
CHAPTER 2

HODGE THEORY: REVIEW OF CLASSICAL RESULTS

Summary. This chapter reviews classical results of Hodge theory. It introduces
the general notion of C-Hodge structure and various extensions of this notion:
polarized C-Hodge structure and mixed C-Hodge structure. These notions are
the model (on finite dimensional vector spaces) of the corresponding notions
on complex manifolds, called C-Hodge module, polarized C-Hodge module and
mixed C-Hodge module.

2.1. Introduction

The notion of (polarized) Hodge structure has emerged from the properties of the
cohomology of smooth complex projective varieties. In this chapter, as a prelude to
the theory of complex Hodge modules, we focus on the notion of (polarized) complex
Hodge structure. In doing so, we forget the integral structure in the cohomology of
a smooth complex projective variety, and even the rational structure and the real
structure.

We are then left with a very simple structure: a complex Hodge structure is noth-
ing but a finite-dimensional graded vector space, and a morphism between Hodge
structures is a graded morphism of degree zero between these vector spaces. Hodge
structures obviously form an abelian category.

A polarization is nothing but a positive definite Hermitian form on the underlying
vector space, which is compatible with the grading, that is, such that the decompo-
sition given by the grading is orthogonal with respect to the Hermitian form.

It is then clear that any Hodge substructure of a polarized Hodge structure is itself
polarized by the induced Hermitian form and, as such, is a direct summand of the
original polarized Hodge structure.

Why should the reader continue to read this chapter, since the main definitions
and properties have been given above?

The reason is that this description does not have a good behaviour when considering
holomorphic families of such object. Such families arise, for example, when considering
the cohomology of the smooth varieties occurring in a flat family of smooth complex
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projective varieties. It is known that the grading does not deform holomorphically.
Both the grading and the Hermitian form vary real-analytically, and this causes trou-
bles when applying arguments of complex algebraic geometry.

Instead of the grading, it is then suitable to consider the two natural filtrations
giving rise to this grading. One then varies holomorphically and the other one anti-
holomorphically. From this richer point of view, one can introduce the notion of
weight, which is fundamental in the theory, as it leads to the notion of mixed Hodge
structure.

Similarly, instead of the positive definite Hermitian form, one should consider the
Hermitian form which is (�1)p-definite on the p-th graded term in order to have an
object which varies in a locally constant way, as does the cohomology of the varieties.

This chapter moves around the notion of (polarized) complex Hodge structure by
shedding light on its different aspects. We will emphasize the point of view of “triples”,
which will be the one chosen here for the theory of (polarized) Hodge modules.

2.2. Hodge theory on compact Riemann surfaces

Let X be a compact Riemann surface of genus g > 0. Let us assume for simplicity
that it is connected. Then H0(X,Z) and H2(X,Z) are both isomorphic to Z (as X is
orientable). The only interesting cohomology group is H1(X,Z), isomorphic to Z2g.

The Poincaré duality induces a skew-symmetric non-degenerate bilinear form

h

•, •
i : H1(X,Z)⌦Z H1(X,Z) •

[

•
����! H2(X,Z)

R

[X]

����! Z.

One of the main analytic results of the theory asserts that the space H1(X,OX) is
finite dimensional and has dimension equal to the genus g (see e.g. [Rey89, Chap. IX]
for a direct approach). Then, Serre duality H1(X,OX)

⇠
�! H0(X,⌦1

X)_ also gives
dimH0(X,⌦1

X) = g. A dimension count implies then the Hodge decomposition

H1(X,C) ' H0,1(X)�H1,0(X), H0,1(X) = H1(X,OX), H1,0(X) = H0(X,⌦1

X).

If we regard Serre duality as the pairing

H1,0
⌦C H0,1 •

^

•
����! H1,1

R

��! C,

then Serre duality is equivalent to the complexified Poincaré duality pairing

h

•, •
iC : H1(X,C)⌦C H1(X,C) �! C,

as hH1,0, H1,0
i = 0 and hH0,1, H0,1

i = 0.
With respect to the real structure H1(X,C) = C ⌦R H1(X,R), H1,0 is conjugate

to H0,1, and using Serre duality (or Poincaré duality) we get a sesquilinear pairing

Q(1) : H1,0
⌦C H1,0

�! C.

Then, the Hodge-Riemann bilinear relations assert that h := ic is a positive definite
Hermitian form.
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2.3. Hodge theory of smooth projective varieties

Let X be a smooth complex projective variety of pure complex dimension n (i.e.,
each of its connected components has dimension n). It will be endowed with the usual
topology, which makes it a complex analytic manifold. Classical Hodge theory asserts
that each cohomology space Hk(X,C) decomposes as the direct sum

(2.3.1) Hk(X,C) =
L

p+q=k

Hp,q(X),

where Hp,q(X) stands for Hq(X,⌦p
X) or, equivalently, for the Dolbeault cohomology

space Hp,q
d00 (X). Although this result is classically proved by methods of analysis

(Hodge theory for the Laplace operator), it can be expressed in a purely algebraic
way, by means of the deRham complex.

The holomorphic de Rham complex is the complex of sheaves (⌦•
X , d), where d is

the differential, sending a k-form to a (k + 1)-form. Recall (holomorphic Poincaré
lemma) that (⌦•

X , d) is a resolution of the constant sheaf. Therefore, the cohomology
Hk(X,C) is canonically identified with the hypercohomology Hk

�

X, (⌦•
X , d)

�

of the
holomorphic de Rham complex.

Exercise 2.3.2 (Algebraic de Rham complex). Using the Zariski topology on X, we get
an algebraic variety denoted by Xalg. In the algebraic category, it is also possible to
define a deRham complex, called the algebraic deRham complex.

(1) Is the algebraic de Rham complex a resolution of the constant sheaf CXalg?
(2) Do we have H•(Xalg,C) = H

•�
Xalg, (⌦•

Xalg , d)
�

?

The deRham complex can be filtered in a natural way by sub-complexes (“filtration
bête” in [Del71b]).

Remark 2.3.3. In general, we denote by an upper index a decreasing filtration and by
a lower index an increasing filtration. Filtrations are indexed by Z unless otherwise
specified.

We define the “stupid” (increasing) filtration on OX by setting

FpOX =

(

OX if p > 0,

0 if p 6 �1.

Observe that, trivially, d(FpOX ⌦OX
⌦k

X) ⇢ Fp+1

OX ⌦OX
⌦k+1

X . Therefore, the
de Rham complex can be (decreasingly) filtered by

(2.3.4) F p(⌦
•
X , d) = {0 �! F�pOX

d
��! F�p+1

OX ⌦OX
⌦1

X
d

��! · · · }.

If p 6 0, F p(⌦•
X , d) = (⌦•

X , d), although if p > 1,

F p(⌦
•
X , d) = {0 �! · · · �! 0 �! ⌦p

X
p

�! · · · �! ⌦dimX
X �! 0}.
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Therefore, the p-th graded complex is 0 if p 6 �1 and, if p > 0, it is given by

grpF (⌦
•
X , d) = {0 �! · · · �! 0 �! ⌦p

X
p

�! 0 �! · · · �! 0}.

In other words, the graded complex grF (⌦
•
X , d) =

L

p gr
p
F (⌦

•
X , d) is the complex

(⌦•
X , 0) (i.e., the same terms as for the deRham complex, but with differential equal

to 0).
From general results on filtered complexes, the filtration of the de Rham complex in-

duces a (decreasing) filtration on the hypercohomology spaces (that is, on the de Rham
cohomology of X) and there is a spectral sequence starting from H

•�
X, grF (⌦

•
X , d)

�

and abutting to grFH
•(X,C). Let us note that H

•�
X, grF (⌦

•
X , d)

�

is nothing but
L

p,q H
q(X,⌦p

X).

Theorem 2.3.5. The spectral sequence of the filtered deRham complex on a smooth
projective variety degenerates at E

1

, that is,

H
•
(X,C) ' H

•
DR

(X,C) =
L

p,q
Hq(X,⌦p

X).

Remark 2.3.6. Although the classical proof uses Hodge theory for the Laplace operator
which is valid in the general case of compact Kähler manifolds, there is a purely
algebraic/arithmetic proof in the projective case, due to Deligne and Illusie [DI87].

For every k, Poincaré duality is the non-degenerate bilinear pairing

h

•, •
in�k : Hn�k(X,Z)⌦Z Hn+k(X,Z) •

[

•
����! H2n(X,Z)

R

[X]

����! Z.

It is (�1)n�k-symmetric. In particular (taking k = 0), h

•, •
in is a non-degenerate

(�1)n-symmetric bilinear form on Hn(X,C).
Then

(2.3.7) hHp0,n�p0
, Hp,n�p

i

0

= 0 if p+ p0 6= n.

We denote by h

•, •
i

0

this bilinear form made sesquilinear on the second variable:

h

•, •
i

0

: Hn(X,C)⌦Hn(X,C) �! C.

It is thus (�1)n-Hermitian. From (2.3.7) and the equality Hn�p,p = Hp,n�p one
deduces that the Hodge decomposition of Hn(X,C) is h

•, •
i

0

-orthogonal.

Notation 2.3.8. For every k 2 Z, we set "(k) = (�1)k(k�1)/2. We have

"(k+1) = "(�k) = (�1)k"(k), "(k+`) = (�1)k`"(k)"(`), "(n�k) = (�1)k"(n+k).

If we take complex coordinates z
1

, . . . , zn and set zj = xj + iyj , then

(dz
1

^ · · · ^ dzn) ^ (dz
1

^ · · · ^ dzn) = (�1)n(n�1)/2(2/i)ndx
1

^ dy
1

^ · · · ^ dxn ^ dyn.

This explains the presence of "(n� k) and of powers of i in the following formulas.
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Set now H =
L

k2Z H
n+k(X,C) and let Q : H ⌦C H ! C be the sesquilinear

form such that Q(Hn�k, Hn+`) = 0 if k 6= ` and, for every k, the restriction of Q to
Hn�k(X,C) ⌦C Hn+k(X,C) is equal to "(n � k)h•, •

in�k, i.e., the sesquilinear form
(conjugation on the second variable) associated to the C-bilinear form "(n�k)h•, •

in�k.

Exercise 2.3.9. Check that Q : H ⌦C H ! C is (�1)n-Hermitian.

In order to obtain positivity results, it is necessary to choose an isomorphism
between the vector spaces Hn�k(X,C) and Hn+k(X,C) (we know that they have the
same dimension, as Poincaré duality is non-degenerate). A class of good morphisms
is given by the Lefschetz operators that we define now.

Fix an ample line bundle L on X (for instance, any embedding of X in a projective
space defines a very ample bundle, by restricting the canonical line bundle O(1) of the
projective space to X). The first Chern class c

1

(L ) 2 H2(X,Z) defines a Lefschetz
operator

(2.3.10) LL := c
1

(L ) [ • : Hj(X,Z) �! Hj+2(X,Z).

(Note that wedging on the left or on the right amounts to the same, as c
1

has degree 2.)
The Hard Lefschetz theorem, usually proved together with the previous results of

Hodge theory, asserts that, for any smooth complex projective variety X, any ample
line bundle L , and any k > 1, the k-th power Lk

L : Hn�k(X,Q) ! Hn+k(X,Q)

is an isomorphism. (1) In such a case, one can choose as a Kähler form ! on X

a real (1, 1)-form whose cohomology class in H2(X,R) is c
1

(L ), and the Lefschetz
operator LL can be lifted as the operator on differential forms obtained by wedging
with !.

Since hu,LL vi = hLL u, vi (as LL is real), and since "(n� k+2) = �"(n� k), we
conclude that LL is an infinitesimal automorphism of Q, that is,

(2.3.11) Q(u,LL v) + Q(LL u, v) = 0.

Let us assume k > 0. If we fix such a Lefschetz operator, we can identify
Hn+k(X,C) with Hn�k(X,C) by means of Lk

L and get a sesquilinear form Q(n�k) on
Hn�k(X,C) by setting

(2.3.12) Q(n�k)(u, v) := Q(u,Lk
L v) = "(n� k)hu,Lk

L vin�k.

In such a way, one obtains a (�1)n�k-Hermitian non-degenerate bilinear form on
Hn�k(X,C) which satisfies, for every p, q and p0, q0 with p+ q = p0 + q0 = n� k:

Q(n�k)(Hp,q, Hp0,q0) = 0 if p+ p0 6= n� k.

Let C be the Weil operator, which is the multiplication by ip�q on Hp,q. Then

(2.3.13) h(u, v) := Q(n�k)(Cu, v) = Q(Cu,Lk
L v)

1. It is known that the same statement is not true in general if one replaces the coefficients Q
with Z.
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is a Hermitian form on Hn�p(X,C). Let us note however that this Hermitian form
is possibly not positive definite in general. Let us set Pn�k(X,Q) := Ker Lk+1

L :

Hn�k(X,Q) ! Hn+k+2(X,Q): this is the primitive part of Hn�k(X,Q) with respect
to LL . One notes that the Lefschetz operator has type (1, 1) with respect to the Hodge
decomposition since it can be realized at the level of C1 forms by wedging with a
C1 form of type (1, 1) representing c

1

(L ), hence sends Hp,q to Hp+1,q+1. Therefore,
for every k > 0, Lk

L induces and isomorphism Hp,q ⇠
�! Hp+k,q+k for every p, q

with p + q = n � k. As a consequence, the primitive part can be decomposed as
Pn�k(X,C) =

L

p+q=n�k P
p,q, with

Pp,q := Ker
⇥

Lk+1

L : Hp,q
! Hp+k+1,q+k+1

⇤

.

The positivity result is now stated as follows.
The restriction of the Hermitian form (2.3.13) to Pn�k(X,C) is positive definite.

For example, when k = 0, we get positivity on Ker[LL : Hp,n�p
! Hp+1,n�p+1]. In

the case of curves (n = 1), such a restriction is empty as, whatever the choice of L
is, we have LL = 0 on H1(X,C) (as it takes values in H3 = 0).

2.4. Polarizable C-Hodge structures

The previous properties of the cohomology of a projective variety can be put in an
axiomatic form. This will happen to be useful as a first step to Hodge modules. We
will not emphasize the rational, or even the real, aspect of this theory, and concentrate
on the complex aspect only. We will make use the properties of filtered objects recalled
in Appendix A.2.

2.4.a. C-Hodge structures. This is, in some sense, a category looking like that
of finite dimensional complex vector spaces. In particular, it is abelian, that is, the
kernel and cokernel of a morphism exist in this category. This category is very useful
as an intermediate category for building that of mixed Hodge structures, but the
main results in Hodge theory use a supplementary property, namely the existence of
a polarization (see Section 2.4.b). Let us start with the opposedness property.

Definition 2.4.1 (Opposite filtrations). Let us fix w 2 Z. Given two decreasing filtra-
tions F 0•H, F 00•H of a vector space H by vector subspaces, we say that the filtrations
F 0•H and F 00•H are w-opposite if

(

F 0pH \ F 00w�p+1H = 0

F 0pH + F 00w�p+1H = H
for every p 2 Z,

i.e., F 0pH � F 00w�p+1H
⇠
�! H for every p 2 Z.

Definition 2.4.2 (C-Hodge structure). A C-Hodge structure of weight w 2 Z

H = (H, F 0•H, F 00•H)
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consists of a complex vector space H equipped with two decreasing filtrations F 0•H

and F 00•H which are w-opposite. A morphism between C-Hodge structures is a linear
morphism between the underlying vector spaces compatible with both filtrations.
We denote by HS(C) the category of C-Hodge structures of some weight w and by
HS(C, w) the full category whose objects have weight w.

Exercise 2.4.3 (The category HS(C, w) is abelian).
(1) Given two decreasing filtrations F 0•H, F 00•H of a vector space H by vector

subspaces, show that the following properties are equivalent:
(a) the filtrations F 0•H and F 00•H are w-opposite;
(b) setting Hp,w�p = F 0pH \ F 00w�pH, then H =

L

p H
p,w�p.

(2) (Strictness of morphisms) Show that a morphism ' : H
1

! H
2

between objects
of HS(C, w) preserves the decomposition (1b) as well. Conclude that it is strictly
compatible with both filtrations, that is, '(F •H

1

) = '(H
1

) \ F •H
2

(with F = F 0

or F = F 00). Deduce that, if H 0 is a sub-object of H in HS(C, w), i.e., there is a
morphism H 0

! H in HS(C, w) whose induced morphism H0
! H is injective, then

F •H0 = H0
\ F •H for F = F 0 and F = F 00, and H0p,q = H0

\Hp,q.
(3) (Abelianity) Conclude that the category HS(C, w) is abelian.

Let us emphasize this statement.

Proposition 2.4.4. The category HS(C, w) of complex Hodge structures of weight w is
abelian, and any morphism is strictly compatible with both filtrations and with the
decomposition.

Proposition 2.4.5 (Morphisms in HS(C)).
(1) Let ' : H 0

! H be a morphism between objects of HS(C, w) such that the in-
duced morphism H0

! H is injective. Then F •H0 = '�1F •H and ' is a monomor-
phism in HS(C, w). If moreover the induced morphism H0

! H is an isomorphism,
then ' is an isomorphism in HS(C, w).

(2) There is no non-zero morphism ' : H
1

! H
2

in HS(C) if w
1

> w
2

.

Proof.
(1) The first point is immediate since ' is graded of degree zero with respect to

the Hodge grading.
(2) The image of Hp,w1�p

1

is contained in F 0pH
2

\ F 00w1�pH
2

, hence in F 0pH
2

\

F 00w2+1�pH
2

since w
1

> w
2

, and the latter space is zero by Definition 2.4.1.

Exercise 2.4.6 (Non-abelianity). Is the category HS(C) abelian? [Hint : consider a
linear morphism H

1,0
1

� H
0,1
1

! H
2,0
2

� H
1,1
2

� H
0,2
2

sending H
1,0
1

into H
2,0
2

� H
1,1
2

and H
0,1
1

into H
1,1
2

�H
0,2
2

, and check when it is strict.]

Remark 2.4.7 (A geometric interpretation of a bi-filtered vector space)
Introduce a new variable z and consider, in the free C[z, z�1]-module H :=
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C[z, z�1]⌦CH, the object F 0 :=
L

p F
0pHz�p; show that F 0 is a free C[z]-submodule

of H which generates H , that is, H = C[z, z�1]⌦C[z] F 0. Similarly, denote by F 00

the object
L

q F
00qHzq; show that F 00 is a free C[z�1]-submodule of H which gen-

erates H , that is, H = C[z, z�1]⌦C[z�1
]

F 00. Using the gluing

C[z, z�1]⌦C[z] F 0 ⇠ //

⇠

✏✏

H C[z, z�1]⌦C[z�1
]

F 00⇠oo

the pair (F 0,F 00) defines an algebraic vector bundle F on P1 of rank dimH. Show
that the properties 2.4.3(1a) and (1b) are also equivalent to

(c) The vector bundle F is isomorphic to OP1(w)dimH.

Exercise 2.4.8.

(1) (Another proof of 2.4.5(2)) Show that a morphism in HS(C) induces a mor-
phism between the associated vector bundles on P1 (see Remark 2.4.7). Conclude
that there is no non-zero morphism if w

1

> w
2

. [Hint : use standard properties of
vector bundles on P1.]

(2) Let H
1

and H
2

be objects of HS(C, w), let F
1

,F
2

be the associated OP1 -mod-
ules (see Remark (2.4.7)) and let H be a bi-filtered vector space whose associated
OP1 -module F is an extension of F

1

,F
2

in the category of OP1 -modules. Show that H
is an object of HS(C, w). [Hint : use standard properties of vector bundles on P1.]

Exercise 2.4.9 (Operations on filtrations and opposedness).
(1) (Exchange of filtrations) Set Exch(F 0•H, F 00•H) := (F 00•H, F 0•H). Show that,

if (F 0•H, F 00•H) are w-opposite, then so are Exch(F 0•H, F 00•H).
(2) (Tensor product) If one defines the filtration on the tensor product as

F p(H
1

⌦H
2

) =
X

p1+p2=p

F p1H
1

⌦ F p2H
2

,

then, if (F 0•H
1

, F 00•H
1

) are w
1

-opposite and (F 0•H
2

, F 00•H
2

) are w
2

-opposite, show
that (F 0•(H

1

⌦H
2

), F 00•(H
1

⌦H
2

)) are (w
1

+ w
2

)-opposite.
(3) (Hom) If one defines the filtration on the space of linear morphisms as

F p Hom(H
1

,H
2

) = {f 2 Hom(H
1

,H
2

) | 8 k 2 Z, f(F kH
1

) ⇢ F p+kH
2

},

show that, with the assumption of (1), (F 0• Hom(H
1

,H
2

), F 00• Hom(H
1

,H
2

)) are
(w

2

� w
1

)-opposite.
(4) (Dual) Equip the vector space C with the trivial filtrations F 00 = F 000 = C and

F 01 = F 001 = 0. They are 0-opposite. Conclude that the dual space H_ is naturally
equipped with a pair of (�w)-opposite filtrations, defined by

F 0pH_ = (F 0�p+1H)?, F 00pH_ = (F 00�p+1H)?,

and we have
grpF 0H

_
'

�

gr�p
F 0 H

�_
, grpF 00H

_
'

�

gr�p
F 00H

�_
.



2.4. POLARIZABLE C-HODGE STRUCTURES 15

(5) (Conjugation) Let H be the complex conjugate of H. Consider the bi-filtered
vector space H:

(2.4.9 ⇤) H := (H, F 00•H, F 0•H).

Show that H 2 HS(C, w) and Hp,w�p = Hw�p,p.
(6) (Adjunction) Define the adjoint Hodge structure H⇤ as the conjugate dual

Hodge structure H_. Deduce that it is an object of HS(C,�w).

Remark 2.4.10 (Tate twist). Given a C-Hodge structure H of weight w and integers
k, `, we set H(k, `) := (H, F [k]0•H, F [`]00•H). Then H(k, `) is a C-Hodge structure
of weight w � k � `. This leads to an equivalence between the category HS(C, w)
with HS(C, w � k � `) (morphisms are unchanged). Let us note in particular that
H⇤(k, `) = H(�k,�`)⇤.

Notation 2.4.11 (for the symmetric Tate twist). In various formulas, a symmetric Tate
twist (k, k) occurs, corresponding to the Tate twist (k) in Q-Hodge theory. In order to
keep this analogy clear, we will keep the notation (k) instead of (k, k). In particular,
H⇤(k) = H(�k)⇤.

Remark 2.4.12 (An ambient abelian category). In order to regard all categories
HS(C, w) (w 2 Z) as full subcategories of a single abelian category, one has to modify
a little the presentation of HS(C, w). The starting point is that the category of
filtered vector spaces and filtered morphisms is not abelian, and one can use the
Rees trick already used in Remark (2.4.7) (see Definition A.2.3) to replace it with an
abelian category.

A finite dimensional C-vector space H with an exhaustive filtration F •H defines a
free graded C[z]-module H of finite rank by the formula H =

L

p F
pHz�p (the term

F pHz�p is in degree p). On the other hand, the category Mod
gr ft

(C[z]) of graded
C[z]-modules of finite type (whose morphisms are graded of degree zero) is abelian,
but not all its objects are free. The free modules in this category are also called strict
objects. Strict objects are in one-two-one correspondence with filtered vector spaces:
from a strict object H one recovers the vector space H := H /(z � 1)H , and the
grading H =

L

H p induces a filtration F pH := H p/H p
\ (z � 1)H .

Similarly, we say that a morphism in this category is strict if its kernel and cokernel
are strict. A morphism between strict objects corresponds to a filtered morphism
between the corresponding filtered vector spaces. A morphism between strict objects
is strict if and only if its cokernel is strict.

To a bi-filtered vector space (H, F 0•H, F 00•H) we associate the following pair of
filtered vector spaces:

• (H0, F •H0) := (H, F 0•H),
• (H00, F •H00) := (H, F 00•H).

We thus have an isomorphism � : H0 ⇠
�! H00 (the identity). We associate to

(H, F 0•H, F 00•H) the object (H 0,H 00, �). In such a way, we embed the (nonabelian)
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category of bi-filtered vector spaces (and morphisms compatible with both filtrations)
as a full subcategory of the category of triples (H 0,H 00, �) consisting of two graded
C[z]-modules H 0,H 00 and an isomorphism � : H0 ⇠

�! H00. Morphisms are pairs of
graded morphisms ('0,'00) of degree zero whose restriction to z = 1 are compatible
with �. One recovers a bi-filtered vector space if H 0,H 00 are strict (i.e., C[z]-flat,
see Exercise A.2.5) by setting H = H0, by getting the filtrations F •H0, F •H00 from
H 0,H 00, and by transporting them to H by the isomorphisms Id and ��1.

Remark 2.4.13 (Complex Hodge structures and representations of S1)
A C-Hodge structure of weight 0 on a complex vector space H is nothing but

a grading of this space indexed by Z, and a morphism between such Hodge struc-
tures is nothing but a graded morphism of degree zero. Indeed, in weight 0, the
summand Hp,�p can simply be written Hp. This grading defines a continuous repre-
sentation ⇢ : S1

! Aut(H) by setting ⇢(�)|Hp = �p IdHp .
Conversely, any continuous representation ⇢ : S1

! Aut(H) is of this form. This
can be seen as follows. Since S1 is compact, one can construct a Hermitian metric
on H which is invariant by any ⇢(�). It follows that each ⇢(�) is semi-simple and there
is a common eigen-decomposition of H. The eigenvalues are continuous characters
on S1. Any such character � takes the form �(�) = �p (note first that |�| = 1

since |�(S1)| is compact in R⇤
+

and, if |�(�o)| 6= 1, then |�(�k
o)| = |�(�o)|

k tends to 0

or 1 if k ! 1; therefore, � is a continuous group homomorphism S1

! S1, and the
assertion is standard).

Recall (Schur’s lemma) that the center of Aut(H) is C⇤ Id. We claim that a con-
tinuous representation e⇢ : S1

! Aut(H)/C⇤ Id determines a C-Hodge structure of
weight 0, up to a shift by an integer of the indices. In other words, one can lift e⇢ to
a representation ⇢. We first note that the morphism

R⇤
+

⇥Ker |det| �! Aut(H)

(c, T ) 7�! c1/d T (d = dimH)

is an isomorphism. It follows that Ker |det| ! Aut(H)/R⇤
+

Id is an isomorphism.
Similarly, Ker |det|/S1 Id ' Aut(H)/C⇤ Id. It follows that any continuous representa-
tion e⇢ lifts as a continuous representation b⇢ : S1

! Aut(H)/S1 Id. Given a Hermitian
metric h and [T ] 2 Aut(H)/S1 Id, then h(Tu, Tv) does not depend on the lift T of [T ]
in Aut(H), and one can thus construct a b⇢-invariant metric on H. The eigenspace
decomposition is well-defined, although the eigenvalues of b⇢(�) are defined up to a
multiplicative constant. One can fix the constant to one of some eigenspace, and ar-
gue as above for the other eigenspaces. The lift is not unique, and the indeterminacy
produces a shift in the filtration.

Example 2.4.14.

(1) Let X be a smooth complex projective variety. Then Hk(X,C) defines
a C-Hodge structure of weight k by setting F 0pHk(X,C) = F pHk(X,C) and
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F 00qHk(X,C) = F qHk(X,C) and by using the isomorphism Hk(X,C) ' Hk(X,C)
coming from the real structure Hk(X,C) ' C⌦R Hk(X,R).

(2) Let f : X ! Y be a morphism between smooth projective varieties. Then the
induced morphism f⇤ : Hk(Y,C) ! Hk(X,C) is a morphism of Hodge structures of
weight k.

Exercise 2.4.15 (The Hodge polynomial). Let H be a Hodge structure of weight w

with Hodge decomposition H =
L

p+q=w Hp,q. The Hodge polynomial Ph(H) 2

Z[u, v, u�1, v�1] is the two-variable Laurent polynomial defined as
P

p,q2Z h
p,qupvq

with hp,q = dimHp,q. This is a homogeneous Laurent polynomial of degree w. Show
the following formulas:

Ph(H1

⌦H
2

)(u, v) = Ph(H1

)(u, v) · Ph(H2

)(u, v),

Ph(Hom(H
1

, H
2

))(u, v) = Ph(H1

)(u�1, v�1) · Ph(H2

)(u, v),

Ph(H
_)(u, v) = Ph(H)(u�1, v�1),

Ph(H(k))(u, v) = Ph(H)(u, v) · (uv)�k.

2.4.b. Polarized/polarizable C-Hodge structures. In the same way Hodge
structures look like complex vector spaces, polarized C-Hodge structures look like
vector spaces equipped with a positive definite Hermitian form. Any such object
can be decomposed into an orthogonal direct sum of irreducible objects, which have
dimension one (this follows from the classification of positive definite Hermitian
forms). We will see that this remains true for polarized C-Hodge structures (but this
does not remain true, fortunately, in higher dimensions). From a categorical point of
view, i.e., when considering morphisms between objects, it will be convenient not to
restrict to morphisms compatible with polarizations (see Remark 2.4.21).

Definition 2.4.16 (Polarization of a C-Hodge structure, first definition)
Given a Hodge structure H of weight w, regarded as a grading H =

L

p H
p,w�p of

the finite-dimensional C-vector space H, a polarization is a positive definite Hermitian
form h on H such that the grading is h-orthogonal (so h induces a positive definite
Hermitian form on each Hp,w�p).

Although this definition is natural and quite simple, it does not extend “flatly” in
higher dimension, and this leads to emphasize the polarization Q below, which is also
the right object to consider when working with Q-Hodge structures.

Definition 2.4.17 (Polarization of a C-Hodge structure, second definition)
Let H = (H, F 0•H, F 00•H) be a C-Hodge structure of weight w. A polarization

of H is a C-bilinear pairing Q : H ⌦C H ! C (i.e., a sesquilinear pairing on H)
satisfying

(1) Q is (�1)w-Hermitian, i.e., Q⇤(y, x) := Q(x, y) = (�1)wQ(y, x) for all x, y 2 H,
(2) Q(F 0pH, F 00qH) = 0 and Q(F 00pH, F 0qH) = 0 for p+ q > w,
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(3) the pairing h(x, y) = Q(Cx, y) on H is (Hermitian) positive definite. (Recall
that C : H ! H is equal to ip�q on Hp,q.)

Remarks 2.4.18 (Polarized C-Hodge structures). Let H be a C-Hodge structure of
weight w with polarization Q.

(1) The conditions imply that the pairing Q : H ⌦C H ! C is non-degenerate.
(2) It follows from 2.4.17(2) and (3) that the decomposition H =

L

p H
p,w�p is

Q-orthogonal and h-orthogonal, so a polarization in the sense of the second definition
gives rise to a polarization in the sense of the first one. Conversely, from h as in the
first definition one defines Q by Q(x, y) = h(C�1x, y) and, the decomposition being
Q-orthogonal, one recovers a polarization in the sense of the second definition.

Note also that the second part of Condition 2.4.17(2) follows from the first one and
2.4.17(1). On the other hand, Condition 2.4.17(1) can be deduced from (2) and (3).

(3) Let us equip C with the trivial Hodge structure of weight 0 by setting F 0pC =

F 00pC = C if p 6 0 and F 0pC = F 00pC = 0 for p > 1, that we simply denote by C.
We can then considered its twist C(�w) as in Notation 2.4.11, which is a C-Hodge
structure of weight 2w. Condition 2.4.17(2) can simply be expressed by saying that

Q : H ⌦H �! C(�w)

is a morphism in HS(C). Note here that H is defined by (2.4.9 ⇤), so that the left-hand
term has weight 2w, according to Exercise 2.4.9(2), and Q is in fact a morphism in
HS(C, 2w).

(4) Let H⇤ denote the adjoint complex Hodge structure (Exercise 2.4.9(6)). Con-
dition 2.4.17(2) simply says that Q is a morphism H ! H⇤(�w). Its adjoint mor-
phism Q⇤ is a morphism H(w) ! H⇤, that we can also regard as a morphism
H ! H⇤(�w). Condition 2.4.17(1) can then be expressed by saying that Q is
(�1)w-Hermitian as such, that is, Q⇤ = (�1)wQ.

(5) It is usual, when considering Q- or R-Hodge structures, for which the Tate
twist (�w) also replaces the standard Q-structure on C by (2⇡i)�wQ, to replace Q

with S := (2⇡i)�wQ. In our complex setting, replacing Q with S does not bring new
information.

(6) If Q is a polarization of H, then (�1)wQ is a polarization of ExchH

(see 2.4.9(1)) since when we exchange filtrations, Hp,q is transformed into Hq,p.
(7) Similarly, defining the form Q : H⌦C H ! C by Q(x, y) = Q(y, x), one checks

that (�1)wQ a polarization of H, as defined by (2.4.9 ⇤). As a consequence, Q is a
polarization of ExchH.

Exercise 2.4.19 (Polarization and Tate twist). Show that, if (H,Q) is a polarized Hodge
structure of weight w, then (H(k, `), ik�`Q) is a polarized Hodge structure of weight
w � k � `.

Remark 2.4.20 (Simplified data for a polarized Hodge structure)
The definition of a polarized Hodge structure as a pair (H,Q) contains some
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redundancy. However, it has the advantage of exhibiting the underlying Hodge struc-
ture. We give a simplified presentation, which only needs one filtration, together with
the sesquilinear form Q.

A polarized Hodge structure of weight w can be described as the data of
(i) a filtered vector space (H, F •H),
(ii) a sesquilinear pairing Q : H ⌦C H ! C, i.e., a morphism Q : H ! H⇤,
subject to the following conditions:
(1) Q is (�1)w-Hermitian non-degenerate, i.e., induces an isomorphism H

⇠
�! H⇤

satisfying Q⇤ = (�1)wQ,
(2) if F •H⇤ is the filtration on the adjoint space H⇤ naturally defined by F •H, then

F •H is 0-opposite to the filtration Q�1(F •H⇤) (which corresponds thus to F 00[w]•H),
(3) the positivity condition 2.4.17(3) holds.
Note that (2) means that the filtration F 00•H defined by

F 00w�p+1H = F pH?Q

is w-opposite to F pH, and the corresponding decomposition is Q-orthogonal.

Remark 2.4.21 (Category of polarizable C-Hodge structures)
A C-Hodge structure may be polarized by many polarizations. At many places,

we do not want to make a choice of a polarization, and it is enough to know that there
exists one. Nevertheless, any C-Hodge structure admits at least one polarization, as
is obvious from Definition 2.4.16. Notice that this property will not remain true in
higher dimension and this will lead us to distinguish the full subcategory of polarizable
(instead of polarized) objects (see Definition 4.1.7). This not needed here.

The notion of polarizable Hodge structure is interesting in the case of Q-Hodge
structures, when one insists that the polarization Q is defined over Q, as in the
geometric setting of §2.3. Such a polarization does not necessarily exists.

Recall that the category HS(C) is endowed with tensor product, Hom, duality and
conjugation. If we are moreover given a polarization of the source terms of these oper-
ations, we naturally obtain a polarization on the resulting C-Hodge structure. For ex-
ample, if H = H

1

⌦H
2

, then Hp,w�p =
L

p1+p2=p H
p1,w1�p1

1

⌦H
p2,w2�p2

2

and the posi-
tive definite Hermitian forms h

1

, h
2

induce such a form h on each H
p1,w�p1

1

⌦H
p2,w�p2

2

,
and thus on Hp,w�p by imposing that the above decomposition is h-orthogonal.

As a consequence, the category of polarizable Q-Hodge structures (that we did not
need to define precisely) is also endowed with such operations.

Exercise 2.4.22 (Polarization on C-Hodge sub-structures). Let Q be a polarization (Def-
inition 2.4.17) of a C-Hodge structure H of weight w. Let H

1

be a C-Hodge sub-
structure of weight w of H (see Proposition 2.4.5(1)).

(1) Show that the restriction Q
1

of Q to H
1

is a polarization of H
1

. [Hint : use that
the restriction of a positive definite Hermitian form to a subspace remains positive
definite.]
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(2) Deduce that (H
1

,Q
1

) is a direct summand of (H,Q) in the category of polarized
C-Hodge structures of weight w. [Hint : define H

2

to be H?
1

, where the orthogonal
is taken with respect to Q; use (1) to show that (H,Q) = (H

1

,Q
1

)� (H
2

,Q
2

); show
similarly that H

p,w�p
2

:= H
2

\Hp,w�p = H
p,w�p,?
1

for every p and conclude that H
2

is a C-Hodge structure of weight w, which is polarized by Q
2

.]

Exercise 2.4.23 (Simple and semi-simple C-Hodge structures)
Show the following:

(1) A C-Hodge structure H of weight w is simple (i.e., does not admit any nontrivial
C-Hodge sub-structure) if and only if dimC H = 1.

(2) Any C-Hodge structure is semi-simple as such.

2.4.c. The category of triples. We will introduce another language for dealing
with polarized complex Hodge structures. This is similar to the presentation given
in Remark 2.4.12, but compared with it, we replace H00 with its dual H00_. This
approach will be useful in higher dimensions.

Definition 2.4.24 (Triples). The category Triples is the category whose objects T =

(H 0,H 00, c) consist of a pair of C[z]-modules of finite type H 0,H 00 and a sesquilinear
pairing c : H0

⌦H00
! C between the associated vector spaces, and whose morphisms

' : T
1

! T
2

are pairs ('0,'00) of morphisms (graded of degree zero)

(2.4.24 ⇤) '0 : H 0
1

�! H 0
2

, '00 : H 00
2

�! H 00
1

such that, for every v0
1

2 H0
1

and v00
2

2 H00
2

, denoting by ['0], ['00] the morphisms
induced by '0,'00 on H0,H00, we have

(2.4.24 ⇤⇤) c
1

(v0
1

, ['00](v00
2

)) = c
2

(['0](v0
1

), v00
2

).

Remarks 2.4.25 (Operations on the category Triples).
(1) The category of triples is abelian, the “prime” part is covariant, while the

“double-prime” part is contravariant. For example, the triple Ker' is the triple
(Ker'0,Coker'00, c'

1

), where c'
1

is the pairing between Ker'0 and Coker'00 induced
by c

1

, which is well-defined because of (2.4.24 ⇤⇤). Similarly, we have Coker' =

(Coker'0,Ker'00, c'
2

), Im' = (Im'0,H 00
2

/Ker'00, c'
2

).
(2) An increasing filtration W•T of a triple T consists of increasing filtrations

W•H 0,W•H 00 such that c(W`H
0,W�`�1

H00) = 0 for every `. Then c induces a pairing
c` : W`H

0
⌦ H00/W�`�1

H00
! C. We set W`T = (W`H 0,H 00/W�`�1

H 00, c`). We
have grW` T = (grW` H 0, grW�`H

00, c`).
(3) We say that a triple is strict if H 0,H 00 are strict. Strict triples are in one-

two-one correspondence with filtered triples T = (F •H0, F •H00, c). We say that a
morphism ' : T

1

! T
2

is strict if its components '0,'00 are strict. Strict morphisms
between strict triples are in one-to-one correspondence with strict morphisms between
filtered triples.
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(4) The difference between the construction made in Remark 2.4.12 is that the
“double prime” part is now contravariant, and the isomorphism � is replaced with a
pairing. This gives more flexibility since the pairing is not assumed non-degenerate
a priori. We say that a triple T is non-degenerate if c is so. If T = (H 0,H 00, c)
is strict and non-degenerate, one can associate a triple like in Remark 2.4.12 by
replacing (H00, F •H00) defined from H 00 with (H00⇤, F •H00⇤) and by defining � as the
isomorphism H0

! H00⇤ obtained from c.
(5) Let (T ,W•T ) be a W -filtered triple as in (2). Assume that T and all grW` T

are strict, i.e., all inclusions W`T ,! W`+1

T are strict morphisms. Then grW` H 0 is
the Rees object attached with the filtered vector space

F pgrW` H0 :=
F pH0

\W`H
0

F pH00
\W`�1

H0 ,

and a similar equality for grW�`H
0.

(6) The adjoint of a triple T = (H 0,H 00, c) is the triple T ⇤ := (H 00,H 0, c⇤),
where c⇤ is defined by

c⇤(v00, v0) := c(v0, v00).

We have T ⇤⇤=T . If '=('0,'00) : T
1

!T
2

is a morphism, its adjoint '⇤ : T ⇤
2

!T ⇤
1

is the morphism ('00,'0).
The adjoint of a strict triple T is also strict, and T ⇤ corresponds to the filtered

triple T ⇤ := (F •H00, F •H0, c⇤).
(7) Given a pair of integers (k, `), the twist T (k, `) is defined by

T (k, `) := (zkH 0, z�`H 00, c).

We have (T (k, `))⇤ = T ⇤(�`,�k). If ' : T
1

! T
2

is a morphism, then it is also a
morphism T

1

(k, `) ! T
2

(k, `).
If T is strict with associated filtered triple T , the twisted object T (k, `) is also

strict and its associated filtered triple is

T (k, `) := (F [k]
•
H0, F [�`]

•
H00, c).

This is compatible with the Tate twist as defined in Remark 2.4.10, by means of the
equivalence of Lemma 2.4.30 below. (Recall that F [k]p := F p+k.)

Notation 2.4.26. As in Notation 2.4.11, we simply use the notation (w) for the sym-
metric Tate twist (w,w).

Definition 2.4.27 (w-opposedness condition). Let T be a filtered triple and let w 2 Z.
The filtration F •H00 naturally induces a filtration F •H00⇤ on the adjoint space
H00⇤ = H00_. We say that T satisfies the w-opposedness condition if c is non-
degenerate and if the filtration F •H0 is w-opposite to the filtration obtained from
F •H00⇤ by means of the isomorphism H0 ⇠

�! H00⇤ induced by c.
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Definition 2.4.28 (C-Hodge triples). The category of C-Hodge triples of weight w 2 Z
is the full subcategory of triples (i.e., morphisms are described by (2.4.24 ⇤) and sat-
isfying (2.4.24 ⇤⇤)) whose objects are strict and satisfy the w-opposedness condition.

Remark 2.4.29 (Adjunction and Tate twist). The category of C-Hodge triples of
weight w is left invariant by the adjunction functor 2.4.25(6) and, for a C-Hodge
triple H of weight w, the Tate twisted triple H(k, `) is a C-Hodge triple H of weight
w � (k + `).

Any C-Hodge triple of weight w is isomorphic to a C-Hodge triple of weight w

obtained from a C-Hodge structure of weight w as in the preliminary remark. Both
categories are in fact equivalent, and so this new category is also abelian. It is also
stable by direct summand in the category of triples.

Lemma 2.4.30. The correspondence

H = (H, F 0•H, F 00•H) 7�! T =
�

(H0, F
•
H0), (H00, F

•
H00), c

�

,

obtained by setting

(H0, F
•
H0) := (H, F 0•H), (H00, F

•
H00) := (H⇤, F 00•H⇤), c := h

•, •
i : H ⌦H_

! C
(recall that F 00•H⇤ is obtained by duality from F 00•H) is an equivalence between
HS(C, w) and the category of C-Hodge triples of weight w.

From now on, we will not distinguish between C-Hodge structures of weight w and
C-Hodge triples of weight w, and we will often write H instead of T .

Lemma 2.4.31. Assume we have a decomposition T = T
1

� T
2

of triples. If T is
C-Hodge of weight w, so are T

1

and T
2

.

Proof. Firstly, T
1

and T
2

must be strict, hence correspond to filtered triples T
1

, T
2

.
The non-degeneracy of c

1

and c
2

is also clear. Lastly, we use the interpretation
2.4.7(c) of w-opposedness and the standard property that, if a vector bundle on P1

is isomorphic to OP1(w)d, then any direct summand is isomorphic to a power of
OP1(w).

Exercise 2.4.32 (Stability by extension). Let 0 ! T
1

! T ! T
2

! 0 be a short exact
sequence of triples. Show that, if T

1

,T
2

are C-Hodge triples of weight w, then so is T .
[Hint : by using the interpretation 2.4.7(c) of w-opposedness, reduce the question to
showing that, if a locally free OP1 -module is an extension of two trivial bundles Od1

P1

and Od2

P1 , then it is itself a trivial bundle.]

Definition 2.4.33 (Pre-polarization of weight w of a triple). A pre-polarization of
weight w of a triple T is an isomorphism

Q = (Q0,Q00) : T
⇠
�! T ⇤(�w)

which is (�1)w-Hermitian, in the sense that its adjoint

Q⇤ = (Q00,Q0) : (T ⇤(�w))⇤ = T (w) �! T ⇤,
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which defines a morphism denoted in the same way Q⇤ : T ! T ⇤(�w), satisfies

Q⇤ = (�1)wQ, i.e., Q00 = (�1)wQ0 =: Q.

Let T be a C-Hodge triple of weight w and let Q = ((�1)wQ,Q) be a pre-
polarization of T of weight w. It defines an isomorphism of filtered vector spaces

(2.4.34) Q : (H0, F
•
H0) �! (H00, F

•
H00)(�w)

which is compatible with c and c⇤: this means that, for every pair v0
1

, v0
2

2 H0, we
have

(2.4.35) c(v0
1

,Qv0
2

) = (�1)wc⇤(Qv0
1

, v0
2

) =: (�1)wc(v0
2

),Qv0
1

),

which is equivalent to the property that the pairing

(2.4.36) Q(•, •) := c(•,Q•) : H0
⌦H0

�! C

is (�1)w-Hermitian in the usual sense.

Definition 2.4.37 (Polarization of a C-Hodge triple). Let T be a C-Hodge triple of
weight w. A polarization of T is a pre-polarization Q of weight w of the underlying
triple such that ((H0, F •H0),Q), with Q defined by (2.4.36), is a polarized C-Hodge
structure of weight w in the sense of Remark 2.4.20.

The relation with polarized C-Hodge structures can now be expressed in a simpler
way.

Proposition 2.4.38. Let T = (H 0,H 00, c) be an object of Triples. It is a polarizable
C-Hodge triple of weight w if and only if it is isomorphic (in Triples) to the object
(H 0,H 0(w), c0) for some suitable c0, such that H 0 is strict and the corresponding
((H0, F •H0), c0) is a polarized C-Hodge structure of weight w as in Remark 2.4.20.

Proof. In one direction, let Q be a polarization of T . Then (Id,Q) is an isomor-
phism T

⇠
�! (H 0,H 0(w), c0) with c0(•, •) = c(•,Q•), according to (2.4.24 ⇤⇤), and

by definition, H 0 is strict and the corresponding filtered vector space (H0, F •H0) is
such that ((H0, F •H0), c0) is a polarized C-Hodge structure of weight w. Conversely,
given a polarized C-Hodge structure ((H0, F •H0),Q) of weight w, one checks that
((H0, F •H0), (H0, F [w]•H0),Q) is a C-Hodge triple of weight w and that ((�1)w Id, Id)

is a polarization of it. If

' = ('0,'00) : T
⇠
�! ((H0, F

•
H0), (H0, F [w]

•
H0),Q)

is an isomorphism in Triples, then T is a C-Hodge triple and, setting Q := '00�1'0,
Q := ((�1)wQ,Q) is a polarization of T .
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2.5. Mixed Hodge structures

Our aim is to apply the construction of Section A.2.c with the categories
Aj = HS(C, j). The first question is to find a suitable abelian category A. The
category HS(C) of Hodge structures of arbitrary weight is not suitable, since it is not
abelian (see Exercise 2.4.6). Instead, we will use the category Triples of Definition
2.4.24, and we will regard an object of HS(C, j) as a C-Hodge triple of weight j.

Lemma 2.5.1. For every j 2 Z, the category HS(C, j) is a full subcategory of Triples

which satisfies the following properties.
(1) HS(C, j) is stable by Ker and Coker in Triples.
(2) For every j > k, Hom

Triples

(HS(C, j),HS(C, k)) = 0.

Proof. The first point follows from the abelianity of the full subcategory HS(C, j) of
triples, and the second one is Proposition 2.4.5(2).

We will denote by HS•(C) the data
�

Triples,HS(C, j)j2Z
�

.

Definition 2.5.2 (Mixed Hodge structures). The category MHS(C) is the category
WHS•(C).

Corollary 2.5.3 (of Proposition A.2.10). The category MHS(C) is abelian, and mor-
phisms are strictly compatible with W•.

Remark 2.5.4. Let us make explicit the notion of mixed Hodge structure.
(1) A mixed C-Hodge structure consists of

(a) a finite dimensional C-vector space H equipped with an exhaustive in-
creasing filtration W•H indexed by Z,

(b) decreasing filtrations F •H (F = F 0 or F 00),
such that each quotient space grW` H := W`H/W`�1

H, when equipped with the in-
duced filtrations

F pgrW` H :=
F pHC \W`H

F pHC \W`�1

H

is a C-Hodge structure of weight `. From the point of view of C-Hodge triples, a
mixed C-Hodge triple consists of a W -filtered triple (H,W•H) such that H is strict
and each gr`H is a C-Hodge triple of weight `. In particular it is strict, hence Remark
2.4.25(5) applies.

(2) A morphism of mixed C-Hodge structures

(H
1

,W•H1

) �! (H
2

,W•H2

)

is a morphism H
1

! H
2

which is compatible with the filtrations W• and with the
filtrations F 0•, F 00•. Equivalently, it consists of a pair of bi-filtered morphisms

8

<

:

(H0
1

, F •H0
1

,W•H
0
1

) ! (H0
2

, F •H0
2

,W•H
0
2

),

(H00
2

, F •H00
2

,W•H
00
2

) ! (H00
1

, F •H00
1

,W•H
00
1

)

compatible with c
1

, c
2

.
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(3) The category MHS(C) of mixed Hodge structures defined by 2.5.2, i.e., as in
(1) and (2), is equipped with endofunctors, the Tate twists (k, `) (k, ` 2 Z) defined by

(H,W•H)(k, `) :=
�

(H(k, `),W [�(k + `)]•H(k, `))
�

.

(4) We say that a mixed Hodge structure H is
• pure (of weight w) if grW` H = 0 for ` 6= w,
• graded-polarizable if grW` H is polarizable for every ` 2 Z.

Proposition 2.5.5. Any morphism in the abelian category MHS(C) is strictly compatible
with both filtrations F • and W•.

Proof. Note that for every morphism ', the graded morphism grW` ' is F -strict, ac-
cording to Exercise 2.4.3(2). The proof is then by induction on the length of W•,
by considering the diagram (A.2.11). Since the sequence of cokernels is exact, the
cokernel of 'j is strict, and we can apply the criterion of Exercise A.2.8(3).

Remark 2.5.6 (Graded polarizable mixed Hodge structures)
Since any C-Hodge structure is polarizable, any mixed Hodge structure is graded-

polarizable. However, in the case of mixed Q-Hodge structures, it is useful to distin-
guish the full subcategory of graded-polarizable mixed Q-Hodge structures.

The main result in the theory of mixed Hodge structures is due to Deligne [Del71b,
Del74].

Theorem 2.5.7 (Hodge-Deligne Theorem, mixed case). Let X be a complex quasi-
projective variety. Then the cohomology H•(X,C) and the cohomology with compact
supports H•

c

(X,C) admit a canonical (graded-polarizable) mixed Hodge structure.

2.6. Comments

Sections 2.2 and 2.3 give a very brief abstract of classical Hodge theory, for which
various references exist: Hodge’s book [Hod41] is of course the first one; more re-
cently, Griffiths and Harris’ book [GH78], Demailly’s introductory article [Dem96]
and Voisin’s book [Voi02] are modern references. The point of view of an abstract
Hodge structure, as emphasized by Deligne in [Del71a, Del71b], is taken up in Pe-
ters and Steenbrink’s book [PS08], which we have tried to follow with respect to
notation at least.

In Hodge theory, the Q-structure (or, better, the Z-structure) is usually empha-
sized, as both Hodge and Q-structures give information on the transcendental aspects
of algebraic varieties, by means of the periods for example. It may then look strange
to focus only, as we did in this chapter, and as is also done in [Kas86, KK87] and
[SV11], on one aspect of the theory, namely that of complex Hodge structures, where
the Q-structure is absent, and so is any real structure. The main reason is that this is
a preparation to the theory in higher dimensions, where the analytic and the rational
structures diverge with respect to the tools needed for expressing them. On the one
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hand, the analytic part of the theory needs the introduction of holonomic D-modules
(replacing C-vector spaces), while on the other hand the rational structure makes
use of the theory of Q-perverse sheaves (replacing Q-vector spaces). The relation be-
tween both theories is provided by the Riemann-Hilbert correspondence, in the gen-
eral framework developed by Kashiwara [Kas84] and Mebkhout [Meb84a, Meb84b]
(see also [Meb89] and [Meb04]). The theory of Hodge modules developed by Saito
[Sai88, Sai90] combines both structures, as desirable, but this leads to developing
fine comparison results between the analytic and the rational theory by means of the
Riemann-Hilbert correspondence. This is done in [Sai88] and also in [Sai89a]. In
order to simplify the text and focus on the very Hodge aspects of the theory, we
have chosen not to introduce the Riemann-Hilbert correspondence in this text, which
explains that the Q-structure of Hodge modules will not be considered.

Developing the theory from the complex point of view only also has the advan-
tage of emphasizing the relation with the theory of twistor D-modules, as developed
in [Sab05, Moc02, Moc07, Moc15]. In fact, the idea of introducing a sesquilin-
ear pairing c is inspired by the latter theory, where one does not expect any Q or
R-structure in general, and where one is obliged to develop the theory with a complex
approach only. The category of triples introduced in Section 2.4.c mimics the notion
of twistor structure, introduced by Simpson in [Sim97], and adapted for a higher
dimensional use in [Sab05]. The somewhat strange idea to replace an isomorphism
by a sesquilinear pairing is motivated by the higher dimensional case, already for a
variation of Hodge structure, where among the two filtrations considered in Definition
2.4.1, one varies in a holomorphic way and the other one in an anti-holomorphic way.
Also, the idea of emphasizing the Rees module of a filtration, as in Remark 2.4.12, is
much inspired by the theory of twistor D-modules. Note however that the sesquilinear
pairing c (Definition 2.4.24) does not play exactly the same role in both theories, and
it is easier to manipulate in Hodge theory.

Also, in complex Hodge theory, the Tate twist is more flexible since we can reduce
to weight zero any complex Hodge structure of weight w 2 Z. However, we will not
use this possibility in order to keep the relation with standard Hodge theory as close
as possible.

Mixed Hodge structures are quickly introduced in Section 2.5. This fundamental
notion, envisioned by Grothendieck as part of the realization properties of a theory of
motives, and realized by Deligne in [Del71a, Del71b, Del74], is explained carefully
in [PS08, Chap. 3]. In the theory of pure Hodge modules, it only appears through
the disguise of a Hodge-Lefschetz structure considered in Chapter 3. It will be taken
up in Part IV on mixed Hodge modules.


