
CHAPTER 13

STRUCTURE AND DIRECT IMAGES OF
POLARIZABLE HODGE MODULES

Summary. In this chapter, we start the proof of the two main important results
concerning polarizable Hodge modules, namely, the structure theorem and the
decomposition theorem. The proof will be finished in Chapter 14. Here, we
will use the machinery of filtered D-module theory and sesquilinear pairings
to reduce the proofs to simpler cases, where other techniques are used. For the
direct image theorem, we reduce to the case of the map from a compact Riemann
surface to a point, that we have analyzed in Chapter 6, according to the results of
Schmid and Zucker developed in Chapter 5. This strategy justifies the somewhat
complicated and recursive definition of the category pHM(X,w) of polarizable
Hodge modules.

13.1. Introduction

The theory of polarizable Hodge D-modules was developed in order to give an
analytic proof, relying on Hodge theory, of the decomposition theorem of the pushfor-
ward by a projective morphism of the intersection complex attached to a local system
underlying a variation of polarizable Hodge structure. Two questions arise in this
context:

• to relate variations of polarizable Hodge structure on a smooth analytic Zariski
open subset of a complex analytic set with a polarizable Hodge module on a com-
plex manifold containing this analytic set as a closed analytic subset (the structure
theorem),

• to prove the decomposition theorem of the pushforward by a projective morphism
of a polarizable Hodge module.

The proof of the decomposition theorem is obtained by reducing to the case of a
constant map, by using the nearby cycle functor and its compatibility with pushfor-
ward. In the case of the constant map, one can reduce to the case where the Hodge
module is a variation of polarizable Hodge structure on the complement of a normal
crossing divisor in a complex manifold by using Hironaka’s theorem on resolution of
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singularities, and the decomposition theorem already proved (by induction) for the
resolution morphism. One can use a Lefschetz pencil to apply an inductive process,
after having blown up the base locus of the pencil. In such a way, one is reduced to
the case of the constant map on a smooth projective curve, where one can apply the
Hodge-Saito theorem 6.4.18.

Another approach in the case of a constant map makes the full use of the higher
dimensional analogues of the results proved in Chapter 5 for polarized variations of
Hodge structure, but this needs to include in the inductive process the structure
theorem for polarizable Hodge modules in the normal crossing case.

13.1.a. The structure theorem. This is the converse of Proposition 12.4.4(4).
Let X be a complex manifold and let Z be an irreducible closed analytic subset of X.
Let VHS

gen

(Z,w) the category of “generically defined variations of Hodge structure
of weight w on Z”.

We say that a pair (Zo, H) consisting of a smooth Zariski-dense open subset Zo

of Z and of a variation of Hodge structure H of weight w on Zo is equivalent to a
pair (Z 0o, H 0) if H and H 0 coincide on Zo

\ Z 0o. An object of VHS
gen

(Z,w) is such
an equivalence class. Note that it has a maximal representative (by considering the
union of the domains of all the representatives). A morphism between objects of
VHS

gen

(Z,w) is defined similarly.
We also denote by pVHS

gen

(Z,w) the full subcategory of VHS
gen

(Z,w) consisting
of objects which are polarizable, i.e., have a polarizable representative.

By Proposition 12.4.4(4), there is a restriction functor

pHMZ(X,w � codimZ)left 7�! pVHS
gen

(X,w).

Theorem 13.1.1 (Structure theorem). Under these assumptions, the restriction functor
pHMZ(X,w � codimZ)left 7! pVHS

gen

(X,w) is an equivalence of categories.

For example, set M0 = M00 = OX , F
0

OX = OX and F�1

OX = 0, M 0 = M 00 =

RFOX = OX [z], c(1, 1) = 1 so that M⇤ = M , and Q : M ! M⇤ is the identity.
The corresponding M is denoted by HOX : this is the polarized left Hodge module
of weight 0, corresponding to the constant variation of Hodge structure C(0) on X.
That it satisfies all the requirements of Definition 12.3.13 is far from obvious and is
asserted by the structure theorem.

Since each polarizable Hodge module has a unique decomposition with respect to
the irreducible components of its pure support, the structure theorem gives a complete
description of the category pHM(X,w).

As we will also see later, the structure theorem enables us to prove that the pullback
by a holomorphic map of complex manifolds of a polarizable Hodge module remains
a polarizable Hodge module. This statement is not obvious: for the constant map
f : X ! pt, the pullback Hf

⇤
HCpt

is HOX .
Any polarizable Hodge module is semi-simple in the category of pure Hodge mod-

ules (see Proposition 12.4.6). If X is a projective complex manifold, semi-simplicity
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also holds for the underlying holonomic DX -module, that is, the analogue of Theorem
4.3.3 holds for polarizable Hodge modules.

Theorem 13.1.2 (Semi-simplicity). Assume X is projective. Let M = (M 0,M 00, c) be
a polarizable Hodge module (so that M 0

' M 00 by means of the polarization). Then
the underlying holonomic DX-module M = M0 = M00 is semi-simple. Moreover, M

is simple as an Hodge module if and only if the corresponding M is simple as an
holonomic DX-module.

Remark 13.1.3. On the other hand, there exist in general holonomic DX -modules
which are simple as such, but which do not underlie a polarizable Hodge module.

13.1.b. The direct image and decomposition theorem. This theorem describes
the behaviour by projective pushforward of an object of pHM(X,w). The case of the
constant map X ! pt and of the left Hodge module HOX corresponds to the results
of Section 2.3.

Theorem 13.1.4 (Hodge-Saito theorem). Let f : X ! Y be a projective morphism be-
tween complex analytic manifolds and let M be a polarizable right Hodge module of
weight w on X. Let L be an ample line bundle on X and let LL be the correspond-
ing Lefschetz operator. Then (

L

k Hf
k
⇤M,LL ) (where the k-th term is regarded in

degree �k) is an object of pHLM(Y,w;�1).

Let us make explicit this statement. As usual for a pushforward theorem, we start
with a right Hodge module. We set M = (M 0,M 00, c) and we choose a polarization Q

on M , which induces an isomorphism M 0
' M 00. We set M = M 0.

(a) Df⇤M , regarded as an object of Db

hol

( eDY ), is strict, that is, for every k, Df
k
⇤ M

is a strict graded RFDY -module. Moreover, Df
k
⇤ M is strictly S-decomposable.

(b) Each Hf
k
⇤M is a polarizable Hodge module of weight w + k on Y .

(c) For every k > 0, the Lefschetz operator LL induces isomorphisms in
HM(Y,w + k) (this is known as the relative hard Lefschetz theorem):

Lk
L : Df

k
⇤ M

⇠
�! Df

�k
⇤ M (�k),

so that (
L

k Hf
k
⇤M,LL ) (where the k-th term is regarded in degree �k) is an object

of HLM(Y,w;�1), that is, a graded Hodge-Lefschetz module of type " = �1, centered
at w.

(d) By means of the identification Hf
k
⇤ (M

⇤) ' (Hf
�k
⇤ M)⇤ (see (12.2.1)), the graded

morphism
L

k Hf
k
⇤Q induces a polarization of the graded Hodge-Lefschetz module

(
L

k Hf
k
⇤M,LL ).

One of the most notable consequence of the direct image theorem is the decompo-
sition theorem.

Theorem 13.1.5 (Decomposition Theorem). Let f : X ! Y be a projective morphism
of complex manifolds. Let M be a eDX-module underlying a polarizable Hodge mod-
ule. Then the complex Df⇤M in Db

hol

( eDY ) decomposes (in a non-canonical way)
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as
L

k Df
k
⇤ M [�k]. Similarly, if M = M /(z � 1)M is the underlying DX-module,

Df⇤M '

L

k Df
k
⇤M[�k] in Db

hol

(DY ).

When both X and Y are projective, we can combine Theorems 13.1.5, 13.1.4 and
13.1.2 to obtain:

Corollary 13.1.6. Let f : X ! Y be a morphism between projective complex manifolds
and let M be a semi-simple holonomic DX-module underlying a polarizable Hodge
module. Then Df⇤M decomposes non-canonically as

L

k Df
k
⇤M[�k], and each Df

k
⇤M

is itself a semi-simple holonomic DY -module.

13.1.c. Strategy of the proof

Sketch for Theorem 13.1.4. That holonomy is preserved by proper pushforward is
recalled in Remark A.10.27. We will now focus on the other properties defining a
polarizable Hodge module. The proof of Theorem 13.1.4 is by induction on the pair

(dimSuppM, dimSupp Hf⇤M)

ordered lexicographically in the following way.
• The case where X is a compact Riemann surface and f : X ! pt is the constant

map has been treated in Chapter 6 for both theorems 13.1.1 and 13.1.4 (see Corollary
6.4.16 and the Hodge-Saito theorem in dimension one 6.4.18, i.e., the Hodge-Zucker
theorem 5.1.1).

• (13.1.4)
(n,m)

) (13.1.4)
(n+1,m+1)

is proved in Section 13.2.
• (13.1.4)

(6n�1,0) & (13.1.4)
(1,0) with SuppM smooth ) (13.1.4)

(n,m)

for n > 1 is
proved in Section 13.3 by using the method of Lefschetz pencils.

Sketch for the structure theorem 13.1.1. We notice first that the restriction functor
HMZ(X,w)left ! pVHS

gen

(Z,w� codimZ) is faithful. Indeed, let M
1

,M
2

be objects
of HMZ(X,w) and let ','0 : M

1

! M
2

be morphisms between them, which coincide
on some Zo. Then the image of ' � '0 is an object of HM(X,w), according to
Proposition 12.3.9, and is supported on ZrZo, hence is zero according to the definition
of the pure support.

Due to the faithfulness, we note that the question is local: for fullness, if a mor-
phism between the restriction to some Zo of two polarized Hodge modules locally
extends on Z, then it globally extends by uniqueness of the extension; then, two local
extensions as polarized Hodge modules of a variation of polarized Hodge structure
coincide (through the extension of the identity morphism on some Zo) and we can
glue local extensions.

For the essential surjectivity we start from a variation of polarized Hodge structure
on some smooth Zariski-dense open subset Zo

⇢ Z. We choose a projective morphism
f : Z 0

! X with Z 0 smooth and connected, such that f is an isomorphism Z 0o :=

f�1(Zo) ! Zo, and such that Z 0 r Z 0o is a divisor with normal crossing. Assume
we have extended the variation on Z 0o as a polarized Hodge module on Z 0 with
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pure support Z 0, we apply to the latter the direct image theorem 13.1.4 for f , and
get the desired polarized Hodge module as the component of this direct image Hf

0

⇤
having pure support Z. We argue similarly for the fullness: if any morphism defined
on some Zo can be extended as a morphism between the extended objects on Z 0,
we push it forward by f and restrict it as a morphism between the corresponding
components.

We are thus reduced to the case where Z = X and the variation exists on Xo :=

XrD, where D is a divisor with normal crossings. Moreover, the question is local. By
using the asymptotic theory of variations of Hodge structure we construct coherent
DX -modules M 0,M 00 and we prove that the sesquilinear pairing co takes values in
the sheaf of moderate distributions along D.

13.2. Behaviour of the properties (HSD), (HM>0

) and (PHM>0

) by pro-
jective pushforward

Let f : X ! Y be a projective morphism between complex manifolds, let t be
a holomorphic function on Y and set g = t � f : X ! C. The question we wish
to consider being local on Y , it is not restrictive to assume that t is part of a local
coordinate system on Y . Let L be a relatively ample line bundle on X. In other
words, we choose a relative embedding

X �
�
//

f $$

Y ⇥ PN

✏✏

Y

so that L comes by pullback from an ample line bundle on PN .
Let M = (M 0,M 00, c) be a an object of RFD-Triples(X)

coh

. We assume that M is
strictly R-specializable along (g) and is a minimal extension along (g), that is, can is
onto and var is injective (see Definition 7.7.3).

Let Q : M ! M⇤(�w) be a (�1)w-Hermitian morphism.

Proposition 13.2.1. Together with these assumptions, let us moreover assume that
(a) dim(SuppM \ g�1(0)) 6 d,
(b) M satisfies (HM>0

) relatively to g (Definition 12.3.1), that is, for any � 2 S1

and any integer `, grM`  g,�M is an object of HM6d(X,w � 1 + `),
(c) (M,Q) satisfies (PHM>0

) relatively to g (Definition 12.4.1), that is, for
any � 2 S1 and any integer ` > 0, the morphism P` g,�Q induces a polarization of
the object P` g,�M of HM6d(X,w � 1 + `).

In other words, we assume that (grM•  g,�M,N, gr• g,�Q) is a polarized graded
Hodge-Lefschetz triple of type " = 1, centered at w � 1.

Then, if Theorem 13.1.4 holds in dimension 6 d, the following holds for every
k 2 Z.

(1) Hf
k
⇤M is strictly R-specializable and strictly S-decomposable along (t),
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(2)
�

L

k,` gr
M

�` t,�(Hf
k
⇤M), (LL ,N), grM�` t,�(Hf

k
⇤Q)

�

is a polarized bi-graded
Hodge-Lefschetz triple of type " = (�1, 1), centered at w � 1.

Proof. One of the points to understand is the way to pass from properties
of Hf

k
⇤ gr

M

�` g,�M to properties of grM�` t,�(Hf
k
⇤M). Although we know that

 t,�(Hf
k
⇤M)

⇠
�! Hf

k
⇤ g,�M if the latter is strict, according to Proposition 12.2.5,

we have to check the strictness property. Moreover, we are left with the question of
passing from Hf

k
⇤ gr

M

�` to grM�`Hf
k
⇤ . Here, we do not have a commutation property, but

we will use Corollary 12.4.12 to analyze the corresponding spectral sequence. At this
point, the existence of a polarization is essential. The strict S-decomposability is not
obvious either, and the polarization also plays an essential role for proving it.

Since we assume that Theorem 13.1.4 holds for objects in pHM6d(X) and since
dim(SuppM \ g�1(0)) 6 d, we deduce that, for every � 2 S1,

�

L

k,`
Hf

k
⇤ gr

M

�` g,�M, (LL , Hf
k
⇤ grN), Hf

k
⇤ gr

M

�` g,�Q
�

is a polarized object of HLM(Y,w � 1;�1, 1) if we keep here the grading convention
used in Corollary 12.4.12. This corollary implies that

�

L

k,`

grM�` Hf
k
⇤ g,�M, (LL , gr Hf

k
⇤N), grM�` Hf

k
⇤ g,�Q

�

is a polarized object of HLM(Y,w � 1;�1, 1). In particular, each grM�` Hf
k
⇤ g,�M is

strict, and therefore so is Hf
k
⇤ g,�M .

A similar argument applies to the vanishing cycles, according to Proposition 12.4.13
(up to changing w�1 to w), and therefore each Hf

k
⇤ �g,1M is strict. We can now apply

Corollary 7.8.6 to conclude that Hf
k
⇤M is strictly R-specializable along (t) for every

k. We also conclude from Proposition 12.2.5 that

( g,� Hf
k
⇤M,N) = Hf

k
⇤ ( g,�M,N).

At this point, we have proved that
�

L

k,`

grM�` g,� Hf
k
⇤M, (LL , grN), grM�` g,� Hf

k
⇤Q

�

is a polarized object of HLM(Y,w � 1;�1, 1).
What can we say about vanishing cycles? Note that, since we have defined van-

ishing cycles �g,1 of D-triples only when the D-triple is S-decomposable along (g)

(see Remark 10.4.21), we cannot mention �g,1Hf
k
⇤M before having proven that M is

strictly S-decomposable. In any case, we have a quiver

(13.2.2)  g,1 Hf
k
⇤M = Hf

k
⇤ g,1M

Hf
k
⇤ can

**

Hf
k
⇤ �g,1M

Hf
k
⇤ var

(�1)

jj

that we ultimately want to be the nearby/vanishing quiver of Hf
k
⇤M .
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Nevertheless, the same argument as for nearby cycles gives that

(�g,1 Hf
k
⇤ M ,N) = Hf

k
⇤ (�g,1M ,N), M = M 0,M 00,

and
�

L

k,`

grM�` Hf
k
⇤ �g,1M, (LL , gr Hf

k
⇤N), grM�` Hf

k
⇤ �g,1Q

�

is a polarized object of HLM(Y,w;�1, 1) (take care of the position of Hf
k
⇤ ). For

k 6 0, let us denote by P
L Hf

k
⇤ the primitive part with respect to LL . We de-

duce from (13.2.2) a graded Lefschetz quiver with vertices
L

` gr
M

` P
L Hf

k
⇤ g,1M and

L

` gr
M

` P
L Hf

k
⇤ �g,1M , to which we can apply Proposition 12.4.11, that is, the analogue

of Proposition 3.2.28. We conclude that
L

`

grM` P
L Hf

k
⇤ �g,1M = ImgrP

L Hf
k
⇤ can�Ker grP

L Hf
k
⇤ var .

We also see that P
L Hf

k
⇤ g,�M and P

L Hf
k
⇤ �g,1M are objects WHM(Y ), with weight

filtration equal to the monodromy filtration shifted by w � 1 and w respectively. It
follows that the morphisms P

L Hf
k
⇤ can and P

L Hf
k
⇤ var are strictly compatible with

the monodromy filtration (after a suitable shift), and therefore the decomposition
above reads

grMP
L Hf

k
⇤ �g,1M = grM ImP

L Hf
k
⇤ can�grM KerP

L Hf
k
⇤ var,

from which we deduce

P
L Hf

k
⇤ �g,1M = ImP

L Hf
k
⇤ can�KerP

L Hf
k
⇤ var,

and finally, by applying the Lefschetz decomposition for L,

Hf
k
⇤ �g,1M = Im Hf

k
⇤ can�Ker Hf

k
⇤ var, 8 k 2 Z.

From this property we conclude in particular that H k
Df⇤M 0 and H k

Df⇤M 00 are
strictly S-decomposable along (g0). In particular, H k

Df⇤M
0 and H k

Df⇤M
00 are

S-decomposable along (g0) for every k 2 Z. Lemma 10.4.17 shows that the sesquilinear
pairing Tf

k
⇤ splits correspondingly. In other words, Hf

k
⇤M is strictly S-decomposable

along (g0), as wanted. Moreover, �g,1Hf
k
⇤M is then defined, and it is now clear that

�g,1 Hf
k
⇤M = Hf

k
⇤ �g,1M .

Proof of (13.1.4)
(n,m)

) (13.1.4)
(n+1,m+1)

. Let f : X ! Y be a projective morphism
and let (M,Q) be a polarized object of pHMZ(X,w), where Z is an irreducible ana-
lytic subset of X of dimension n+ 1. We can assume that (M,Q) is a (�1)w-Hodge
Hermitian pair (M , c), and we will omit Q in the notation. Assume that f(Z) has
dimension m+ 1 and that (13.1.4)

(n,m)

holds. Since Theorem 13.1.4 is a local state-
ment on Y , we can work in an open neighbourhood of a point yo 2 f(Z), that we
can take as small as needed. By the strict S-decomposability of (M , c) on X, we can
therefore assume that Z and f(Z) are irreducible when restricted to a fundamental
basis of neighbourhoods of yo.

Let g0 be a holomorphic function on some nb(yo) and set g = g0 �f . We distinguish
two cases.
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(1) g0 vanish identically on he closed irreducible subset f(Z) \ nb(yo) of nb(yo).
We now omit referring to nb(yo). We denote by ◆g : X ,! X⇥C and by ◆ : X⇥{0} ,!

X⇥C the inclusions, and similarly on Y . The only property to be checked relative to
g0 is that Df

k
⇤ M is S-decomposable along (g0), which is equivalent to D◆g0⇤Df

k
⇤ M =

D◆⇤Df
k
⇤ M for every k (use the same argument as in Corollary 7.7.1). The left-hand

term is equal to Df
k
⇤ D◆g⇤M , if we still denote by f the map f ⇥ IdC. Similarly the

right-hand term is equal to Df
k
⇤ D◆⇤M , with obvious abuse of notation. Since g ⌘ 0

on Z and M is assumed to be S-decomposable along (g), we have D◆g⇤M = D◆⇤M ,
hence the desired assertion.

(2) g0�1(0)\f(Z) has codimension one in f(Z). Then g�1(0)\Z has codimension
one in Z. We can thus apply Proposition 13.2.1 with d = n. It follows that each
Hf

k
⇤M satisfies (HSD), (HM)>0

and (PHM)>0

with respect to g0.

13.3. End of the proof of Theorem 13.1.4
[3]

[3] From here to the end
of the chapter, work in
progress, do not take it
into account. 13.4. Comments

Here come the references to the existing work which has been the source of inspi-
ration for this chapter.


