F [�"]•H00)

are two filtered nilpotent morphisms which satisfy, when forgetting the filtration,

c(v0,N00v00) = c(N0v0, v00).

The adjoint (H,N)⇤ of (H,N) is (H⇤,�N⇤), where H⇤ is the adjoint of H and N⇤ is the
adjoint of the morphism N, regarded as a morphism H⇤

! H⇤(�"). The monodromy
filtration is defined in the abelian category Triples, and we say that (H,N) is an
"Hodge-Lefschetz triple centered at w if grM` H is an Hodge triple of weight w+ "` for
every `. In such a case, for every j, k 2 Z,

(H,N)(j, k) := ((H0, F [j]•H0,N0), (H00, F [�k]•H00,N00), c)
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is an "Hodge-Lefschetz triple centered at w � "(k + `) and (H,N)⇤ is an "Hodge-
Lefschetz triple centered at �w, with monodromy filtration satisfying grM` (H⇤) =
(grM�`H)⇤.

We note that c induces zero on M`H
0
⌦ M�`�1

H00 for every `, hence induces a
pairing

c`,�` : gr
M

` H0
⌦C grM�`H

00
�! C.

We have (grM` H)0 = grM` H0, while (grM` H)00 = grM�`H
00, both with their induced

filtrations. On the other hand, grN := (grN0, grN00) is a morphism

(grM` H0, grM�`H
00) �! (grM`�2

H0, grM�`+2

H00)

which is compatible with c`,�` and c`�2,�`+2

. Therefore, the data (grM• H, grN) defined
as

L

`

(grM` H0, F
•grM` H0),

L

`

(grM�`H
00, F

•grM�`H
00)

grc :=
L

`

c`,�`, grN := (grN0, grN00)

form a graded "Hodge-Lefschetz triple. In particular it is non-degenerate, which
implies that c itself is non-degenerate. Its adjoint (grM• H, grN)⇤ is also a graded
"Hodge-Lefschetz triple.

A pre-polarization Q = (Q, (�1)wQ) of an "Hodge-Lefschetz triple (H,N) centered
at w is a (�1)w-Hermitian morphism (H,N) ! (H,N)⇤(�w), i.e., a morphism H !

H⇤(�w) such that
Q �N+N⇤

�Q : H �! H⇤(�w � ")

is zero, that is, Q � N0 + N00
� Q : H0

! H00 is zero. Since Q is a morphism, it is
compatible with the monodromy filtrations and Q induces a pre-polarization grMQ :
grM• H ! grM• (H⇤)(�w) = (grM�•H)⇤(�w) of the "Hodge-Lefschetz triple (grM• H, grN)
(check the behaviour of the filtrations F •). We can then continue the definition of a
polarization as in Section 3.2.b.

Lastly, we remark as in Proposition 2.4.38 that any polarizable "Hodge-Lefschetz
triple centered at w is (graded) isomorphic to ((H 0,H 0(�w), c0),N) with polarization
((�1)w Id, Id), such that ((H0, F •H0),N, c0) is a polarized (graded) "Hodge-Lefschetz
structure centered at w.

Remark 3.2.27 (Stability by extension). As in Remark 3.2.26, we consider the abelian
category of graded triples H =

L

` H` endowed with a nilpotent endomorphism
N : H` ! H`�2

(�"). Let

0 �! (H 0,N) �! (H,N) �! (H 00,N) �! 0

be an exact sequence in this category. Assume that (H 0,N), (H 00,N) are graded
"Hodge-Lefschetz triples of the same weight w. Then (H,N) is of the same kind.
Indeed, by Exercise 2.4.32, each summand H` is a C-Hodge triple of weight w + "`.
It is then clear that N` is an isomorphism H`

⇠
�! H�`(�"`) if this holds on H 0, H 00.
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3.2.c. Polarized graded Hodge-Lefschetz structures

We now revisit Sections 3.1.d and 3.1.e for (bi-)graded Hodge-Lefschetz structures.
Some parts of the proofs will be very similar. Let (H,N) be a graded Hodge-Lefschetz
structure of type ", centered at w. The automorphism w : H ! H sends each
term of the Lefschetz decomposition into another term of this decomposition, and
Exercise 3.1.21(4) gives the exact formula for each term. It follows from this formula
that each component of w is a morphism of Hodge structures. Hence, for every `,
w : H` ! H�`(�"`) is a morphism of Hodge structures.

Proposition 3.2.28. Let (H,N,Q) be a polarized graded Hodge-Lefschetz structure.
Then each H` is a polarizable Hodge structure of weight w + `".

Proof. We apply Proposition 3.1.26 to k(u, v) := Q(Cu, v).

Let (H,N,Q) and (H 0,N0,Q0) be polarized graded Hodge-Lefschetz structures of
type " = 1, centered at w and w + 1 respectively. Let c, v be graded morphisms of
degree �1:

c : H` �! H 0
`�1

, v : H 0
` �! H`�1

(�1)

such that N = v � c and N0 = c � v. Note that c is a morphism of Hodge structures of
weight w+ ` and v a morphism of Hodge structures of weight w+1+ `. For example,
starting from a middle extension nearby/vanishing Hodge-Lefschetz quiver centered
at w as in Example 3.2.16, we replace H,G by the associated graded Hodge-Lefschetz
structures, and c, v by the associated graded morphism of degree one (see Lemma
3.1.16).

Proposition 3.2.29. Assume that, for every `, the following diagram commutes:

H`

Q`
//

c
✏✏

H⇤
�`(�w)

v⇤
✏✏

H 0
`�1 Q0

`�1

// H 0⇤
�`+1

(�w � 1)

that is, the two sesquilinear forms

Q`(•, v•) : H` ⌦H 0
�`+1

�! C(�w � 1)

Q0
`�1

(c•, •) : H` ⌦H 0
�`+1

�! C(�w � 1)

are equal. Then we have a decomposition

H 0 = Imc�Ker v

as a graded Hodge-Lefschetz structure.

Proof. We will argue in a way similar to Proposition 3.1.28. We will take care of
Tate twists and we will replace the pairing k(u,wv) with Q(Cu,wv). Recall that
N : H` ! H`�2

(�1) commutes with the Weil operator C, as well as c : H` ! H 0
`�1
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and v : H 0
` ! H`�1

(�1). The inclusions (3.1.29) and (3.1.30) are respectively replaced
with

c(PH`) ⇢ PH 0
`�1

�N0(PH 0
`+1

(1)),(3.2.30)
v(PH 0

`) ⇢ PH`�1

(�1)�N(PH`+1

),(3.2.31)

if we set PH�1

= 0 and PH 0
�1

= 0. Let us indicate the modification to be made in
the proof the following two properties.

(a) for all ` > 0, c(PH`) ⇢ PH 0
`�1

,
(b) for all ` > 2, c(PH`) = PH 0

`�1

.
Among the four steps, only Step two has to be modified.

Step two: Proof that v(PH 0
`) \ PH`�1

(�1) = 0. The assumption implies that, with
obvious notation,

Q(u`�1

, vw0
�`+2

) = �Q0(cu`�1

, w0
�`+2

).

We have to prove
u0
` 2 PH0

` and vu0
` 2 PH`�1

=) u0
` = 0.

Assume u0
` 6= 0. We have Q0(Cu0

`,N
0`u0

`) > 0 and Q(Cvu0
`,N

`�1vu0
`) > 0. Then

0 6 Q(Cvu0
`,N

`�1vu0
`) = Q0(CN0u0

`,N
`�1u0

`) (by the assumption)

= �Q0(Cu0
`,N

`u0
`) (by 3.2.19(1))

< 0,

a contradiction.

End of the proof of the proposition. We can now conclude the proof of the proposition.
Arguing as in the end of the proof of Proposition 3.1.28, we are left to prove

PH 0
0

= c(PH
1

)�Ker v|PH0
0
.

This follows from Exercise 3.1.31 below, applied to the abelian category of Hodge
structures of weight w + 1.

Fix "
1

, "
2

= ±1. The notion of a (polarized) bigraded Hodge-Lefschetz structure
(H,N

1

,N
2

) of weight w and bi-type ("
1

, "
2

) is defined in a natural way, similarly to
the single graded case: N

1

and N
2

should commute and the primitive part in H`1,`2

is by definition the intersection of KerN`1+1

1

and KerN`2+1

2

. We have the following
analogue of Proposition 3.1.35. We note that w : H`1,`2 ! H�`1,�`2(�"

1

`
1

� "
2

`
2

) is
a morphism of Hodge structures for every `

1

, `
2

.

Proposition 3.2.32. Let (H,N
1

,N
2

,Q) be a polarized bi-graded Hodge-Lefschetz struc-
ture centered at w and of bi-type (", "). Put on H the grading H` = �`+k=`H`,k and
set N = N

1

+N
2

. Then (H,N
1

+N
2

,Q) is a polarized graded Hodge-Lefschetz structure
centered at w and of type ".

Proof. Similar to that of Proposition 3.1.35.
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Set " = ("
1

+ "
2

)/2 2 {�1, 0, 1}. A differential d on (H,N
1

,N
2

,Q) is a morphism
of Hodge structures of bidegree (�1,�1)

d : H`1,`2 �! H`1�1,`2�1

(�")

such that d�d = 0, which commutes with N
1

,N
2

and is self-adjoint with respect to Q.

Proposition 3.2.33. In such a situation, the cohomology Ker d/ Im d, with the induced
N

1

,N
2

,Q, is a polarized bigraded Hodge-Lefschetz structure (H,N
1

,N
2

,Q) of weight w
and type "

1

, "
2

.

Proof. The proof is similar to that of Proposition 3.1.37, by considering the positive
definite Hermitian form Q(Cu,wv).

3.3. Comments

The Hard Lefschetz theorem for complex projective varieties equipped with an
ample line bundle, named so after the fundamental memoir of Lefschetz [Lef24], and
for which there does not exist up to now a purely topological proof (see [Lam81] for
an overview of the topology of complex algebraic varieties), is intrinsically present in
classical Hodge theory (see e.g. [GH78, Dem96, Voi02]). That a relative version
of this theorem is instrumental in proving the decomposition theorem (one of the
main goals of the theory of pure Hodge modules) had been emphasized and proved by
Deligne in [Del68], by observing the criterion 3.1.9. On the other hand, the theory of
degeneration of variations of polarized Hodge structures [Sch73, GS75] also gives rise
to such Hodge-Lefschetz structures, not necessarily graded however. Note also that
such structures have been discovered by Steenbrink [Ste77] and Varchenko [Var82]
on the space of vanishing cycles attached to an isolated critical point of a holomorphic
function. This property was at the source of the definition of pure Hodge modules by
Saito in [Sai88].

Since the very definition of a pure Hodge module by Saito [Sai88] is modeled
on the theory of degenerations, we devote a complete chapter to the notion of a
Hodge-Lefschetz structure. Together with the criterion 3.1.9, three results are used
in an essential way in the decomposition theorem for pure polarized Hodge modules
as proved by Saito [Sai88], namely Propositions 3.2.29, 3.2.32 and 3.2.33. They are
originally proved in [Sai88, §4]. We follow here the proof given by Guillén and Navarro
Aznar in [GNA90], according to the idea, due to Deligne, of using harmonic theory
in finite dimensions and the full strength of the action of SL

2

by means of the Weil
element denoted by w. The polarization property is often reduced to saying that the
primitive part of the Hodge-Lefschetz structure is a polarized Hodge structure, and
is is rarely emphasized that each graded part of a polarized graded Hodge-Lefschetz
structure (like any cohomology space of a smooth complex projective variety) is also
a polarized pure Hodge structure. The latter approach makes it explicit.



3.3. COMMENTS 53

We have developed the notion of polarized Lefschetz structure in order not to mix
two mechanisms to produce polarization: the one coming from Hodge structure (by
means of the Weil operator C) and the one coming from the nilpotent operator and
of the sl

2

-action. That these two mechanisms can be treated separately is already im-
plicitly present in [GNA90]. We have made it explicit in Section 3.1, in a way that, in
Section 3.2, the adaptation to the Hodge-theoretical setting becomes straightforward.
Basic results on the monodromy filtration, which gives rise to the Hodge-theoretic
weight filtration, are explained in [Sch73, CK82, SZ85].

The notion of a polarized Hodge-Lefschetz structure is also known under the name
of polarized mixed Hodge structure [CK82], and it is also said that the nilpotent
operator polarizes the mixed Hodge structure. This is justified by the fact that the
choice of an ample line bundle on a smooth complex projective variety is regarded as
a polarization, and it determines a polarization form on the cohomology. Such data
also give rise to a nilpotent orbit (see [Sch73, CK82] and also [Kas85, Def. 2.3.1]).
We do not use this terminology here, since we also want to use a Hodge-Lefschetz
structure without any polarization, as we did for Hodge structures.

For the purpose of pure Hodge modules, the notion of middle extension Lefschetz
quiver is a basic tool, corresponding to the notion of middle extension for perverse
sheaves or holonomic D-modules. It consists of two objects, called respectively nearby
cycles and vanishing cycles related by two morphisms usually called can and var. The
middle extension property is that can is an epimorphism and var is a monomorphism,
so that the vanishing cycles are identified with the image of N := var � can in the
nearby cycles. Hodge theory for vanishing cycles can then be deduced from Hodge
theory for nearby cycles, as already remarked by Kashiwara and Kawai [KK87]. In
particular, Lemma 3.1.16 is much inspired from [KK87, Prop. 2.1.1], and also of
[Sai88, Lem. 5.1.12].

The basic decomposition result of Exercise 3.1.31 is at the heart of the notion
of Support-decomposability, which is a fundamental property of Saito’s pure Hodge
modules [Sai88]. Exercise 3.2.6 is taken from [Sai89b, Prop. 3.7].




