CHAPTER 14

POLARIZABLE HODGE MODULES OF NORMAL CROSSING TYPE

Summary.

14.1. Introduction

The local setting is as follows. The space X is a polydisc in \mathbb{C}^n with analytic coordinates x_1, \ldots, x_n , we fix $\ell \leq n$ and we denote by D the divisor $\{x_1 \cdots x_\ell = 0\}$. We also denote by D_i $(i \in I)$ the smooth components of D and by $D_{(\ell)}$ their intersection $D_1 \cap \cdots \cap D_\ell$. We will shorten the notation $\mathscr{O}_{D_{(\ell)}}[x_1, \ldots, x_\ell]$ into $\mathscr{O}_{D_{(\ell)}}[x]$ and $\mathscr{D}_{D_{(\ell)}}[x_1, \ldots, x_\ell] \langle \partial_{x_1}, \ldots, \partial_{x_\ell} \rangle$ into $\mathscr{D}_{D_{(\ell)}}[x] \langle \partial_x \rangle$.

14.2. Synopsis

Given a pVHS on $(\Delta^*)^\ell \times \Delta^{n-\ell}$, consider Deligne's meromorphic extension (\mathcal{V}_*, ∇) and $\mathcal{V}^{>-1}_* = \bigcap_{i=1}^\ell V_{(i)}^{>-1} \mathcal{V}_*$. Let \mathcal{V}_{\min} be the corresponding minimal extension.

(1) Notice that \mathcal{V}_* and \mathcal{V}_{\min} have normal crossing type along D.

(2) To show that $F^p \mathcal{V}$ can be extended to $F^p \mathcal{V}_*^{>-1}$ as a holomorphic bundle in such a way that $(F^{\bullet} \mathcal{V}_*^{>-1}, (V_{(i)}^{>-1} \mathcal{V}_*^{>-1})_{i \in I})$ are compatible filtrations of $\mathcal{V}_*^{>-1}$.

(3) Extend this to \mathcal{V}_{\min} by using Proposition 11.2.28.

(4) To show that the pairing Q on \mathcal{V} extends as a pairing on \mathcal{V}_* with values in moderate distributions. Show that its restriction to \mathcal{V}_{\min} takes values in distributions, and its restriction to $\mathcal{V}_*^{>-1}$ takes values in L^1_{loc} .

(5) To classify sesquilinear pairings on \mathscr{D} -modules of normal crossing types. They should be determined by their restriction to the M_{α} , $\alpha \in [-1, 0]^{\ell}$.

(6) For $g(x) = x^{a}$, compute $\psi_{g,\lambda} Q$ by giving its restrictions to the N_{β} . In fact, one only needs to compute $P_{\ell}\psi_{g,\lambda}Q$.

(7) To be completed.

312 CHAPTER 14. POLARIZABLE HODGE MODULES OF NORMAL CROSSING TYPE

14.3. Comments

Here come the references to the existing work which has been the source of inspiration for this chapter.