
CHAPTER 12

PURE HODGE MODULES

Summary. This chapter contains the definition of pure Hodge modules, with-
out, and then with, a polarization. The actual presentation justifies the intro-
duction of the language of triples. The main properties are:

• the category of pure Hodge modules of weight w is abelian,
• the category of pure polarized Hodge modules of weight w is semi-

simple.
It is convenient to also introduce Hodge-Lefschetz modules, as they appear in
many intermediate steps of various proofs, due to the very definition of a Hodge
module.

12.1. Introduction

Hodge D-modules are supposed to play the role of Hodge structures with a multi-
dimensional parameter. These objects can acquire singularities. The way each char-
acteristic property of a Hodge structure is translated in higher dimension of the pa-
rameter space is given by the table below.

dimension 0 dimension n > 1

H a C-vector space M a holonomic D-module
F •H a filtration F•M a good filtration
H = RFH M = RFM

H = (H 0,H 00, c) a graded triple M = (M 0,M 00, c) a graded triple
of C[z]-vector spaces of RFD-modules
Q : H ! H⇤(�w) a polarization Q : M ! M⇤(�w) a polarization

Why choosing holonomic D-modules as analogues of C-vector space? The rea-
son is that the category of holonomic D-modules is Artinian, that is, any holonomic
D-module has finite length (locally on the underlying manifold). A related reason is
that its de Rham complex has constructible cohomology, generalizing the notion of



286 CHAPTER 12. PURE HODGE MODULES

local system attached to a flat bundle. Moreover, the property of holonomicity is
preserved by various operations (proper pushforward, pullback by a holomorphic
map), and the nearby/vanishing cycle theory (the V -filtration) is well-defined for
holonomic D-modules without any other assumption, so that the issue concerning
nearby/vanishing cycles of filtered holonomic D-modules only comes from the filtra-
tion.

In order to define the Hodge properties, we use the same method as in dimension
one (see Section 6.1):

• we only consider holonomic D-modules which are S-decomposable, that is, which
are direct sum of D-modules having an irreducible pure support, in other words sup-
ported by an irreducible closed analytic subset of the underlying manifold and having
neither sub-module nor quotient module supported in a smaller subset;

• we moreover ask that the F -filtration is compatible with the decomposition by
the support, in other words, the associated graded RFD-module is strictly S-decom-
posable;

• Fortunately, the sesquilinear pairing behaves well with respect to these con-
straints, so that we do not have to make more assumptions on the sesquilinear pairing.
We are thus led to work in the abelian category RFD-Triples(X), which is a filtered
analogue of the category D-Triples considered in Section 10.2.c. Notice that no con-
dition is put concerning the behaviour of the sesquilinear pairing with respect to the
filtrations.

• in order to reduce the structure to a point, we use iterated nearby cycles, along
a family of functions, the ideal of which define the point; therefore, one has to use
the functor of nearby cycles, which is defined for objects of RFD-Triples(X) which
are strictly R-specializable.

The definition of a Hodge module can look frightening: in order to check that an
object M = (M 0,M 00, c) belongs to HM(X,w), we have to consider in an inductive
way nearby cycles with respect to all germs of holomorphic functions.

With this respect, a variation of polarized Hodge structure is not obviously a pure
Hodge module. This is true, but will have to be proved carefully.

The question should however be considered the other way round. Once we know
at least one pure Hodge D-module, we automatically know an infinity of them, by
considering (monodromy-graded) nearby or vanishing cycles with respect to any holo-
morphic function. For example, once we have proved that a variation of polarized
Hodge structure is a pure Hodge module, we obtain many such objects by applying
the pushforward by any projective morphism, as will be shown in Chapter 13.

In the same vein, due to this inductive definition, the proof of many properties of
Hodge modules can be done by induction on the dimension of the support, and this
reduces to checking the property for Hodge structures.

Although the most important and useful properties of Hodge modules make use
of a polarization, or more precisely of the existence of a polarization, it is interesting
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to start working with possibly non-polarizable Hodge modules, in order to realize
the strength of the generalization of the opposedness property in higher dimensions.
Nevertheless, we do not know interesting examples in dimension > 1 of pure Hodge
modules which are not polarizable.

12.2. The ambient category

It will be convenient to work within an ambient abelian category, namely
the category RFD-Triples(X). An object in this category consists of a pair of
graded RFDX -modules M 0,M 00 and a sesquilinear pairing c between the associated
DX -modules M0 := M 0/(z � 1)M 0 and M00 := M 00/(z � 1)M 00 with values in DbX
(left case) or CX (right case). For M

1

,M
2

objects of RFD-Triples(X), a morphism
' : M

1

! M
2

is a pair ('0,'00), with '0 : M 0
1

! M 0
2

and '00 : M 00
2

! M 00
1

, whose
restriction to z = 1 is compatible with c. In other words, we have a natural functor
“z = 1” from RFD-Triples(X) to the category D-Triples(X) (see Definition 10.2.7).
Since the various functors we have considered for graded RFDX -modules restrict
to the corresponding functors for DX -modules when we set z = 1, they extend in
a natural way as functors defined on the category RFD-Triples. We say that an
object M of RFD-Triples(X) is coherent (resp. holonomic, resp. strict, resp. strictly
R-specializable, resp. strictly S-decomposable) if M 0 and M 00 are so.

We now collect various results by gathering properties of Chapters 7 and 10. We will
mainly work with right RFDX -modules, but we will occasionally indicate the effect
of side changing.

Tate twist. For every pair of integers (k, `), we set

(M 0,M 00, c)(k, `) = (M 0(k),M 00(�`), c).

The symmetric Tate twist (k, k) is simply denoted by (k).

Adjunction. The adjoint (M 0,M 00, c)⇤ of an object of RFD-Triples(X) is the object
(M 00,M 0, c⇤).

12.2.a. The case of RFD-Triples(X)right

Proper pushforward. Let f : X ! Y be a proper morphism of complex analytic
manifolds. We will consider the pushforward functor Hf

k
⇤ from RFD-Triples(X) to

RFD-Triples(Y ). It is defined as follows, for M = (M 0,M 00, c) (see Definition 10.3.17,
with the sign of (10.3.16 ⇤)).

Hf
k
⇤M := (H k

Df⇤M
0,H �k

Df⇤M
00, Tf

k
⇤ c).

We have (Hf
j
⇤M)(k, `) = Hf

j
⇤ (M(k, `)) and compatibility with adjunction, after

(10.3.16 ⇤⇤),

(12.2.1) Hf
k
⇤ (M

⇤) = (Hf
�k
⇤ M)⇤.
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The Lefschetz operator. Let L be a line bundle on X. The Lefschetz operator is a
morphism

LL : Hf
k
⇤M �! Hf

k+2

⇤ M(1).

It is defined according to Remark A.8.17, and (10.3.20 ⇤⇤) for the sign.

Strict R-specializability. Let M = (M 0,M 00, c) be an object of RFD-Triples(X)
coh

which is strictly R-specializable along (g) (i.e., M 0,M 00 are so). Let ◆g : X ,! X⇥Ct

denote the inclusion of the graph of g. We then set, for � 2 S1,

(12.2.2)  g,�M := ( g,�M 0, g,�M 00(�1), g,�c),

where  g,�M is given by Definition 7.4.1 and  g,�c by Definition 10.4.18 and (10.4.7)
(see also (10.4.22)). The object  g,�M of RFD-Triples(X)

coh

is equipped with a
nilpotent endomorphism N :  g,�M !  g,�M(�1), following Definition 7.4.8, and
(10.4.24 ⇤) for the signs, that is,

N = (N0,N00), N0 = � 2⇡i(tgt � ↵z), N00 = 2⇡i(tgt � ↵z), � = exp(2⇡i↵).

The monodromy filtration is well-defined in the abelian category RFD-Triples(X),
and we have (see Remark 10.4.25)

grM`  g,�M = (grM`  g,�M 0, grM�` g,�M 00(�1), grM`  g,�c),

P` g,�M = (P` g,�M 0,P` g,�M 00(�1),P` g,�c) (` > 0).
(12.2.3)

Example 12.2.4 (The basic example). We denote

(12.2.4 ⇤) H!X := (e!X , e!X(n), c),

where e!X = z�n!X [z] (see Example A.2.18) and c is as in Example 10.2.14(2).
If X = H⇥�t, we have  t,1e!X = D◆

0

⇤e!H (◆ : H ,! X), according to Remark 7.4.3,
and due to Example 10.4.23, we have  t,1(H!X) = H◆

0

⇤(H!H), by the choices of signs
and twists in (12.2.2) and (12.2.4 ⇤).

Strict Kashiwara’s equivalence. For the inclusion of a closed submanifold Y ⇢ X of
codimension one, the equivalence of Proposition 7.6.2 holds for strictly R-specializable
objects of RFD-Triples(X) and the functor H◆

0

⇤, according to Example 10.3.18.

Strict S-decomposability. If M is strictly S-decomposable along the divisor of a holo-
morphic function g (i.e., if M 0,M 00 are so), then M decomposes as the direct sum
of a minimal extension along (g) and an object supported on g�1(0) (this follows
from Lemma 10.4.17 and Remark 7.7.16). Similarly, if M is strictly S-decomposable
(i.e., if M 0,M 00 are so), then M decomposes with respect to the pure support (this
follows from Proposition 10.4.16 and Remark 7.7.16). For such an object, the functor
(�g,1M,N) is defined in the same way as in Definition 7.4.1, Remark 10.4.21 and
(10.4.29 ⇤). If SuppM ⇢ g�1(0), then �g,1M = M and N = 0.
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Proper pushforward and specialization. Let f : X ! Y be a proper morphism, let
g0 : Y ! C be a holomorphic function and set g = g0 � f . Let M be an object of
RFD-Triples(X).

Proposition 12.2.5. Assume that M is strictly R-specializable along (g). Assume also
that for every k 2 Z and � 2 S1, Tf

k
⇤ g,�M and Tf

k
⇤ �g,1M are strict (M =

M 0,M 00). Then Tf
k
⇤M is strictly R-specializable along (g0) and, for every � 2 S1, we

have an isomorphism compatible with N:

((�1)n�m) Id, Id) : Tf
k
⇤ g,�M

⇠
�!  g0,�Tf

k
⇤M.

Proof. This follows from Corollary 7.8.6 and Corollary 10.6.3.

Pre-polarization and (�1)w-Hermitian pairs. Let w 2 Z. A pre-polarization of
weight w on M is a morphism

Q = (Q0,Q00) : M �! M⇤(�w)

which is (�1)w-Hermitian, that is, Q⇤ = (�1)wQ, i.e., Q := Q00 = (�1)wQ0. We say
that is is non-degenerate if Q is an isomorphism. According to (12.2.1), it defines by
pushing forward a graded morphism

Hf
•
⇤Q :=

L

k
Hf

k
⇤Q :

L

k
Hf

k
⇤M �!

L

k
Hf

k
⇤ (M

⇤) '
L

k

(Hf
�k
⇤ M)⇤.

We have Hf
k
⇤ (Q

⇤) = (Hf
�k
⇤ Q)⇤. In particular, since Q is (�1)w-Hermitian, Hf

•
⇤Q is

(�1)w-Hermitian in the graded sense, i.e., (Hfk
⇤Q)⇤ = (�1)w Hf

�k
⇤ Q.

If M is strictly R-specializable along (g) and Q = ((�1)wQ,Q) is a pre-polarization
of weight w of M , then ((�1)w�1 g,�Q, g,�Q) is a pre-polarization of weight w � 1

of  g,�M .

Caveat 12.2.6. If Q = ((�1)wQ,Q), we will denote

 g,�Q := ((�1)w�1 g,�Q, g,�Q).

This is not compatible with the definition of  g,� applied to a morphism, but this will
simplify the notation.

A (�1)w-Hermitian pair is a pair (M , c), where c is (�1)w-Hermitian on M.
It defines an object of RFD-Triples(X)right (M ,M (w), c) with non-degenerate
pre-polarization ((�1)w Id, Id). Any non-degenerate pre-polarized triple (M,Q)

of weight w, with M = (M 0,M 00, c), is isomorphic to the triple attached to a
(�1)w-Hermitian pair (M 0, c0) for a suitable c0.

We will usually argue on the (�1)w-Hermitian pair, which is a simpler object
than the non-degenerate pre-polarized triple. For example, the pushforward of a
(�1)w-Hermitian pair (M , c) is the graded (�1)w-Hermitian pair (Df

•
⇤M , Tf

•
⇤c),
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whose associated graded triple is
L

k(Df
k
⇤ M , Df

�k
⇤ M (w), Tf

k
⇤ c) and pre-polarization

((�1)w Id, Id) regarded, in each degree k, as an isomorphism

(Df
k
⇤ M , Df

�k
⇤ M (w), Tf

k
⇤ c)

⇠
�! (Df

�k
⇤ M , Df

k
⇤ M (w), Tf

�k
⇤ c)⇤(�w)

= (Df
k
⇤ M , Df

�k
⇤ M (w), Tf

k
⇤ c).

Similarly, if (M , c) is a (�1)w-Hermitian pair, then  g,�(M , c) = ( g,�M , g,�c)
is a (�1)w�1-Hermitian pair equipped with a skew-adjoint nilpotent endomorphism
N :  g,�M !  g,�M (�1). Moreover, for every ` > 0, the pair (P` g,�M ,P` g,�c) is
a (�1)w�1+`-Hermitian pair.

Example 12.2.7 (The basic example, continued). (e!X , c) is a (�1)n-Hermitian pair,
with associated triple H!X and pre-polarization Q = ((�1)n Id, Id) of weight n. Since
we have H!

⇤
X(�n) = (e!X , e!X(n), (�1)nc) (recall that c⇤ = (�1)nc), we regard the

pre-polarization of weight n as a morphism Q : H!X
⇠
�! H!

⇤
X(�n).

12.2.b. The case of RFD-Triples(X)left

Side-changing. Given an object M of RFD-Triples(X)left, we obtain an object of
RFD-Triples(X)right by setting

M right := H!X ⌦M,

where the tensor product is defined termwise in an obvious way (for the sesquilinear
pairing, we use (10.2.5 ⇤)), that is,

(M 0,M 00, c)right := (M 0right,M 00right(n), cright).

The right-to-left transformation is obtained similarly. The functors on the category
RFD-Triples(X)left are defined in a way compatible with those on RFD-Triples(X)right

through this side-changing operation.

Example 12.2.8 (Variations of Hodge structures as objects of RFD-Triples(X)left)
Let H =

�

(H0,r, F •H0), (H00,r, F •H00), c
�

be a variation of Hodge structure of
weight w as in Definition 4.1.10. Set H 0 := RFH

0, H 00 := RFH 00, and equip them
with their natural left RFDX -module structure induced by r (due to the Griffiths
transversality property). Then (H 0,H 00, c) is an object of RFD-Triples(X)left. By
the side-changing functor defined above, we obtain the object (H 0,H 00, c)right of
RFD-Triples(X)right.

Proper pushforward. The proper pushforward is defined with a shifted grading
(when compared with the right case). For f : X ! Y proper and M object of
RFD-Triples(X)left, we set in degree k:

Hf
n�m+k
⇤ M = (Df

n�m+k
⇤ M 0, Df

n�m�k
⇤ M 00(m� n), Tf

n�m+k
⇤ c),

by using (10.3.23 ⇤) for the sesquilinear pairing. Since, by Definition A.8.22,
(Df

n�m+k
⇤ M )right = Df

k
⇤ (M

right) and, by (10.3.23 ⇤⇤), (Tfn�m+k
⇤ c)right = Tf

k
⇤ (c

right),
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we deduce that
(Hf

n�m+k
⇤ M)right = Hf

k
⇤ (M

right).

The compatibility with adjunction analogue of (12.2.1) is now given by the isomor-
phism

((�1)n�m Id, Id) : Hf
n�m+k
⇤ (M⇤)

⇠
�! (Hf

n�m�k
⇤ M)⇤(n�m).

The Lefschetz operator LL : Hf
n�m+k
⇤ M ! Hf

n�m+k+2

⇤ M(1) is defined as in the
right case, and is compatible with side-changing.

Strict R-specializability and strict S-decomposability. Let M = (M 0,M 00, c) be an
object of RFD-Triples(X)left

coh

which is strictly R-specializable along (g). We then set,
for � 2 S1,

(12.2.9)  g,�M := ( g,�M 0, g,�M 00, g,�c),

where  g,�M is given by Remark 7.4.5 and  g,�c by (10.4.34 ⇤). By the side-changing
property for  g,�M (Lemma 7.4.6) and for  g,�c (10.4.35 ⇤), we obtain

 g,�(M
right) = ( g,�M)right.

The action of N is compatible with the side-changing.

12.3. Definition and properties of pure Hodge modules

The notion of a (polarized) pure Hodge module will be defined by induction on the
dimension of the support.

Let X be a complex analytic manifold and let w 2 Z. We will define by induction
on d 2 N the category HM6d(X,w) of Hodge modules of weight w on X, having a
support of dimension 6 d. This will be a subcategory of the category RFD-Triples(X)

introduced in Section 12.2.

12.3.a. Right pure Hodge modules. We first start with the definition of
HM6d(X,w)right.

Definition 12.3.1 (Pure Hodge modules (right case)). The category HM6d(X,w)right is
the full subcategory of RFD-Triples(X)right for which the objects are triples M =

(M 0,M 00, c) satisfying:
(HSD) M 0,M 00 are holonomic, strictly S-decomposable, and have support of dimen-
sion 6 d.
(HM>0

) For any open set U ⇢ X and any holomorphic function g : U ! C, for
every � 2 S1 and any integer `, the triple

grM`  g,�M =
⇣

grM`  g,�(M
0), grM�` g,�(M

00), grM`  g,�c
⌘

,

a priori defined as an object of RFD-Triples(X), is an object of HM6d�1

(U,w�1+`).
(HM

0

) For any zero-dimensional strict component {xo} of M 0 or M 00, we have

(M 0
{xo},M

00
{xo}, c{xo}) = H◆{xo}⇤(H

0,H 00, co)

where (H 0,H 00, co) is a C-Hodge triple of w (see Definition 2.4.28).
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Let us justify all understatements made in the definition of the category HM(X,w).
We note that we have used the  g,� functor in the category RFD-Triples(X). Remark
first:

Proposition 12.3.2. If M = (M 0,M 00, c) is an object of HM6d(X,w), then for M = M 0

or M 00, M is strict, as well as  g,�M and �g,1M for any analytic germ g, any � 2 S1

and any ` 2 Z. Moreover, grV↵ (D◆g⇤M ) is strict for every ↵ 2 R.

By the strictness property, M 0,M 00 are the Rees modules of some coherent fil-
tered holonomic DXmodules (M0, F •M0), (M00, F •M00). In this way, we obtain higher
dimensional analogues of the filtered triples of Remark 2.4.25(3).

Proof. Set M = M 0 or M 00. The strictness of M follows from (HSD), after Corollary
7.7.14. The strictness of grM`  g,�M for � 2 S1 is by definition, since the objects of
HM6d�1

(U,w�1+ `) are strict, according to (HSD). The strictness of  g,�M is then
clear by extension (or because M is strictly S-decomposable). To get the strictness
of grV↵ (D◆g⇤M ) for every ↵ 62 N, use 7.3.28(c) and (d).

Let us show the strictness of �g,1M (hence that of grV↵ (D◆g⇤M ) for every ↵ 2 N,
according to 7.3.28(d)). We can assume that M has pure support, according to
(HSD). If g ⌘ 0 on the support of M , then the strictness of �g,1M is a consequence of
the strictness of M , by Kashiwara’s equivalence 7.6.2. Otherwise, we know by strict
the pure support condition along g (see Proposition 7.7.2(1)) that var : �g,1M !

 g,1M (�1) is injective, hence the strictness of �g,1M is a consequence of that of
 g,1M .

We note also that we have locally finite strict S-decompositions M 0 = �Z0M 0
Z0

and M 00 = �Z00M 00
Z00 where Z 0 belongs to the set of strict irreducible components

of M 0 and Z 00 to that of M 00. For any open set U ⇢ X, the irreducible components
of all Z 0

\ U form the set of strict components of M 0
|U , and similarly for M 00. For

g : U ! C, we have  g,�M 0
Z0

U
= 0 for every � 2 S1 if g vanishes identically on the

strict component Z 0
U of M 0

|U , and has support of codimension one in Z 0
U otherwise.

The support of  g,�M 0
|U has therefore dimension 6 d� 1.

According to Remark 7.7.16, the strict components of M0 = M 0/(z�1)M 0 are those
of M 0, and similarly for M 00. Moreover, by Proposition 10.4.16, the component cZ0,Z00

of c on M00
Z00 ⌦C M0

Z0 vanishes unless Z 0 = Z 00. We denote therefore by cZ the
component of c when Z = Z 0 = Z 00 is a common strict component of M 0 and M 00.
We thus have an S-decomposition

(12.3.3) (M 0,M 00, c) = �Z(M
0
Z ,M

00
Z , cZ)

indexed by the set of strict components of M 0 or M 00. We will see below (Corollary
12.3.5) that the set of strict components is the same for M 0 and M 00, and that each
(M 0

Z ,M
00
Z , cZ) is a pure Hodge module of weight w.

With such a notation, (HM
0

) is concerned with the zero-dimensional strict com-
ponents, which are not seen by (HM>0

). Let us choose local coordinates x
1

, . . . , xn
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at xo. Then (HM
0

) says that

M 0
{xo} = H 0

⌦C C[gx1
, . . . , gxn

], M 00
{xo} = H 00

⌦C C[gx1
, . . . , gxn

],

and c{xo} is obtained by D
(X,X)

-linearity from its restriction to H0
⌦C H00. There, it

is equal to co · �xo
, where �xo

denotes the Dirac current at xo and co : H0
⌦C H00

! C
satisfies the w-opposedness property of Definition 2.4.27 with respect to the filtrations
on H0,H00 determined by the strict objects H 0,H 00.

It is easy to see now that the set of zero-dimensional strict components is the
same for M 0 and M 00: if {xo} is not a strict component of M 00 for example, then
M 00

{xo} = 0 and thus H 00 = 0. As co is non-degenerate, this implies that H 0 = 0,
therefore M 0

{xo} = 0 and {xo} is not a strict component of M 0.
We will now give the basic properties of right pure Hodge modules.

12.3.b. Locality. For any open set U ⇢ X, there exists a natural restriction functor

HM6d(X,w)
⇢U

���! HM6d(U,w).

Moreover, if M is any object of RFD-Triples(X) such that, for every open set U of a
covering of X, M|U is an object of HM6d(U,w), then M is an object of the category
HM6d(X,w).

12.3.c. Stability by direct summand

Proposition 12.3.4. If M = M
1

� M
2

is an object of HM6d(X,w), then each Mi

(i = 1, 2) also.

Proof. The property of holonomicity restricts to direct summands, as well as the
property of strict specializability (Exercise 7.3.31(1)) and the property of strict S-
decomposability (Lemma 7.7.8(2)). Then we argue by induction on d for (HM>0

).
For (HM

0

), we use Lemma 2.4.31.

Corollary 12.3.5. If M = (M 0,M 00, c) is an object of the category HM6d(X,w), then
the strict components of M 0 and M 00 are the same and the S-decomposition (12.3.3)
holds in HM6d(X,w). Moreover, HM6d(X,w) is the direct sum of the full subcate-
gories HMZ(X,w) consisting of objects having pure support on the irreducible closed
analytic subset Z ⇢ X of dimension 6 d.

Proof. We assume that there is a strict component Z 0 of M 0 which is not a strict
component of M 00. Then we have an object (M 0

Z0 , 0, 0) in HM6d(X,w), according to
the previous proposition. We wish to show that M 0

Z0 = 0, and it is enough, by the
condition of the pure support, to show the vanishing on the smooth locus of Z 0. We
can thus reduce to the case where Z 0 = X, according to Proposition 7.7.10.

We now argue by induction on dimX, the case dimX = 0 having been treated
above. Let t be a local coordinate on X. Arguing as in Corollary 7.7.14, one checks
that M 0

X/tM 0
X =  t,1M 0

X , and that  t,�M 0
X = 0 for � 2 S1 r {1}, as well as

�t,1M 0
X = 0. It follows that N = 0, so  t,1M 0

X is strictly S-decomposable, according
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to (HSD). By induction, the object  t,1(M 0
X , 0, 0) is zero. Hence M 0

X/tM 0
X = 0, and

by applying Nakayama’s lemma as in Corollary 7.7.14, we obtain MX = 0.
The remaining statement is easy.

12.3.d. Kashiwara’s equivalence. Let ◆Y denote the inclusion of Y as a closed
analytic submanifold of the analytic manifold X and let H◆

0

Y ⇤ be the pushforward
functor for RFD-triples.

Proposition 12.3.6. The functor H◆
0

Y ⇤ induces an equivalence between HM(Y,w) and
HMY (X,w) (objects supported on Y ).

Proof. By locality (Section 12.3.b), the result is local and it is enough to check the
case of a smooth hypersurface Y ⇥ {0} ⇢ Y ⇥C = X. Moreover, the point is to prove
essential surjectivity. We prove it for HM6d(Y,w) and HMY,6d(X,w) by induction on
d. The case d = 0 is by definition. For d > 1, we note that the functor H◆

0

Y ⇤ and its
inverse functor preserve (HSD), by Proposition 7.6.5 and Proposition 7.7.10. Then
(HM)>0

holds by induction on d and Proposition 7.6.5.

12.3.e. Generic structure of Hodge modules

Proposition 12.3.7. Let M be an object of HM(X,w)left having pure support on the
irreducible closed analytic set Z ⇢ X. Then there exists an open dense set Zo

⇢ Z

and a variation of Hodge structure H of weight w�codimZ on Zo, such that M|Zo =

H◆
� codimZ
Zo⇤ H. In particular, if Z = X, then M|Xo is a variation of Hodge structure

of weight w.

Note that we use Definition 4.1.10 for a variation of Hodge structure, in order to
have an object similar to the object M .

Proof. Set M = (M 0,M 00, c). Restrict first to a smooth open set of Z and apply
Kashiwara’s equivalence to reduce to the case when Z = X. On some dense open
set Xo of X, the characteristic variety of M 0 and M 00 is contained in the zero section.
By Exercise A.10.16 and Proposition 7.7.10 (that we can apply because of (HSD)),
M 0

|Xo and M 00
|Xo are eOXo -locally free of finite rank. Then, c|Xo takes values in C1

|Xo

(see Lemma 10.2.6). We now restrict to Xo.
Let t be a local coordinate. Then gr0V M = M /tM for M = M 0,M 00. After

Examples 10.4.36 and 10.4.37, gr0V c is the restriction of c to t = 0 as a C1 function.
We conclude that  t,1M is the pushforward T◆

�1

⇤ M|t=0

. It is also pure of weight
w � 1 since N is easily seen to be zero. Therefore, M|t=0

is pure of weight w and,
by induction on dimX, is a variation of Hodge structure of weight w. The assertion
follows.

12.3.f. Morphisms

Proposition 12.3.8. There is no nonzero morphism (in RFD-Triples(X)) from an object
in the category HM(X,w) to an object in HM(X,w0) if w > w0.
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Proof. Let ' : M
1

! M
2

be such a morphism. According to Corollary 12.3.5, we can
assume that both have the irreducible closed analytic set Z as their pure support. As
the result is clear for smooth Hodge structures (see Proposition 2.4.5(2)), it follows
from Proposition 12.3.7 that the support of Im' is strictly smaller than Z. By
definition of the pure support (see Definition 7.7.9), this implies that Im' = 0.

Proposition 12.3.9. The category HM(X,w) is abelian, all morphisms are strict and
strictly specializable.

Proof. Let us introduce the subcategory WHM(X) of RFD-Triples(X), the objects of
which are triples with a finite filtration W• indexed by Z such that, for every `, grW`
is in HM(X, `). The morphisms in WHM(X) are the morphisms of RFD-Triples(X)

which respect the filtration W . Let us consider both properties:
(ad) HM6d(X,w) abelian, all morphisms are strict and strictly R-specializable;
(bd) WHM6d(X) abelian and morphisms are strict and strictly compatible with

the filtration W .
Let us start with (a

0

). Abelianity and strictness follow from Kashiwara’s equiva-
lence 12.3.6 since, by Exercise 2.4.3(2), the same properties hold in dimension zero.
By using Proposition 7.6.5, one checks that strict R-specializability of morphisms
holds if and only if it holds in dimension zero, where the property is trivially true.

(ad) ) (bd). We note first that, by Proposition 12.3.2 and Lemma A.2.9(1), the
eDX -modules which are components of an object in WHM6d(X) are strict. Accord-
ing to Propositions 12.3.8 and A.2.10, (ad) implies that the category WHM6d(X) is
abelian and that morphisms are strictly compatible with W . Using Lemma A.2.9(2),
we conclude that all morphisms are strict.

(bd�1

) ) (ad) for d > 1. The question is local. Let ' = ('0,'00) : M
1

! M
2

be a
morphism of pure Hodge modules of weight w. According to Proposition 12.3.8, we
can assume that all the eDX -modules involved have pure support Z (closed irreducible
analytic subset of X) of dimension d. We will first show that Ker' and Coker' are
also strictly R-specializable, S-decomposable and have pure support Z.

Let g be the germ of an analytic function not vanishing identically on Z. Then,
setting W• := M[w � 1]•,

�

 g,�M1

,W•

�

,
�

 g,�M2

,W•

�

are objects of WHM6d�1

(X)

for � 2 S1 by definition, so (bd�1

) implies that  g,�'
0, g,�'

00 are strict. We will
show below that

• �g,1'
0 and �g,1'00 are strict (hence so are grV↵ D◆g⇤'

0, grV↵ D◆g⇤'
00 for every ↵ 2 R,

according to 7.3.24(3) and (4)),
• can is onto for Ker'0 and Ker'00, and
• var is injective for Coker'0 and Coker'00.

The first assertion will be enough to show that '0 and '00 are strictly R-specializa-
ble, hence Ker'0, . . . ,Coker'00 are also strictly R-specializable (Proposition 7.3.33).
The two other assertions will insure that these modules satisfy Properties 7.7.2(1)
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and (2), hence are strictly S-decomposable along {t = 0} and have neither sub nor
quotient module supported on Z \ {g = 0}. Applying this for any such g implies that
Ker'0, . . . ,Coker'00 are strictly S-decomposable and have pure support Z. Now,
Ker'0, . . . ,Coker'00 are clearly holonomic, hence they are also strict (see Corollary
7.7.14). We now have obtained that ' is strict and strictly specializable.

Let us come back to the proof of the previous three assertions. As var is injective
for M 0 and M 00, we identify �g,1'0 to the restriction of  g,1'

0 on ImN ⇢  g,1M 0
1

(�1),
and similarly for '00. By the inductive assumption, the morphism

N :
�

 g,1Mk,M•(N)
�

�!

�

 g,1Mk(�1),M[2]•(N)
�

is strict, for k = 1, 2 (we know that it is strictly compatible with the filtration M,
according to Lemma 3.1.15. Moreover, ImN is an object of WHM6d�1

(X). Note
also that, according to Lemma 3.1.15, we have N(M• g,1Mk) = M[1]•(N| ImN

). Using
once more this inductive assumption, the restriction of  g,1' on ImN is strict, hence
the first point.

In order to show the other assertions, consider the following diagram of exact
sequences (and the similar diagram for '00):

0 !  g,1 Ker'0 //

can
✏✏

 g,1M 0
1

 g,1'
0
//

can
✏✏✏✏

N
1

��

 g,1M 0
2

//

can
✏✏✏✏

N
2

��

 g,1 Coker'
0
! 0

can
✏✏✏✏

0 ! �g,1 Ker'0 //
� _

var
✏✏

�g,1M 0
1

�g,1'
0
//

� _

var
✏✏

�g,1M 0
2

//
� _

var
✏✏

�g,1 Coker'
0
! 0

var
✏✏

0 !  g,1 Ker'0 //  g,1M 0
1

 g,1'
0
//  g,1M 0

2

//  g,1 Coker'
0
! 0

where the shift (�1) of the lower line is omitted in the notation, for simplicity. We
have to prove that the left up can is onto and that the right down var is injective. This
amounts to showing that ImN

1

\Ker g,1'
0 = N

1

(Ker g,1'
0) (because this is equiva-

lent to Im can\Ker�g,1'
0 = can(Ker�g,1'

0)) and ImN
2

\Im g,1'
0 = N

2

(Im g,1'
0).

This follows from Lemma 3.1.7 applied to the germs of the various sheaves.
To end the proof of (bd�1

) ) (ad), it remains to be proved that Ker' and
Coker' satisfy (HM>0

). It follows from the abelianity of WHM6d�1

(X) and from the
strict R-specializability of ' that  g,� Ker' and  g,� Coker' (with � 2 S1) are in
WHM6d�1

(X) and, as we have seen in Lemma 3.1.7, the weight filtration is the mon-
odromy filtration. This gives (HM>0

), concluding the proof of Proposition 12.3.9.

Corollary 12.3.10. Given any morphism ' : M
1

! M
2

between objects of HM(X,w)

and any germ g of holomorphic function on X, then, for every � 2 S1, the specialized
morphism  g,�' is strictly compatible with the monodromy filtration M• and, for every
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` 2 Z, grM`  g,�' decomposes with respect to the Lefschetz decomposition, i.e.,

grM`  g,�' =

(

L

k>0

NkP`+2k g,�' (` > 0),
L

k>0

Nk�`P�`+2k g,�' (` 6 0).

In particular we have
grM`  g,� Ker' = Ker grM`  g,�'

and similarly for Coker, where, on the left side, the filtration M• is that induced
naturally by M• g,�M1

or, equivalently, the monodromy filtration of N acting on
 g,� Ker' = Ker g,�'.

Corollary 12.3.11. If M is in HM6d(X,w), then the Lefschetz decomposition for
grM`  g,�M (with � 2 S1) holds in HM6d�1

(X,w � 1 + `).

Proof. Indeed, N : grM`  g,�M ! grM`�2

 g,�M(�1) is a morphism in the category
HM6d�1

(X,w � 1 + `), which is abelian, so the primitive part is an object of this
category, and therefore each term of the Lefschetz decomposition is also an object of
this category.

12.3.g. Vanishing cycles. Let M be an object of HM6d(X,w). By definition, for
any locally defined analytic function g, the object ( g,1M,M[w� 1]•(N)) is an object
of WHM6d(X).

Corollary 12.3.12 (Vanishing cycles). For such an M , the object (�g,1M,M[w]•(N)) is
in WHM6d(X). Moreover, the morphisms can, var are filtered morphisms

( g,1M,M[w � 1]•(N))
can

����! (�g,1M,M[w]•(N))

(�g,1M,M[w]•(N))
var

����! ( g,1M(�1),M[w + 1]•(N)),

hence are morphisms in WHM(X), and similarly for grM�1

can and grM�1

var.

Proof. We can assume that M has pure support an irreducible closed analytic subset Z
of X. If g ⌘ 0 on Z, then the result follows from Kashiwara’s equivalence.

Assume now that g 6⌘ 0 on Z. The object �g,1M is equipped with the filtration
W•�g,1M naturally induced by M[w� 1]•(N) g,1M . As such, it is identified with the
image of N :

�

 g,1M,M[w�1]•(N)
�

!

�

 g,1M(�1),M[w+1]•(N)
�

, hence is an object
of WHM(X), because this category is abelian.

The result now follows from Lemma 3.1.15, which gives in particular that
W•�g,1M = M[w]•(N)�g,1M .

12.3.h. Left pure Hodge modules. The definition of left pure Hodge modules
differs from that of right pure Hodge modules by a shift in dimension zero, due to the
fact that the pushforward by an embedding Y ,! X shifts the weight by � codimY

in the left case, while it has no effect in the right case.
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Definition 12.3.13 (Pure Hodge modules (left case)). The category HM6d(X,w)left is
the full subcategory of RFD-Triples(X)left for which the objects are triples M =

(M 0,M 00, c) satisfying:
(HSD) M 0,M 00 are holonomic, strictly S-decomposable, and have support of dimen-
sion 6 d.
(HM>0

) For any open set U ⇢ X and any holomorphic function g : U ! C, for
every � 2 S1 and any integer `, the triple

grM`  g,�M :=
⇣

grM`  g,�(M
0), grM�` g,�(M

00), grM`  g,�c
⌘

,

a priori defined as an object of RFD-Triples(X), is an object of HM6d�1

(U,w�1+`).
(HM

0

) For any zero-dimensional strict component {xo} of M 0 or M 00, we have

(M 0
{xo},M

00
{xo}, c{xo}) = D◆

�n
{xo}⇤(H

0,H 00, co),

where (H 0,H 00, co) is a C-Hodge triple of weight w+n (see Definition 2.4.28) and the
pushforward is taken in the left setting, that we can also write [D◆0{xo}⇤(H

0,H 00, co)]left.

Proposition 12.3.14 (Side-changing for HM). The side-changing functor

RFD-Triples(X)left 7�! RFD-Triples(X)right

induces an equivalence HM6d(X,w)left ' HM6d(X,w + dimX)right.

As a consequence, all properties of right pure Hodge modules are transferred to left
pure Hodge modules. Let us simply mention Kashiwara’s equivalence for the inclusion
◆Y : Y ,! X.

Proposition 12.3.15 (Kashiwara’s equivalence for left pure Hodge modules)
The functor H◆

� codimY
Y ⇤ induces an equivalence

HM(Y,w) ' HMY (X,w � codimY ).

12.3.i. Graded Hodge-Lefschetz modules. We now go back to the right set-
ting. Given " = ±1, we can define the category HLM6d(X,w; ") of graded Hodge-
Lefschetz modules as in Section 3.2.a: the objects are pairs (M,L), with M = �Mj ,
and Mj are objects of HM6d(X,w + "j); L is a graded morphism M ! M [2](�") of
degree �2, that is, for every j, L induces a morphism Mj ! Mj�2

(�"), such that,
for j > 0, Lj : Mj ! M�j(�"j) is an isomorphism. We note that PMj is an object
of HM6d(X,w + "j), by Proposition 12.3.9, and the Lefschetz decomposition of Mj

holds in HM6d(X,w + "j); moreover, the category HLM6d(X,w; ") is abelian, any
morphism is graded with respect to the Lefschetz decomposition, and moreover is
strict and strictly specializable, as follows from Proposition 12.3.9.

Remark 12.3.16. Let M be an object of HM6d(X,w) and let g : X ! C be a holomor-
phic function. Then for every � 2 S1, (

L

` gr
M

`  g,�M,N) is an object of the category
HLM6d�1

(X,w � 1; 1) and (grM• �g,1M, grM�2

N) is an object of HLM6d(X,w; 1).
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More generally, for every k > 0 and " = ("
1

, . . . , "k) = (±1, . . . ,±1), we can
define the category HLM6d(X,w; ") of k-graded Hodge-Lefschetz modules: the objects
are tuples (M,L), with L = (L

1

, . . . ,Lk), M = �j2ZkMj , each Mj is an object in
HM6d

�

X,w+" · j
�

with " · j :=
P

i "iji, the morphisms Li should pairwise commute,
be of k-degree (0, . . . ,�2, . . . , 0) and for every j with ji > 0, Lji

i should induce an
isomorphism from Mj to the component where ji is replaced with �ji; the primitive
part PMj , for j

1

, . . . , jk > 0, is the intersection of the KerLji+1

i and we have a
Lefschetz multi-decomposition, with respect to which any morphism is multi-graded.
The category is abelian, and any morphism is strict and strictly R-specializable.

Lemma 12.3.17. Let (M,L) be an object of the category HLM6d(X,w; "). Then,
for every � 2 S1, the specialized object

�

grM•  t,�M, (grM•  t,�L,N)
�

is an object of
HLM6d�1

�

X,w� 1; (", 1)
�

and P
L

grM`  t,�Mj = grM`  t,�PL

Mj , where P
L

denotes the
multi-primitive part with respect to L.

Proof. The lemma is a direct consequence of the strict compatibility of the  t,�Li

with the monodromy filtration M(N), as follows from Proposition 12.3.9.

Lemma 12.3.18. The category HLM6d(X,w; ") has an inductive definition analogous
to that of HM6d(X,w), where one replaces the condition (HM>0

) with the condition
(HLM>0

), asking that
�

grM•  t,�(M,L),N
�

is an object of HLM6d�1

�

X,w � 1; (", 1)
�

,
and the condition (HM

0

) with the analogous property (HLM
0

).

Proof. According to the previous lemma, it is enough to show that, if (M,L) satisfies
the inductive conditions, then it is an object of HLM6d(X,w; "). This is done by
induction on d, the case d = 0 being easy. One shows first that each Mj is in
HM6d(X,w + " · j) for every j and that  t,�L

ji
i is an isomorphism from  t,�Mj

to  t,�Mj1,...,�ji,...,jk(�"iji) for every i = 1, . . . , k, any j with ji > 0, any local
coordinate t and any � 2 S1. Considering the decomposition with respect to the
support, one deduces that Lji

i is an isomorphism from Mj to Mj1,...,�ji,...,jk(�"iji).

Exercise 12.3.19 (Left Hodge-Lefschetz modules). Define the category HLM6d(X,w; ")left

and show the equivalence

HLM6d(X,w; ")left
left-to-right
�������!

⇠
HLM6d(X,w + dimX; ")right.

12.4. Polarization

12.4.a. Polarized/polarizable Hodge modules. We also define the notion of po-
larization by induction on the dimension of the support.

Definition 12.4.1 (Polarization). A polarization of an object M of HM6d(X,w) is a
morphism Q : M ! M⇤(�w) which is (�1)w-Hermitian (i.e., a pre-polarization of
weight w in the sense of Section 12.2.a) such that:
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(PHM>0

) for any open set U ⇢ X and any holomorphic function g : U ! C, for any
� 2 S1 and any integer ` > 0, the morphism (1) P` g,�Q induces a polarization of the
object P` g,�M of HM6d�1

(U,w � 1 + `),
(PHM

0

) for any zero-dimensional strict component {xo} of M , we have Q =

D◆
0

{xo}⇤Qo, where Qo is a polarization of the zero-dimensional Hodge structure
(H 0,H 00, co) of weight w (see Condition (HM

0

)) as in Definition 2.4.36.

Remarks 12.4.2.

(1) We note that Condition (PHM>0

) is meaningful because of Exercise 10.4.10.
(2) Conditions (PHM>0

) and (PHM
0

) imply that Q is an isomorphism M
⇠
�!

M⇤(�w). Indeed, one can assume that the pure support of M has only one compo-
nent Z. If it is of dimension zero, we apply Remark 2.4.18(1). In dimension > 1,
it is enough to prove that Q is an isomorphism on a dense open set of Z since, by
definition of the pure support, this implies that Q is an isomorphism. By Proposition
12.3.7, we are reduced to the case where M underlies a variation of Hodge structure
of weight w (up to side-changing), for which we refer to Exercise 4.1.12(2).

(3) We say that an object M of HM6d(X,w) is polarizable if it admits a polar-
ization Q. For a given polarization Q, the pair (M,Q) is called a polarized Hodge
module. Often we do not need to make precise the polarization, but it is important to
understand the behaviour of a given polarization by means of various functors applied
to a polarizable Hodge module in order to be able to conclude, by exhibiting in this
way a polarization, that the image through these functors remains polarizable.

We will denote by pHM6d(X,w) the full subcategory of HM6d(X,w) of polariz-
able objects. Notice that, with this definition, morphisms are not supposed to be
compatible with the polarizations if one is given such polarizations on the source and
the target. According to Corollary 7.7.13, for an object M in pHM6d(X,w) and a
polarization Q on it, we have an S-decomposition

(12.4.3) (M,Q) =
L

Z

(MZ ,QZ).

The following proposition is easy:

Proposition 12.4.4.

(1) In the situation of Proposition 12.3.4, if a polarization Q is the direct sum of
two morphisms Q

1

and Q
2

, then each Qi is a polarization of Mi.
(2) Corollary 12.3.5 holds for pHM6d(X,w).
(3) Kashiwara’s equivalence of Section 12.3.d holds for pHM(X,w).
(4) Proposition 12.3.7 holds for pHMZ(X,w).

Remark 12.4.5 ((�1)w-Hermitian Hodge pair). Let (M,Q) be a polarized Hodge triple
of weight w. Since Q is non-degenerate (Remark 12.4.2(2)), (M,Q) is isomorphic to a

1. See Caveat 12.2.6.
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polarized Hodge triple (M 0,M 0(w), c0) of weight w, for some suitable c0, with polar-
ization ((�1)w Id, Id). We call (�1)w-Hermitian Hodge pair a pair (M , c) such that
((M ,M (w), c), ((�1)w Id, Id)) is a polarized Hodge triple of weight w. In particular,
the sesquilinear pairing c is (�1)w-Hermitian on M.

If (M , c) is a (�1)w-Hermitian Hodge pair, then for every ` > 0, P` g,�(M , c) :=
(P` g,�M ,P` g,�c) is a (�1)w�1+`-Hermitian Hodge pair.

12.4.b. Semi-simplicity

Proposition 12.4.6. If M
1

is a subobject (in the category HM(X,w)) of a polarized
object (M,Q), then Q induces a polarization Q

1

of M
1

and (M
1

,Q
1

) is a direct sum-
mand of (M,Q) in pHM(X,w). In particular, the category pHM(X,w) is semisimple
(all objects are semisimple and morphisms between simple objects are zero or isomor-
phisms).

Proof. We can assume that the pure support of M has only one component Z. If
its dimension is zero, we apply Exercise 2.4.22. If dimZ > 1, we consider the exact
sequences

0 M⇤
1

(�w)oo M⇤(�w)
i⇤oo M⇤

2

(�w)oo 0oo

0 // M
1

i //

Q
1

OO

M //

Q o

OO

M
2

// 0

where M
2

is the cokernel, in the abelian category HM(X,w), of M
1

,! M . We want
to show first that Q

1

is an isomorphism. For this, we argue as in Remark 12.4.2(2),
by reducing to checking the property on a smooth open dense set of Z, where we can
apply Exercise 4.1.14(1).

We conclude that we have a projection p = Q�1

1

� i⇤ � Q : M ! M
1

such that
p � i = Id, and a decomposition M = M

1

� Q�1M⇤
2

(�w). We apply Proposition
12.4.4(1) to show that M

2

is polarizable.

12.4.c. Polarized/polarizable Hodge-Lefschetz modules. Let (M,L) be an ob-
ject of HLM(X,w; ") and (M,L)⇤ := (M⇤,�L⇤) denote its adjoint object. A pola-
rization Q is a (multi) graded morphism Q : M ! M⇤(�w) (i.e., Q sends M`

to M⇤
` (�w) = (M�`)

⇤(�w)), such that each Li is skew-adjoint with respect to Q

(i.e., Q is a morphism (M,L) ! (M,L)⇤(�w)) and that, for every ` = (`
1

, . . . , `k)

with nonnegative components, the induced morphism (see Section 3.2.b)

L⇤`1
1

· · ·L⇤`k
k �Q : M` �! (M`)

⇤(�w � " · `)

induces a polarization of the object P
L

M` of HM(X,w + " · `).

Lemma 12.4.7. The full subcategory pHLM(X,w; ") of polarizable objects of the cate-
gory HLM(X,w; ") has an inductive definition as in Definition 12.4.1.



302 CHAPTER 12. PURE HODGE MODULES

Proof. This directly follows from the commutativity of P
L

and grM`  t,� shown in
Lemma 12.3.17.

Exercise 12.4.8. Show that the conclusion of Proposition 12.4.6 holds for pHLM(X,w; ").

Corollary 12.4.9. Let (M,L) be an object of pHLM(X,w; ") with pure support Z

and polarization Q. Let g : U ! C be a holomorphic function 6⌘ 0 on Z. Then
�

grM• �g,1(M,L),N
�

is an object of pHLM(X,w; ", 1) with polarization induced by Q.

Proof. Apply the Lefschetz analogue of Corollary 12.3.12 and Exercise 12.4.8.

Proposition 12.4.10. Let (M,L) be an object of pHLM(X,w; "). Then each sum-
mand M` is an object of pHM(X,w + " · `).

Proof. Let us fix a polarization Q of (M,L). Let us define w = w
1

· · ·wk, where wi

is relative to Li. As in Proposition 3.2.27, one first checks that w⇤
� Q induces a

polarization of M` for ` > 0, since w commutes with taking Pj g,� for every j > 0 for
any locally defined holomorphic function g (here, Pj is taken with respect to N). One
then conclude that M` is polarizable for arbitrary ` by using isomorphisms induced
by powers of Li (i = 1, . . . , k).

Proposition 12.4.11. The conclusions of Propositions 3.2.28 and 3.2.32 remain valid
for graded Hodge-Lefschetz modules.

Proof.
(1) Let us begin with Proposition 3.2.28. We will denote by L,L0 the nilpotent

operators on M,M 0. Firstly, we remark that c(M`+1

) and Ker v|M 0
`

are objects of
HM(X,w + "`), according to Proposition 12.3.9.

Let us show that Im c and Ker v are subobjects of M 0 in HLM(X,w; "), that is, for
every ` > 0, L0` induces an isomorphism c(M`+1

)
⇠
�! c(M�`+1

) and Ker v|M 0
`

⇠
�!

Ker v|M 0
�`

. Clearly, KerL0` = 0, since this holds on M 0
`. We need to check that

Coker L0` = 0. We know in any case that Coker L0` is an object of HM(X,w + "`).
We prove the assertion by induction on the dimension of the support of M 0

`. The
case where this dimension is zero is precisely furnished by Proposition 3.2.28. We
will treat the case of Im c, and the case of Ker v is similar. We can assume that
the pure support of M 0

` is an irreducible closed analytic subset Z 2 X. We claim
that there exists a Zariski-dense open subset Zo

⇢ Z where Coker L0` correspond to
a variation of Hodge structure: if Coker L0`

6= 0, its pure support is equal to Z, by
the definition of the pure support of M 0

`, and the assertion follows from Proposition
12.4.4(4); otherwise, Coker L0` = 0 and the assertion is clear.

Let us choose a local coordinate t on Zo, hence on X, and let us consider the
nearby cycle functor  t,1. It is enough to prove that  t,1 Coker L

0` = 0, since this
will prove that the restriction to t = 0 of the corresponding variation is zero. Since
t = 0 is strictly non-characteristic for Coker L0`, the corresponding N is zero and the
monodromy filtration is trivial.
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We know that c and  t,� commute since c is strictly R-specializable (see Proposition
12.3.9). It follows that, by induction,  t,�L

0` :  t,�c(M`+1

) !  t,�c(M�`+1

) is an
isomorphism for every �, `. Since L0` : c(M`+1

) ! c(M�`+1

) is a morphism of Hodge
structures, it is strictly R-specializable, and thus  t,� Coker L

0` = Coker t,�L
0` = 0,

as wanted.
By Lemma 12.4.8, Im c and Ker v decompose as direct sums of simple objects in

HLM(X,w; "), so their intersection is an object in the same category. By the same ar-
gument as above, using induction on the dimension, the intersection Im c \Ker v van-
ishes. Similarly, the direct summand of Im c�Ker v in M 0 is an object of HLM(X,w; ")

and also vanishes by induction. We therefore have a decomposition M 0 = Imc�Ker v

in HLM(X,w; ").
(2) Let us now consider Proposition 3.2.32. So, let

�

(Mj1,j2)j2Z2 ,L
1

,L
2

�

be an
object of pHLM(X,w; "

1

, "
2

) with a polarization Q. We assume that it comes equipped
with a bi-graded differential, which is a morphism d : Mj1,j2 ! Mj1�1,j2�1

(�")

(" := ("
1

+ "
2

)/2) in HM(X,w+ "
1

j
1

+ "
2

j
2

), of bi-degree (�1,�1), which commutes
with L

1

and L
2

and is self-adjoint with respect to Q. In particular, d is strict and
strictly specializable (Proposition 12.3.9) and we have, for any germ g of holomorphic
function, any � 2 S1 and any ` > 0,

P` g,�(Ker d/ Im d) = Ker(P` g,�d)/ Im(P` g,�d)

(see Corollary 12.3.10). By induction on the dimension of the support, we can as-
sert that

�

P` g,�(Ker d/ Im d),P` g,�L
�

is an object of HLM(X,w � 1 + `; ") with
polarization P` g,�Q, and we conclude with Lemma 12.4.7.

Corollary 12.4.12 (Degeneration of a spectral sequence). Let (M•, d) be a bounded com-
plex in RFD-Triples(X), with d : M j

! M j+1 and d � d = 0. Let us assume that it is
equipped with the following data:

(a) a morphism of complexes Q : (M•, d) ! (M•, d)⇤(�w) which is (�1)w-
Hermitian, that is, for every k, a morphism Q : Mk

! (M�k)⇤(�w) which is
compatible with d and d⇤, and such that Q⇤ = (�1)wQ,

(b) a morphism L : (M•, d)!(M•
+2(1), d) which is skew-adjoint with respect to Q,

(c) a morphism N : (M•, d)! (M•(�1), d) which is nilpotent, commutes with L,
and skew-adjoint with respect to Q, with monodromy filtration of M•(N).

Let us consider the spectral sequence associated to the filtered complex (M�`M
•, d)

with E`,j�`
1

= H jgrM�`M
•. We assume that

L

j,`

⇣

E`,j�`
1

= H j(grM�`M
•
), (H jgrM�`L,H

jgrN),H jgrM�`Q
⌘

is a polarized object of HLM(X,w;�1, 1). Then,
(1) the spectral sequence degenerates at E

2

,
(2) the filtration W•H j(M•) naturally induced by M•M

• is the monodromy filtra-
tion M• associated to H jN : H j(M•) ! H j(M•),
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(3) the object

L

j,`

⇣

grM�`H
j(M

•
), (grM�`H

jL, grH jN), grM�`H
jQ

⌘

is a polarized object of HLM(X,w;�1, 1).

Proof. Let us first make clear the statement. Note that we use the bi-grading as in
Remark 3.1.17. Since d and L commute with N, d and L are compatible with the
monodromy filtration M•(N), hence we have a graded complex (grM�`M

•, d), and L

induces for every ` a morphism grM�`L : (grM�`M
•, d) ! (grM�`M

•
+2, d), and thus a

morphism H jgrM�`L : E`,j�`
1

! E`,j+2�`
1

. Similarly, H jgrN is a morphism E`,j�`
1

!

E`+2,j�`�2

1

. We consider the bi-grading such that E`,j�`
1

is in bi-degree (j, `).
The differential d

1

: H j(grM�`M
•) ! H j+1(grM�`�1

M•) is a morphism of bi-degree
(1, 1) in HM(X,w + j � `). We will check below that d

1

is self-adjoint with respect
to H jgrM�`Q. From the analogue of Proposition 3.2.32 (see Proposition 12.4.11), we
deduce that

L

j,` E
`,j�`
2

is part of an object of pHLM(X,w;�1, 1). Now, one shows
inductively that, for r > 2, dr : E`,j�`

2

! E`+r,j�`�r+1

2

is a morphism of pure Hodge
modules, the source having weight w+j�` and the target w+j�`�r+1 < w+j�`

and thus, by applying Proposition 12.3.8, that dr = 0. This gives the result.

Proof that d
1

is self-adjoint. We regard grM�`Q as a morphism grM�`M
k
! (grM` M�k)⇤.

It is compatible with d and d⇤ on these complexes, since N commutes with d. Then,
H jgrM�`Q is a morphism H jgrM�`M

•
! (H �jgrM` M�•)⇤. Since d

1

is obtained by a
standard formula from d on the filtered complex, the equality Q � d = d⇤ �Q implies
H jgrM�`Q � d

1

= (d
1

)⇤ � H jgrM�`Q.

12.4.d. Polarized vanishing cycles.

Proposition 12.4.13 (Polarizability of vanishing cycles). Let M be a polarizable Hodge
triple of weight w, i.e., an object of pHM(X,w). Then for any holomorphic function
g : U ! C, the object (grM• �g,1M, grN) of HLM(U,w; 1) (see Remark 12.3.16) is
polarizable.

Proof. We will make explicit a polarization, starting from a polarization Q of M .
Since (M,Q)|U is strictly S-decomposable after (12.4.3), we can assume that M|U has
pure support an irreducible closed analytic subset Z of U . If g vanishes identically
on Z, then �g,1M = M and N = 0, so there is nothing to prove. We can thus assume
that M is a middle extension along (g), so �g,1M = Im[N :  g,1M !  g,1M(�1)].
We define Q� on �g,1M as the morphism induced by N⇤

� ((�1)w g,1Q, g,1Q)

(see Proposition 3.2.25 and Lemma 3.1.16). We can then argue as in Proposition
3.2.25 to obtain the polarization property from that of P`+1

 g,1Q on P`+1

 g,1M .
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12.5. Comments

The relation between Hodge theory and the theory of nearby or vanishing cycles
in dimension bigger than one starts with the work of Steenbrink [Ste76, Ste77].
It concerns one-parameter families of projective varieties, regarded as proper func-
tions from a complex manifold to a disc. A canonical Hodge structure is constructed
on the cohomology of the nearby fibre of a singular fibre of the family by means of
replacing the special fibre with a divisor with normal crossings and by computing
the nearby or vanishing cohomology in terms of a logarithmic de Rham complex, in
order to apply Deligne’s method in [Del71b]. This gives a geometric construction of
Schmid’s limit mixed Hodge structure in the case of a variation of geometric origin.
The need of passing from the assumption of unipotent monodromy, as used in the
work of Schmid [Sch73] to the assumption of quasi-unipotent monodromy is justified
by this geometric setting. This leads Steenbrink [Ste77] to developing the notion
of logarithmic de Rham complex in the setting of V-manifolds. Steenbrink also ob-
tains, as a consequence of this construction, the local invariant cycle theorem and
the Clemens-Schmid exact sequence. We can regard this work as the localization of
Hodge theory in the analytic neighbourhood of a projective variety.

The work of Varchenko [Var82] and others on asymptotic Hodge theory has lo-
calized even more Hodge theory. This work is concerned with an isolated singularity
of a germ of holomorphic function and it constructs a Hodge-Lefschetz structure on
the space of vanishing cycles of this function, by taking advantage that the vanishing
cycles are supported at the isolated singularity, which is trivially a projective vari-
ety. The construction of Varchenko has been later analyzed in terms of D-modules
by Pham [Pha83], Saito [Sai83b, Sai83a, Sai84, Sai85] and Scherk-Steenbrink
[SS85]. It is then natural to consider the cohomology of the vanishing cycle sheaf of
a holomorphic function on a complex manifold whose critical locus is projective, but
possibly not the special fibre of the function, and to ask for a mixed Hodge structure
on it.

The theory of polarizable Hodge modules, as developed by Saito in [Sai88], em-
phasizes the local aspect of Hodge theory, by constructing a category defined by
local properties in a way similar, but much more complicated, to the definition of
a the category of variations of Hodge structure. It can then answer the question
above. This idea has proved very efficient, eventually allowing to use the formalism of
Grothendieck’s six operations in Hodge theory. Many standard cohomological results,
like the Clemens-Schmid exact sequence and the local invariant cycle theorem, can
be read in this functorial way.

The definition of complex Hodge modules as developed here, not relying on a
Q-structure and on the notion of a perverse sheaf, is inspired by the extension of
the notion of polarizable Hodge module to twistor theory, as envisioned by Simp-
son [Sim97], and achieved by Sabbah [Sab05] and Mochizuki [Moc07, Moc15],
although the way the sesquilinear pairing is used on both theories is not exactly
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the same. As already mentioned in the comments of Chapter 10, the idea of using
sesquilinear pairings in the framework of germs of holomorphic functions was devel-
oped by Barlet [Bar85] with the perspective of making the link between asymptotic
Hodge theory on the vanishing cycles of germs of functions with isolated singulari-
ties and the classical notion of polarization. On the other hand, the idea of using
sesquilinear pairings in the framework of holonomic D-modules is due to Kashiwara
[Kas87].


