
CHAPTER 11

D-MODULES OF NORMAL CROSSING TYPE

Summary. This chapter, although somewhat technical, is nevertheless essential
to understand the behaviour of Hodge modules when the singularities form a
normal crossing divisor. It analyzes the compatibility properties on a given
R-specializable D-module with respect to various functions, when these functions
form part of a coordinate system. The results of this chapter will therefore be
of a local nature.

11.1. Introduction

Notation 11.1.1. In this chapter, the setting is as follows. The space X = �n is a
polydisc in Cn with analytic coordinates x

1

, . . . , xn, we fix ` 6 n and we denote
by D the divisor {x

1

· · ·x` = 0}. We also denote by Di (i = 1, . . . , `) the smooth
components of D and by D

(`) their intersection D
1

\ · · · \ D`. We will shorten the
notation C[x

1

, . . . , x`] into C[x] and C[x
1

, . . . , x`]h@x1 , . . . , @x`
i into C[x]h@xi. We will

set I = {1, . . . , `}.
Given a non-constant monomial function vanishing on D at most, that we denote

by g = xa = xa1
1

· · ·xa`

` (ai > 0 for i 2 I and ai > 0 for some i), we denote by Ig ⇢ I

the non-empty set of i 2 I such that ai 6= 0.
We will mainly consider right D-modules.

Simplifying assumptions 11.1.2. All over this section, we will consider the simple case
where ` = n, that is, D

(`) is reduced to the origin in �n, in order to make the
computations clearer. We then have I = {1, . . . , n}. The general case ` 6= n brings
up objects which are OD(`)

-locally free and the adaptation is straightforward.

The notion of coherent DX -module of normal crossing type is a natural generaliza-
tion to higher dimension of the case of a regular holonomic D-module in dimension
one, as considered in Section 6.2. In terms of D-module theory, that we will not use,
we could characterize such D-modules as the regular holonomic D-modules whose
characteristic variety is adapted to the natural stratification of the divisor D. In
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other words, these are the simplest objects in higher dimension, that we analyze in
Section 11.2.b. Adding an F -filtration to the picture leads us to take much care of
the behaviour of this filtration with respect to the various V -filtrations along the
components Di of the divisor D. The compatibility property (Definition 8.3.9), is
essential in order to have a reasonable control on various operations on these filtered
D-modules.

Our main objective in this chapter is to compute the nearby cycles of such filtered
D-modules along a monomial function (with respect to coordinates adapted to D).
This will be done in Section 11.3. Lastly, we will also compute the behaviour of a
sesquilinear pairing with respect to this functor, and we will end by making even more
explicit the example of a simple coherent filtered D-module of normal crossing type.

11.2. Normal crossing type

Let M be a coherent DX -module. Assume that M is R-specializable along each
component Di of D. How do the various V -filtrations interact? The notion of normal
crossing type aims at reflecting that these V -filtrations behave independently, i.e.,
without any interaction. In other words, the transversality property of the compo-
nents of D is extended to the transversality property of the V -filtrations. Similarly,
for a coherent filtered DX -module (M, F•M), we will express the independence of the
V -filtrations in the presence of F•M.

11.2.a. C[x]h@xi-modules of normal crossing type. In this section, we consider
the algebraic setting where we replace the sheaf DX with the ring C[x]h@xi and cor-
respondingly (right) DX -modules with (right) C[x]h@xi-modules, that we denote by a
capital letter like M .

Let us consider, for every ↵ 2 Rn, the subspace M↵ of M defined by

M↵ =
T

i2I

S

k

Ker(xi@xi
� ↵i)

k.

This is a C-vector subspace of M . The endomorphism xi@xi
acting on M↵ will be

denoted by Ei and 2⇡ i(xi@xi
� ↵i)[5] by Ni. The family (N

1

, . . . ,Nn) forms a com-[5] !2⇡ i

muting family of endomorphisms of M↵, giving M↵ a natural C[N
1

, . . . ,Nn]-module
structure, and every element of M↵ is annihilated by some power of each Ni. More-
over, for i 2 I, the morphism xi : M ! M (resp. @xi

: M ! M) induces a C-linear
morphism xi : M↵ ! M↵�1i

(resp. @xi
: M↵ ! M↵+1i

). For each fixed ↵ 2 Rn, we
have

M↵ \

✓

X

↵0 6=↵

M↵0

◆

= 0 in M.

Indeed, for m =
P

↵0 6=↵ m↵0 , if m 2 M↵, then m �

P

↵0
1=↵1

m↵0 is annihilated by

some power of x
1

@x1 �↵1

and by a polynomial
Q

↵0
1 6=↵1

(x
1

@x1 �↵
0
1

)
k↵0

1 , hence is zero,
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so we can restrict the sum above to ↵0
1

= ↵
1

. Arguing similarly for i = 2, . . . , n gives
finally m = 0. It follows that

(11.2.1) M 0 :=
L

↵2Rn

M↵ ⇢ M

is a C[x]h@xi-submodule of M .

Exercise 11.1. Show that xi : M↵ ! M↵�1i
is an isomorphism if ↵i < 0 and @xi

:
M↵ ! M↵+1i

is an isomorphism if ↵i > �1.

Definition 11.2.2. Let M be a C[x]h@xi-module. We say that M is of normal crossing
type along D if the following properties are satisfied.

(a) There exists a finite subset A ⇢ [�1, 0)n, called the set of exponents of M ,
such that M↵ = 0 for ↵ /2 A+ Zn.

(b) Each M↵ (↵ 2 Rn) is finite-dimensional.
(c) The natural inclusion (11.2.1) is an equality.

Exercise 11.2. Show that a C[x]h@xi-module of normal crossing type is of finite type
over C[x]h@xi. Moreover, show that M6↵ :=

L

↵06↵ M↵0 is a C[x]hx@xi-module
which is of finite type over C[x], and C[x]-free if ↵i < 0 for all i 2 I

Remark 11.2.3. For every ↵ 2 A, let us set

M↵+Zn =
L

k2Zn

M↵+k,

so that M =
L

↵2A M↵+Zn . Then M↵+Zn is a C[x]h@xi-module. In such a way, M is
the direct sum of C[x]h@xi-modules of normal crossing type having a single exponent.

The category of C[x]h@xi-modules of normal crossing type along D is, by definition,
the full subcategory of that of C[x]h@xi-modules whose objects are of normal crossing
type along D.

Proposition 11.2.4. Every morphism between C[x]h@xi-modules of normal crossing type
along D is graded with respect to the decomposition (11.2.1), and the category of
C[x]h@xi-modules of normal crossing type along D is abelian.

Proof. By C[x]h@xi-linearity and using Bézout’s theorem, one checks that any mor-
phism ' : M

1

! M
2

sends M
1,↵ to M

2,↵, and has no component from M
1,↵ to M

2,�

if � 6= ↵.

Proposition 11.2.5 (Description by quivers). Let us fix ↵ 2 [�1, 0)n and let us set
I(↵) = {i 2 I | ↵i = �1}. Then the category of C[x]h@xi-modules of normal crossing
type with exponent ↵, that is, of the form M↵+Zn , is equivalent to the category of
I(↵)-quivers having the vertex M↵+k equipped with its C[N

1

, . . . ,Nn]-module structure
at the place k 2 {0, 1}I(↵) and arrows

cani : M↵+k �! M↵+k+1i
,

vari : M↵+k+1i �! M↵+k,
if ki = 0,
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subject to the conditions
(

vari � cani = Ni : M↵+k �! M↵+k,

cani � vari = Ni : M↵+k+1i
�! M↵+k+1i

,
if ki = 0.

(It is understood that if I(↵) = ?, then the quiver has only one vertex and no arrows.)

Proof. It is straightforward, by using that, for k 2 Zn, @xi
: M↵+k ! M↵+k+1i

is an
isomorphism if i /2 I(↵) or i 2 I(↵) and ki > 0, while xi : M↵+k ! M↵+k�1i

is an
isomorphism if i /2 I(↵) or i 2 I(↵) and ki 6 �1.

Remark 11.2.6. In order not to specify a given exponent of a C[x]h@xi-module of
normal crossing type along D, it is convenient to define the quiver with vertices
indexed by {0, 1}I instead of {0, 1}I(↵). We use the convention that, for a fixed
↵ 2 [�1, 0)n and for i /2 I(↵), vari = Id and cani = ↵i Id+Ni/ 2⇡ i = Ei (hence both
are isomorphisms). Then the category of C[x]h@xi-modules of normal crossing type
along D is equivalent to the category of such quivers.

Exercise 11.3. Let io 2 I and let M↵+Zn be a C[x]h@xi-module of normal crossing
type with the single exponent ↵ 2 [�1, 0)n.

(1) Show that M↵+Zn is supported on Dio if and only if ↵io = �1 and, for k 2 Zn,
M↵+k = 0 if kio 6 0, that is, if and only if io 2 I(↵) and, setting k = (k0, kio), every
vertex M↵+(k0,0) of the quiver of M↵+Zn is zero.

(2) Show that M↵+Zn = M↵+Zn(⇤Dio), i.e., xio acts in a bijective way on M↵+Zn ,
if and only if io /2 I(↵) or io 2 I(↵) and vario is an isomorphism.

(3) Show that the quiver of M↵+Zn(⇤Dio) is that of M↵+Zn if io /2 I(↵) and,
otherwise, setting k = (k0, kio), is isomorphic to the quiver is obtained from that of
M↵+Zn by replacing M↵+(k0,1) with M↵+(k0,0), vario with Id and canio with Nio .

Let now M be any C[x]h@xi-module of normal crossing type along D, and consider
its quiver as in Remark 11.2.6.

(1) Show that M is supported on Dio if and only if, for any exponent ↵ 2 [�1, 0)n,
we have ↵io = �1 and every vertex of the quiver with index k 2 {0, 1}n satisfying
kio = 0 vanishes.

(2) Show that M = M(⇤Dio) if and only if vario is bijective.

Definition 11.2.7. We say that M is dual localized (resp. a minimal extension)
along Dio , that we denote by M = M(!Dio) (resp. M = M(!⇤Dio)) if canio is
bijective (resp. canio is onto and vario is injective).

(The relation with the notion of dual localization and of minimal extension intro-
duced in Chapter 9 will be explained in the next subsection.)

Exercise 11.4. Define the endofunctor (!Dio) resp. (!⇤Dio) of the category of
C[x]h@xi-modules of normal crossing type along D so that the quiver of M↵+Zn(!Dio),
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resp. M↵+Zn(!⇤Dio) is that of M↵+Zn if io /2 I(↵) and, otherwise, setting k = (k0, kio),
the quiver is obtained from that of M↵+Zn by replacing

• M↵+(k0,0) with M↵+(k0,1), vario with Nio and canio with Id,
• resp. M↵+(k0,1) with image[Nio : M↵+(k0,0) ! M↵+(k0,0)], vario with the natural

inclusion and canio with Nio .
Show that there is a natural morphism M(!Dio) ! M(⇤Dio) whose image is M(!⇤Dio).

Definition 11.2.8. We say that M is a minimal extension along Di2I if, for each i 2 I,
every cani is onto and every vari is injective.

Exercise 11.5. Say that M minimal extension with support along Di2I if, for each i 2 I,
either the source of every cani is zero, or every cani is onto and every vari is injective.
In other words, we accept C[x]h@xi-modules supported on the intersection of some
components of D, which are minimal extension along any of the other components.

Show that any C[x]h@xi-module M of normal crossing type along D is a successive
extension of such C[x]h@xi-modules which are minimal extensions with support along
Di2I .

Example 11.2.9 (The simple case). Let M be a C[x]h@xi-module of normal crossing
type along D which is simple (i.e., has no non-trivial such sub or quotient module).
By the previous exercise, it must be a minimal extension with support along Di2I .
Moreover, every nonzero vertex of its quiver has dimension one, so that Ei acts as ↵i

on M↵ and Ni acts by zero.

Remark 11.2.10 (Suppressing the simplifying assumptions 11.1.2)
If ` < n, every M↵ (↵ 2 R`) has to be assumed OD(`)

-coherent in Definition
11.2.2(b). Since it is a DD(`)

-module, it must be OD(`)
-locally free of finite rank. All

the previous results extend in a straightforward way to this setting by replacing C[x]
with OD(`)

[x] (where x := (x
1

, . . . , x`)) and C[x]h@xi with DD(`)
[x]h@xi.

11.2.b. Coherent DX-modules of normal crossing type. Let M be a coherent
DX -module. In order to express the normal crossing property for V -filtrations, we
introduce for every ↵ 2 Rn the sub-space M↵ of M defined by

M↵ =
T

i2I

S

k

Ker(xi@xi
� ↵i)

k.

This is a C-vector subspace of M, which is contained in V
(1)

↵1 M \ · · · \ V
(n)
↵n M if M

is R-specializable along each component Di of D and we have C-linear morphisms
xi : M↵ ! M↵�1i (resp. @xi : M↵ ! M↵+1i) as in the algebraic setting. Arguing as
for C[x]h@xi-modules,

(11.2.11) M :=
L

↵2R`

M↵

is a C[x]h@xi-submodule of M, and there is a natural morphism

(11.2.12) M ⌦C[x]h@xi DX �! M,
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which is injective since DX is C[x]h@xi-flat (because OX is C[x]-flat).

Definition 11.2.13. Let M be a coherent DX -module. We say that M is of normal
crossing type along D if the following properties are satisfied.

(a) The C[x]h@xi-submodule M is of normal crossing type along D (Definition
11.2.2).

(b) The natural morphism (11.2.12) is an isomorphism.

Proposition 11.2.14. Let M be a coherent DX-module which is of normal crossing type
along D. Then the following properties are satisfied.

(1) M is R-specializable along Di (i 2 I), giving rise to V -filtrations V (i)
• M. In

particular, all properties of Definition 7.3.12 hold for each filtration V (i)
• M.

(2) The V -filtrations V (i)
• M (i 2 I) are compatible, in the sense of Definition 8.3.9

(see also Theorem 8.3.11).
(3) For ↵ = (↵

1

, . . . ,↵n) 2 Rn, we set V
(n)

↵ M :=
T

i2I V
(i)
↵i M. Then V

(n)

↵ M is a
V

(n)

0

DX-module which is OX-coherent, and OX-locally free if ↵i < 0 for all i 2 I.
(4) For any multi-index ↵ 2 Rn, the natural morphism of C[N

1

, . . . ,Nn]-modules

M↵ �! grV
(n)

↵ M := grV
(1)

↵1
· · · grV

(`)

↵`
M

is an isomorphism (see Remark 8.3.15 for the multi-grading).

Caveat 11.2.15. In order to apply Definition 8.3.9, one should regard V (i)
• M as a

filtration indexed by Z, by numbering the sequence of real numbers ↵i such that
grV

(i)

↵i
M 6= 0. See also the setup in Section 8.5.a. Setting

V
(n)

<↵ M :=
X

�6↵
� 6=↵

V
(n)

� M,

the compatibility implies grV
(n)

↵ M = V
(n)

↵ M/V
(n)

<↵ M.

Proof of Proposition 11.2.14.

(1) By Exercise 11.1, M6↵ :=
L

↵06↵ M↵0 is a C[x]hx@xi-module which is of finite
type over C[x], and C[x]-free if ↵i < 0 for all i 2 I. The definition of V -filtra-
tions along the hypersurfaces xi = 0 extend in an obvious way to this algebraic case
(which in fact was first considered by Bernstein for the definition of the Bernstein
polynomial). One checks that V

(i)
↵i M :=

L

↵0|↵0
i6↵i

M↵0 satisfies the characteristic
properties of the V (i)-filtration of M , and thus so does

V (i)
↵i

M = V (i)
↵i

M ⌦

V
(i)
0 C[x]h@xi

V
(i)
0

DX ,

for M. In such a way, we get the R-specializability of M along Di.
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(2) With the previous definition of V
(i)
↵i M , we have V

(n)

↵ M = M6↵. Set ↵ =
(↵I ,↵J ,↵K) and choose ↵0

I 6 ↵I and ↵0
J 6 ↵J . The compatibility property amounts

to complete the star in any diagram as below in order to produce exact sequences:

M6(↵0
I ,↵J ,↵K)

M6(↵0
I ,↵

0
J ,↵K)

//
M6(↵I ,↵J ,↵K)

M6(↵I ,↵0
J ,↵K)

// ?

M6(↵0
I ,↵J ,↵K)

OO

// M6(↵I ,↵J ,↵K)

OO

//
M6(↵I ,↵J ,↵K)

M6(↵0
I ,↵J ,↵K)

OO

M6(↵0
I ,↵

0
J ,↵K)

OO

// M6(↵I ,↵0
J ,↵K)

OO

//
M6(↵I ,↵0

J ,↵K)

M6(↵0
I ,↵

0
J ,↵K)

OO

The order 6 is the partial natural order on Rn: ↵0 6 ↵ () ↵0
i 6 ↵i, 8 i. Then

? =
L

↵0
I 66↵00

I 6↵I

↵0
J 66↵00

J6↵J

↵00
K6↵K

M↵00

is a natural choice in order to complete the diagram.
By flatness of V (n)

0

DX over V
(n)

0

C[x]h@xi, the similar diagram for M is obtained
by tensoring by V

(n)

0

DX , and is thus also exact, leading to the compatibility property
of V (i)

• M (i 2 I).
(3) The argument above reduces the proof of (3) to the case of M , which has been

obtained in (1).
(4) This is now obvious from the previous description, since grV

(n)

↵ M = grV
(n)

↵ M .

The morphisms between DX -modules of normal crossing type can also be regarded
as being of normal crossing type, as follows from the next proposition.

Let ' : M
1

! M
2

be a morphism between coherent DX -modules of normal crossing
type. Then ' is compatible with the V -filtrations V (i)

• , and for every ↵ 2 Rn,
its multi-graded components grV

(n)

↵ M
1

! grV
(n)

↵ M
2

do not depend on the order
of grading (according to the compatibility of the V -filtrations and Remark 8.3.16).
We denote this morphism by grV

(n)

↵ '. On the other hand, regarding M↵ as an C-
submodule of M, we notice that ' sends M

1,↵ to M
2,↵, due to the D-linearity, and has

no component from M
1,↵ to M

2,� if � 6= ↵. We denote by '↵ the induced morphism
M

1,↵ ! M
2,↵. The following is now obvious.

Proposition 11.2.16. With respect to the isomorphism M↵
⇠
�! grV

(n)

↵ M of Proposition
11.2.14(4), '↵ coincides with grV

(n)

↵ '.

Corollary 11.2.17. The category of DX-modules of normal crossing type along D is
abelian.
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Proof. Each '↵ is C-linear, hence its kernel and cokernel are also finite-dimensional.

Remarks 11.2.18.
(1) If M is of normal crossing type along D, then for any i 2 I and any ↵i 2 R,

grV
(i)

↵i
M is of normal crossing type on (Di,

S

j 6=i Dj) and V (j)
• grV

(i)

↵i
M is the filtration

naturally induced by V (j)
• M on grV

(i)

↵i
M, that is,

V (j)
• grV

(i)

↵i
M =

V (j)
• M \ V

(i)
↵i M

V
(j)
• M \ V

(i)
<↵i

M
.

Indeed, due to the isomorphism (11.2.12), it is enough to prove the result for the
multi-graded module M := grV

(n)

M, for which all assertions are clear.
(2) We deduce from (11.2.12) a decomposition M =

L

↵2A M↵+Zn similar to that
of Remark 11.2.3. We have

V
(n)

↵+mM↵+Zn =
L

n6m
M↵+n.

It follows that, for ↵ 2 A (so that ↵i < 0 for all i), we have

V (n)

↵ M↵+Zn = M↵ ⌦C C[x],

and we conclude that V
(n)

↵ M↵+Zn is C[x]-locally free of finite rank. It follows then
easily that the same property holds for V

(n)

↵�kM↵+Zn for every k 2 Nn, and that
V

(n)

↵+kM↵+Zn is of finite type over C[x] for every k 2 Zn. From (11.2.12) we conclude
that V (n)

↵ M is OX -coherent for every ↵ 2 Rn and is OX -locally free in the neighbour-
hood of the origin for ↵ 2 (�1, 0)n. In the latter case, we can thus regard (V (n)

↵ M)left

as an OX -locally free module of finite rank endowed with a flat D-logarithmic connec-
tion. Moreover, for any ↵ 2 Rn, V (n)

↵ MXrD is OXrD locally free, and more precisely
V

(n)

↵ M(⇤D) is OX(⇤D)-locally free.

Behaviour with respect to localization, dual localization and minimal extension
Let us fix i 2 I and set ↵ = (↵0,↵i). By R-specializability along Di we have

isomorphisms

xi : V
(i)
↵i

M
⇠
�! V

(i)
↵i�1

M, (↵i < 0) and @xi
: grV

(i)

↵i
M

⇠
�! grV

(i)

↵i+1

M, (↵i > �1).

One checks on M , and then on M due to (11.2.12), that they induce isomorphisms

xi : V
(n)

↵ M
⇠
�! V

(n)

↵�1i
M, (↵i < 0)

@xi
: V (n0

)

↵0 grV
(i)

↵i
M

⇠
�! V

(n0
)

↵0 grV
(i)

↵i+1

M, (↵i > �1).
(11.2.19)

The following lemma shows that the localization (resp. dual localization, resp. mini-
mal extension) property along one component Dio of D is compatible the other fil-
trations V (i).
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Lemma 11.2.20. Assume that M is of normal crossing type along D. Let us fix io 2 I

and let us set n0 = n � 1, corresponding to forgetting io. Then, for every ↵0
2 Rn0

,
one of the following properties

canio : V (n0
)

↵0 grV
(io)

�1

M �! V
(n0

)

↵0 grV
(io)

0

M is onto, resp. bijective,

vario : V (n0
)

↵0 grV
(io)

0

M �! V
(n0

)

↵0 grV
(io)

�1

M is injective, resp. bijective,

holds as soon as it holds when forgetting V
(n0

)

↵0 .

Proof. We first work with M . Setting ↵ = (↵0,↵io), the morphism xio : grV
(io)

0

M !

grV
(io)

�1

M decomposes as the direct sum of morphisms xio : M↵0,0 ! M↵0,�1

, and
similarly for @xio

. Therefore vario is injective (resp. bijective) or canio is surjective
(resp. bijective) if and only if each ↵0-component is so. This implies the lemma for M .
One concludes that the lemma holds for M by flat tensorisation.

By a similar argument, considering M first, we obtain:

Lemma 11.2.21. Let M be a coherent module of normal crossing type along D. Let us
fix io 2 I. Then M(⇤Dio), M(!Dio), M(!⇤Dio) are of normal crossing type along D.

Remark 11.2.22. It is now easy to show that the two possible definitions of M(!Dio)
and M(!⇤Dio) (see Definition 11.2.7) coincide.

Definition 11.2.23. We say that M is a minimal extension along Di2I if the corre-
sponding M is a minimal extension in the sense of Definition 11.2.8.

Exercise 11.6. Let M be a coherent module of normal crossing type along D. Show
that M is a successive extension of modules of normal crossing type along D, each
of which being moreover a minimal extension with support along Di2I . [Hint : use
Exercise 11.5.]

Remark 11.2.24 (Suppressing the simplifying assumptions 11.1.2)
If ` < n, we apply the same changes as in Remark 11.2.10. All the previous results

extend in a straightforward way to this setting.

11.2.c. Coherent filtrations of normal crossing type. We now extend the no-
tion of “normal crossing type” to filtered coherent D-modules. Of course the under-
lying D-module should be of normal crossing type, but the isomorphism (11.2.12),
together with the decomposition (11.2.11), is not expected to hold at the filtered level.
This would be a too strong condition. On the other hand, the properties in Proposi-
tion 11.2.14 can be naturally extended to the filtered case. We keep the simplifying
assumptions 11.1.2.

Definition 11.2.25. Let (M, F•M) be a coherent filtered DX -module. We say that
(M, F•M) is of normal crossing type along D if
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(1) M is of normal crossing type along D (see Definition 11.2.13),
(2) (M, F•M) is R-specializable along every component Di of D (see Section 8.4),
(3) the filtrations (F•M, V (1)

• M, . . . , V (n)
• M) are compatible (see Definition 8.3.9).

Remarks 11.2.26.
(a) Condition (3) implies that grFp gr

V (n)

↵ M does not depend on the way grV
(n)

↵ M

is computed.
(b) Note that (2) implies 11.2.14(1) for M, and similarly (3) implies 11.2.14(2). So

the condition that M is of normal crossing type along D only adds the existence of
the isomorphism (11.2.12).

(c) Let us recall that V
(n)

↵ M is OX -coherent for every ↵ 2 Rn (see Remark
11.2.18(2)). Since FpM is OX -coherent, it follows that FpV

(n)

↵ M := FpM \ V
(n)

↵ M

(see §8.4) and grFp V
(n)

↵ M are also OX -coherent and therefore the filtration F•V
(n)

↵ M

is locally finite, hence is a coherent F•V
(n)

0

DX -filtration.
(d) Moreover, each grFp V

(n)

↵ M is OX -locally free if ↵i < 0 for all i 2 I. In-
deed, the family (FpM, V

(1)

↵1+k1
M, . . . , V

(n)
↵n+kn

M) (p 2 Z, k
1

, . . . , kn 2 N) is a com-
patible family; the OX -coherent sheaf grFp V

(n)

↵ M has generic rank (on its support)
6 dimgrFp V

(n)

↵ M/(x
1

, . . . , xn); but
X

p

dimgrFp V
(n)

↵ M/(x
1

, . . . , xn) = dimV (n)

↵ M/(x
1

, . . . , xn)

= rkV (n)

↵ M =
X

p

rk grFp V
(n)

↵ M,

so in fact grFp V
(n)

↵ M/(x
1

, . . . , xn) has dimension equal to the generic rank of
grFp V

(n)

↵ M. As a consequence, grFp V
(n)

↵ M is OX -locally free.
(e) Since each grV

(n)

↵ M is finite dimensional, the induced filtration F•grV
(n)

↵ M is
finite, and there exists a (non-canonical) splitting compatible with F•:

Fpgr
V (n)

↵ M '

L

q6p

grFq gr
V (n)

↵ M.

(f) There are a priori two ways for defining the filtration F•M↵, namely, either by
inducing it on M↵ ⇢ M, or by inducing it on grV

(n)

↵ M and transport it by means of
the isomorphism M↵

⇠
�! grV

(n)

↵ M. We always consider the latter one. The filtration
F•M is a priori not isomorphic to

L

↵ F•grV
(n)

↵ M by means of the isomorphism M '

L

↵ grV
(n)

↵ M induced by 11.2.14(4) and (11.2.12). Using the compatibility of the
filtrations, we have

FpM↵ = M↵ \ (FpV
(n)

↵ M+ V
(n)

<↵ M) ⇢ M.

The graded filtered module (
L

↵ M↵,
L

↵ F•M↵) is obviously of normal crossing
type if (M, F•M) is so.

Inductive arguments below will make use of the following lemma.
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Lemma 11.2.27. Assume that (M, F•M) is of normal crossing type along D. Then
for any i 2 I and any ↵i 2 R, (grV

(i)

↵i
M, F•grV

(i)

↵i
M) is of normal crossing type on

(Di,
S

j 6=i Dj), where F•grV
(i)

↵i
M is the filtration naturally induced by F•M on grV

(i)

↵i
M.

Proof. We know by Remark 11.2.18(1) that grV
(i)

↵i
M is of normal crossing type on

(Di,
S

j 6=i Dj), and that the filtrations V (j)
• on grV

(i)

↵i
M are naturally induced by

V (j)
• M. It follows that (F•grV

(i)

↵i
M, (V (j)

• grV
(i)

↵i
M)j 6=i) are compatible (see Remark

8.3.10). We know, by Proposition 8.8.2, (grV
(i)

↵i
M, F•grV

(i)

↵i
M) is coherent as a filtered

DDi
-module. Note also that, setting ↵0 = (↵j)j 6=i and n0 = (j)j 6=i, we have

grFp gr
V (n0)

↵0 grV
(i)

↵i
M = grFp gr

V (n)

↵ M

(since, by the compatibility property, we can take graded objects in any order).
It remains to showing the R-specializability property, namely,

xj : FpV
(j)
↵j

grV
(i)

↵i
M

⇠
�! FpV

(j)
↵j�1

grV
(i)

↵i
M, 8 p, 8 j 6= i, 8↵j < 0,

@xj : Fpgr
V (j)

↵j
grV

(i)

↵i
M

⇠
�! Fp+1

grV
(j)

↵j+1

grV
(i)

↵i
M, 8 p, 8 j 6= i, 8↵j > �1.

Let us first show that, by applying grV
(i)

↵i
, we get isomorphisms

xj : gr
V (i)

↵i
FpV

(j)
↵j

M
⇠
�! grV

(i)

↵i
FpV

(j)
↵j�1

M, 8 p, 8 j 6= i, 8↵j < 0,(11.2.28)

@xj
: grV

(i)

↵i
Fpgr

V (j)

↵j
M

⇠
�! grV

(i)

↵i
Fp+1

grV
(j)

↵j+1

M, 8 p, 8 j 6= i, 8↵j > �1.(11.2.29)

By the R-specializability of (M, F•M) along Dj and since M is of normal crossing
type, we have isomorphisms

FpV
(j)
↵j

M
xj

���!

⇠
FpV

(j)
↵j�1

M,

8

<

:

V
(i)
↵i V

(j)
↵j M

V
(i)
<↵i

V
(j)
↵j M

xj
���!

⇠

8

<

:

V
(i)
↵i V

(j)
↵j�1

M

V
(i)
<↵i

V
(j)
↵j�1

M,

hence isomorphisms
8

<

:

V
(i)
↵i FpV

(j)
↵j M

V
(i)
<↵i

FpV
(j)
↵j M

xj
���!

⇠

8

<

:

V
(i)
↵i FpV

(j)
↵j�1

M

V
(i)
<↵i

FpV
(j)
↵j�1

M,

and thus the isomorphisms (11.2.28). We argue similarly for the isomorphisms
(11.2.29). Now, the desired assertion follows from the compatibility property (3)
which enables us to switch FpV

(j)
↵j or FpgrV

(j)

↵j
with grV

(i)

↵i
.

By the same argument as above, setting ↵ = (↵0,↵j) and n0 = n� 1, the filtered
analogue of (11.2.19) holds (any ↵0

2 Rn0
, p 2 Z):

FpV
(n0

)

↵0 V (j)
↵j

M
xj

���!

⇠
FpV

(n0
)

↵0 V
(j)
↵j�1

M if ↵j < 0,

FpV
(n0

)

↵0 grV
(j)

↵j
M

@xj
����!

⇠
Fp+1

V
(n0

)

↵0 grV
(j)

↵j+1

M if ↵j > �1.
(11.2.30)

The following lemma is similar to Lemma 11.2.20, but weaker when considering
surjectivity for canio .
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Lemma 11.2.31. Assume that (M, F•M) is of normal crossing type along D. Let us
fix io 2 I and let us set n0 = n�, corresponding to forgetting io. Then, for every
↵0

2 Rn0
, one of the following properties

canio : FpV
(n0

)

↵0 grV
(io)

�1

M �! Fp+1

V
(n0

)

↵0 grV
(io)

0

M is bijective,

vario : FpV
(n0

)

↵0 grV
(io)

0

M �! FpV
(n0

)

↵0 grV
(io)

�1

M is

(

injective,
resp. bijective,

(11.2.31 ⇤)

holds for all p as soon as it holds when forgetting V
(n0

)

↵0 .

Remark 11.2.32. As a consequence, if vario is injective, then the first line of (11.2.30)
with j = io also holds for ↵j = 0. That the lemma does not a priori hold when canio
is onto leads to the definition below.

Definition 11.2.33 (Minimal extension along Di2I ). Let (M, F•M) be a coherent filtered
DX -module of normal crossing type along D. We say that (M, F•M) is a minimal
extension along Di2I if M is a minimal extension along each Di (i 2 I) and moreover,
for each io 2 I, and every ↵0

2 Rn0
(equivalently, every ↵0

2 [�1, 0]n
0
),

canio : FpV
(n0

)

↵0 grV
(io)

�1

M �! Fp+1

V
(n0

)

↵0 grV
(io)

0

M is onto, 8 p.

Note that, if we forget the F -filtration, there is no ambiguity according to Lemma
11.2.20, and if n = 1 this notion is equivalent to that of Definition 7.7.3.

Proposition 11.2.34 (Properties of FpV
(n)

↵ M). Let (M, F•M) be a coherent filtered
DX-module of normal crossing type along D. Set M

0

:= V
(n)

0

M. For ↵ 2 Rn, let us
set FpV

(n)

↵ M := FpM \ V
(n)

↵ M. Then

(1) F•V
(n)

↵ M is a coherent F•V
(n)

0

DX-filtration.
(2) The filtrations (F•M0

, V (1)

• M
0

, . . . , V (n)
• M

0

) are compatible and

FpM =
X

q>0

(Fp�qM0

) · FqDX .

Proof. The compatibility property of the filtrations on M
0

clearly follows from that
on M, as noted in Remark 8.3.10(2). By the same argument we have compatibility
for the family of filtrations on each V

(n)

↵ M (↵ 2 Rn).
It remains to justify the expression for FpM. We have seen in the proof of Lemma

11.2.27 that, for k > 0 and any i 2 I, setting k = (k0, ki), we have an isomorphism

@xi
: Fp�1

V
(n0

)

k0 grV
(i)

ki
M

⇠
�! FpV

(n0
)

k0 grV
(i)

ki+1

M,

and thus
FpV

(n)

k+1i
M = Fp�1

V
(n)

k M · @xi + FpV
(n)

k M,

which proves (2) by an easy induction.
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The property 11.2.34(2) can be made more precise. For ↵ 2 [�1, 0]n and p 2 Z,
let E↵,p be a finite C-vector space of sections of FpV

(n)

↵ M whose image in grFp gr
V (n)

↵ M

is an C-basis of sections of this free C-module. Given any � 2 Rn, we decompose it
as (�0, 0,�00), where each component �i of �0 (resp. �00) satisfies �i < 0 (resp. �i > 0).
When � is fixed, any ↵ 2 [�1, 0]n decomposes correspondingly as (↵0,↵o,↵00), of
respective size n0, no, n00.

Proposition 11.2.35. With these assumptions and notation, for every � 2 Rn and
p 2 Z, we have

FpV
(n)

� M =
X

↵002(�1,0]n00

X

b00

8 i, bi+↵i6�i

Fp�|b00|V
(n)

(�0,0,↵00
)

M · @b
00

x ,

and, for every ↵00
2 (�1, 0]n

00
,

FqV
(n)

(�0,0,↵00
)

M =
X

↵02[�1,0)n0

E
(↵0,0,↵00

),q · x
a0

OX ,

where a0 has the indices of �0 and for each such index i, ↵i � ai 6 �i, that is,

ai =

(

�[�i]� 1 if ↵i 6 �i � [�i]� 1

�[�i] if ↵i > �i � [�i]� 1.

Proof. The first equality is obtained by induction from the second line of (11.2.30),
and the second equality comes from the first line of (11.2.30).

Remark 11.2.36 (The case of a minimal extension along Di2I )
In that case (Definition 11.2.33), Proposition 11.2.34 holds with the replacement

of M
0

with M<0

:= V n
<0

M =
T

i2I V
(i)
<0

M, and Proposition 11.2.35 reads as follows.
We now decompose � as (�0,�00), where each component �i of �0 (resp. �00) satisfies
�i < 0 (resp. �i > 0). Then

FpV
(n)

� M =
X

↵2[�1,0)n

X

b00

8 i, bi+↵i6�i

E↵,p�|b00| · x
a0
@b

00

x OX ,

where a0 is as in Proposition 11.2.35.

The compatibility property of the filtrations (F•M, V (1)

• M, . . . , V (n)
• M) can be

checked on V
(n)

0

M, as asserted by the proposition below.

Proposition 11.2.37 (From M
0

to M). Let M be a coherent DX-module of normal
crossing type along D. Set M

0

:= V
(n)

0

M. Denote by V (i)
• M

0

the filtration nat-
urally induced by V (i)

• M and let F•M0

be any coherent F•V
(n)

0

DX-filtration such
that (F•M0

, V (1)

• M
0

, . . . , V (n)
• M

0

) are compatible filtrations and that (M
0

, F•M0

) is
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R-specializable along each Di, in the sense that xiFpV
(i)
↵i M0

= FpV
(i)
↵i�1

M
0

for every i

and ↵i < 0, and @xi sends FpV
(i)
�1

M
0

into Fp+1

V
(i)
0

M
0

. Set

FpM :=
X

q>0

(Fp�qM0

) · FqDX .

Then
(1) (M, F•M) is R-specializable along each Di, and for ↵ 2 [�1, 0]n,

FpV
(n)

↵ M
0

:= FpM0

\ V (n)

↵ M
0

= FpM \ V (n)

↵ M
0

,

(2) and (F•M, V (1)

• M, . . . , V (n)
• M) are compatible filtrations.

Proof. For every � 2 Rn, we define

(11.2.38) Gp(V
(n)

� M) :=
X

↵60, j>0

↵+j6�

Fp�|j|V
(n)

↵ M · @jx.

For example, we have Gp(V
(n)

� M) = FpV
(n)

� M if � 6 0, i.e., �i 6 0 for all i. Similarly,
if �0 = (�i)i|�i>0

denotes the “positive part” of � and �� the non-positive part, we
have, with obvious notation,

(11.2.39) Gp(V
(n)

� M) :=
X

↵060, j0>0

↵0
+j06�0

Fp�|j0|V
(n)

(↵0,��)

M · @j
0

x0 .

Let us note that

lim
�!

�

Gp(V
(n)

� M) =
X

↵60, j>0

Fp�|j|V
(n)

↵ M · @jx =
X

j>0

Fp�|j|M0

· @jx =: FpM.

We set V (i)
• V

(n)

� M = V (i)
• M \ V

(n)

� M. We will prove the following properties.
(a) Let � < � (i.e., �i 6 �i for all i and � 6= �). Then Gp(V

(n)

� M) \ V
(n)

� M =

Gp(V
(n)

� M).
(b) (G•(V

(n)

� M), V (1)

• V
(n)

� M, . . . , V (n)
• V

(n)

� M) are compatible filtrations,
(c) the following inclusion is (n+ 1)-strict:

(V (n)

� M, G•(V
(n)

� M), (V (i)
• V

(n)

� M)i2I) ,! (V (n)

� M, G•(V
(n)

� M), (V (i)
• V (n)

� M)i2I).

Let us indicate how to obtain 11.2.37 from (a)–(c). The R-specializability of
(M, F•M) along Di amounts to

Fp+1

M \ V
(i)
�i+1

M ⇢ (FpM \ V
(i)
�i

M) · @xi
+ V

(i)
<�i+1

M) if �i > �1.

By taking the inductive limit on � > 0 (i.e., � = �0) in (a), we obtain

FpM \ V
(n)

� M = Gp(V
(n)

� M)

for every �, and taking �k � 0 for k 6= i gives

FpM \ V
(i)
�i

M =
X

↵i60, j>0

↵i+ji6�i

Fp�|j|V
(i)
↵i

M · @jx,
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and thus, if �i > �1,

Fp+1

M \ V
(i)
�i+1

M = (FpM \ V
(i)
�i

M) · @xi
+

X

↵i60, j>0

ji=0

Fp+1�|j|V
(i)
↵i

M · @jx,

hence the desired R-specializability, since V
(i)
↵i M ⇢ V

(i)
<�i+1

M. The other assertions
in 11.2.37 are also obtained by taking the inductive limit on �. We also note that
(a) and (b) for � imply (c) for �, according to Example 8.3.20. Conversely, (c) for �

implies (a) for �.
Let us first exemplify the proof of (a) and (b) in the case n = 1. Condition (b)

is empty. For (a), we can assume � > 0, and it is enough, by an easy induction on
� � �, to prove Gp(V

(1)

� M) \ V
(1)

<� M = Gp(V
(1)

<� M). For that purpose, we notice that

Gp(V
(1)

� M) = Gp(V
(1)

<� M) + Fp�jV
(1)

↵ M · @jx1
,

where j is such that � � j 2 (�1, 0] and ↵ := � � j. Hence

Gp(V
(1)

� M) \ V
(1)

<� M = Gp(V
(1)

<� M) +
�

Fp�jV
(1)

↵ M · @jx1
\ V

(1)

<� M
�

.

Now, by the R-specializable property, Fp�jV
(1)

↵ M · @jx1
\ V

(1)

<� M = Fp�jV
(1)

<↵M · @jx1
,

so we obtain (a) in this case.
We will prove (a)–(c) by induction on the lexicographically ordered pair (n, |�0

|).
The case n = 1 is treated above, so we can assume n > 2. Moreover, if |�0

| = 0, i.e.,
if � 6 0, there is nothing to prove. Assume that �

1

> 0 and let ↵
1

2 (�1, 0] be such
that j

1

:= �
1

� ↵
1

is an integer. We also set � = (�
1

,�00) and n00 = n� 1.
In order to prove (a), we can argue by decreasing induction on �, and we are

reduced to the case where � is the predecessor in one direction, say k, of �, that is,
�i = �i for i 6= k and �k is the predecessor of �k. Assume first that �k > 0, so we can
also assume k = 1. We then have

Gp(V
(n)

� M) = Gp�1

(V (n)

��11
M) · @x1

+Gp(V
(n)

� M),

and we are reduced to proving

Gp�1

(V (n)

��11
M) · @x1

\ V
(n)

� M ⇢ Gp(V
(n)

� M).

Since �
1

> 0 and M is of normal crossing type, we have an isomorphism

@x1
: V (n)

��11
M/V

(n)

��11
M = V

(en)

e� grV
(1)

�1�1

M
⇠
�! V

(en)

e� grV
(1)

�1
M = V (n)

� M/V
(n)

� M

which sends surjectively, hence bijectively, the image of Gp�1

(V (n)

��11
M) to that of

Gp(V
(n)

� M). It follows that

Gp�1

(V (n)

��11
M) · @x1 \ V

(n)

� M =
⇥

Gp�1

(V (n)

��11
M) \ V

(n)

��11
M
⇤

· @x1 .

By the inductive assumption on �, the latter term is contained in Gp�1

(V (n)

��11
M)·@x1

,
hence in Gp(V

(n)

� M).
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For induction purpose, let us consider M(1) := grV
(1)

↵1
M, which is a DD1 -module

of normal crossing type for which the V (i)-filtrations (i = 2, . . . , n) are those nat-
urally induced by the V (i)-filtrations on M. We set M

(1)

0

= V
(n00

)

0

M(1), that we
endow with the naturally induced filtration F•M

(1)

0

. By Remark 8.3.10(1), the fam-
ily (F•M

(1)

0

, (V (i)
• M

(1)

0

)
26i6n) is compatible. The inductive assumption on n implies

that(a)–(c) hold for V
(n00

)

�00 M(1). Note that V
(n00

)

�00 M(1) = V
(n)

(↵1,�00
)

M/V
(n)

(<↵1,�00
)

M.

We now claim that Gp(V
(n00

)

�00 M(1)) is the filtration induced by Gp(V
(n)

(↵1,�00
)

M).
Indeed, this follows from the expression (11.2.39), which does not involve the vari-
able x

1

. Now, @j1x1
induces an isomorphism M(1)

⇠
�! grV

(1)

�1
M, which is strictly com-

patible with the filtrations induced by V (i)
• M. On the other hand, the filtration

induced by Gp(V
(n)

(↵1,�0
)

M) is sent surjectively (hence bijectively) onto that induced

by Gp(V
(n)

� M). By induction on n, (a)–(c) hold for grV
(1)

�1
M, and the filtrations are

those induced by the filtrations on V
(n)

� M.
Let us now assume that �k 6 0. To prove Gp(V

(n)

� M) \ V
(n)

� M = Gp(V
(n)

� M) for
all p, it is enough to prove Gp(V

(n)

� M) \ Gp+1

(V (n)

� M) = Gp(V
(n)

� M) for all p, and
(replacing p with p� 1), this amounts to proving for all p the injectivity of

grGp V
(n)

� M �! grGp V
(n)

� M.

Set � = (�
1

,�00), e� = (<�
1

,�00), � = (�
1

,�00) and e� = (<�
1

,�00), with �00 =
(�

2

, . . . , <�k, . . . , �n). By the inductive assumption on n and �0, we have a diagram

0 // grGp V
(n)

e�
M //

� _

✏✏

grGp V
(n)

� M //

✏✏

grGp V
(n00

)

�00 gr(1)�1 M
//

� _

✏✏

0

0 // grGp V
(n)

e� M // grGp V
(n)

� M // grGp V
(n00

)

�00 gr(1)�1 M
// 0

where the horizontal sequences are exact (by the first part of the proof of (a)) and
both extreme vertical arrows are injective (because |

e�0
| < |�0

| for the left one, and
n00 < n for the right one). We conclude that the middle vertical arrow is injective,
which finishes the proof of (a).

Let us now prove (b) and let us come back to the case where �
1

is the predecessor of
�
1

> 0. We have seen that Gp(V
(n00

)

�00 gr(1)�1 M) is the filtration induced by Gp(V
(n)

� M),
so the previous injective morphism can be completed for all p into the exact sequence

0 �! grGp V
(n)

� M �! grGp V
(n)

� M �! grGp V
(n00

)

�00 gr(1)�1
M �! 0,

hence, since G• is bounded below,

0 �! GpV
(n)

� M �! GpV
(n)

� M �! GpV
(n00

)

�00 gr(1)�1
M �! 0.

The inductive assumption implies that (b) holds for V (n)

� M and for V (n00
)

�00 gr(1)�1 M. We
can now apply Exercise 8.8(2a) to conclude that (b) holds for V

(n)

� M.
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Remark 11.2.40 (The case of a minimal extension along Di2I )
Assume moreover that, in Proposition 11.2.37, M is a minimal extension along

each Di (i 2 I). Then we can replace everywhere M
0

with M<0

:=
T

i2I V
(i)
<0

M and we
can moreover conclude that (M, F•M) is a minimal extension along Di2I (Definition
11.2.33). In the proof, we modify the definition of Gp(V

(n)

� M) for � > �1, by summing
over ↵ 2 [�1, 0)n.

11.3. Nearby cycles along a monomial function

We continue to refer implicitly to Notation 11.1.1 and the simplifying assumptions
11.1.2. We consider a monomial function g = xa.

Notation 11.3.1. The indices for which ai = 0 do not play an important role. Let us
denote by Ig = I(a) := {i | ai 6= 0} ⇢ {1, . . . , n} the complementary subset, a0 =
(ai)i2Ig and n0 = #Ig. Accordingly, we decompose the set of variables (x

1

, . . . , xn)
as (x0, x00), with x0 = (xi)i2Ig .

We aim at proving the following theorem.

Theorem 11.3.2. Let (M, F•M) be a coherent filtered DX-module of normal crossing
type (Definition 11.2.25). Assume that (M, F•M) is a minimal extension along Di2I

(see Definition 11.2.33).
Then (M, F•M) is R-specializable along (g) and is a minimal extension along (g).

Moreover, for every � 2 S1, ( g,�M, F• g,�M) is of normal crossing type along D.

11.3.a. Nearby cycles for C[x]h@xi-modules of normal crossing type

In this section, we consider the variant of Theorem 11.3.2 where we forget the
filtration F• and where we consider the case of C[x]h@xi-modules, with the notation
of Section 11.2.a. The proof will be done by giving an explicit expression of the
V -filtration of D◆g⇤M with respect to t, as well as its associated graded modules. The
proof will also make precise the set of jumping indices of the V -filtration (see Remark
11.3.33(2)).

In order to simplify the notation, we will set N = D◆g⇤M , which is a C[x, t]h@x, @ti-
module. According to (A.8.8 ⇤), the action of C[x, t]h@x, @ti is as follows:

(m⌦ @kt ) · @t = m⌦ @k+1

t

(m⌦ 1) · @xi
= m@xi

⌦ 1� (aimxa�1i)⌦ @t

(m⌦ 1) · f(x, t) = mf(x, xa)⌦ 1.

(11.3.3)

As a consequence, for i 2 Ig we have

(11.3.4) (m⌦ 1) · t@t = (mxa
⌦ 1) · @t =

1

ai

⇥

(mxi@xi ⌦ 1)� (m⌦ 1)xi@xi

⇤

.
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Notation 11.3.5. In order to distinguish between the action of xi@xi
trivially coming

from that on M and the action xi@xi
on N , it will be convenient to denote by Si the

first one, defined by
(m⌦ @kt ) · Si = (mxi@xi

)⌦ @kt .

Then we can rewrite Si as

(m⌦ @kt ) · Si = (m⌦ 1) · (xi@xi
+ ait@t)@

k
t = (m⌦ @kt ) · (xi@xi

+ ai(t@t � k)),

a formula that can also be read

(11.3.6) (m⌦ @kt ) · xi@xi
= (m⌦ @kt ) · (Si � ait@t + aik).

Note that N is naturally graded: N =
L

↵,k M↵ ⌦ @kt .

Proof of Theorem 11.3.2, Step one: R-specializability of N along (t)

Proposition 11.3.7. The C[x, t]h@x, @ti-module N is R-specializable along (t). Moreover,
N = N [!⇤t].

We will show the R-specializability by making explicit a V -filtration of N . To get
started, consider the following simple example.

Example 11.3.8. Let � 2 R. Assume we know that eN := grV� N is of normal crossing
type along D. Suppose that for some m 2 M↵ and some k > 0, the section m ⌦ @kt
belongs to V�N , and that its projection to grV� N is nonzero and happens to lie in the
subspace

eN� := (grV� N)�.

In this situation, �,↵,�, and k are related. Indeed, the identity in (11.3.6) shows that

(m⌦ @kt ) ·
�

(xi@xi
� �i)� (Si � ↵i) + ai(E��)

�

= (m⌦ @kt ) ·
�

↵i � �i � ai(� � k)
�

.

By assumption, E�� = t@t�� and xi@xi
�↵i = xi@xi

��i both act nilpotently on eN�;
since Si � ↵i acts nilpotently on M↵ ⌦ @kt , the conclusion is that ↵ = � + (� � k)a.
Thus we expect elements of M�+(��k)a ⌦ @kt to contribute to the subspace eN�.

This computation motivates the following definition.

Definition 11.3.9. For � < 0, we set

(11.3.9 ⇤) V�N = (V (n)

�a M ⌦ 1) · C[x]h@xi =
X

k2Nn

(V (n)

�a M ⌦ 1) · @kx .

For every � 2 [�1, 0) and j > 1, we define inductively

(11.3.9 ⇤⇤) V�+jN = V�N · @jt + V<�+jN.

Note that the latter formula is natural if we expect that N is a middle extension
along (t).

Lemma 11.3.10. The filtration V•N is a Kashiwara-Malgrange filtration for N .

We first need to check that (11.3.9 ⇤) and (11.3.9 ⇤⇤) define a V -filtration.
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Lemma 11.3.11. For every � 2 R, V�N is a V
0

(C[x, t]h@x, @ti)-module that satisfies

V�N · t ⇢ V��1

N, V��1

N · @t + V<�N ⇢ V�N,

with equality in the first inclusion if � < 0 and in the second one if � > 0.

Proof. Assume first that � < 0. By definition, V�N is a C[x]h@xi-module, so it remains
to prove stability by the actions of t and t@t. On the one hand,

(V (n)

�a M ⌦ 1) · t = V (n)

�a Mxa
⌦ 1 = V

(n)

(��1)aM ⌦ 1,

hence

(11.3.12) V�N · t = V��1

N ⇢ V�N.

On the other hand, (11.3.4) shows that, for any i 2 Ig, we have

(V (n)

�a M ⌦ 1) · t@t ⇢ V (n)

�a M ⌦ 1 + (V (n)

�a M ⌦ 1)@xi
.

We conclude that the statements of the lemma hold for � < 0. Moreover, (11.3.12)
gives, for � < 0:

(11.3.13) V�N = (V (n)

�a M ⌦ 1) · C[x]h@xi[t@t].

The assertions for � > 0 follow then easily from Definition (11.3.9 ⇤⇤).

Remark 11.3.14. Note that, for i /2 Ig (Notation 11.3.1), we have �ai = 0 and
X

ki>0

(V (i)
0

M ⌦ 1)@ki
xi

=
X

ki>0

(V (i)
0

M@ki
xi

⌦ 1) = M ⌦ 1.

As a consequence, for � < 0, (11.3.9 ⇤) can be simplified as follows:

(11.3.15) V�N =
X

k02Nn0

(V (n0
)

�a0 M ⌦ 1) · @k
0

x0 .

Let us consider the C[x0, x00, t]h@x0 , @x00 , t@ti-module

K� := V
(n0

)

�a0 M ⌦C[x0,x00
]h@x00 i C[x0, x00]h@x0 , @x00 , t@ti,

where the action of t is obtained by the second line of (11.3.3). We thus have a
surjective morphism of C[x0, x00, t]h@x0 , @x00 , t@ti-modules:

K� �! V�N

sending any mxi@xi
⌦ 1 � m ⌦ xi@xi

� (m ⌦ 1)ait@t to zero (i 2 Ig), according to
(11.3.4).

Proof of Lemma 11.3.10 and Proposition 11.3.7. Let us start with � < 0. Since
V

(n)

�a M has finite type over C[x], Formula (11.3.9 ⇤) implies that V�N has finite type
over C[x]h@xi, and a fortiori over V

0

(C[x, t]h@x, @ti).
In order to show that some power of (t@t � �) sends V�N to V<�N we first notice

that a power of Si � �ai does so for every i = 1, . . . , n. It is thus enough to check
that

Q

i2Ig
(Si � ait@t) sends (V (n)

�a M ⌦ 1) into V�0N for some �0 < �. (Indeed, this
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will imply that some power of (t@t � �) sends (V (n)

�a M ⌦ 1) into V�0N , and (11.3.9 ⇤)
enables us to conclude.)

We have �a�1Ig 6 �0a for some �0 < �, so (V (n)

�a M ⌦1) ·
Q

i2Ig
xi ⇢ (V (n)

�0a M ⌦1),
and thus, by (11.3.9 ⇤),

(V (n)

�a M ⌦ 1) ·
Y

i2Ig

xi@xi
= (V (n)

�a M ⌦ 1) ·
Y

i2Ig

xi

Y

i2Ig

@xi
⇢ V�0N.

Therefore,
(V (n)

�a M ⌦ 1) ·
Y

i2Ig

(Si � ait@t) ⇢ V�0N.

In order to conclude that N is R-specializable along (t) and that V•N is its
Kashiwara-Malgrange filtration along (t), it only remains to prove that N =

S

� V�N ,
and so it is enough to prove that any element of M ⌦ 1 belongs to some V�N . Let us
consider a component M� ⌦ 1 with � 2 Rn, that we write � = ↵+ k

+

� k�, ↵ 2 A,
k
+

,k� 2 Nn with disjoint support. The middle extension property of M implies that
xk�@

k+
x : M↵ ! M� is onto. We can thus use iteratively (11.3.3) to write any element

of M� as a sum of terms (µk ⌦ 1) · @kt (k > 0), where the components of each µk in
the decomposition (11.2.11) only involve indices in (R<0

)n, and therefore belongs to
V

(n)

�a M for some � < 0.
Let us end by proving that N is a minimal extension along (t). We first remark

that t acts injectively on N : if we consider the filtration G•N by the degree in @t,
then the action of t on grGN ' M [⌧ ] is equal to the induced action of xa on M [⌧ ],
hence is injective by the assumption on M ; a fortiori, the action of t on N is injective.
We thus have N ⇢ N [⇤t]. By Definition 11.3.9 and the exhaustivity of V•N proved
above, N is the image of V<0

N ⌦ C[x, t]h@x, @ti in N [⇤t]. This is nothing but N [!⇤t]
(see Definition 9.5.2 and Definition 9.4.1).

Proof of Theorem 11.3.2, Step two: normal crossing type of grV� N . We aim at proving
that each grV� N (� 2 [�1, 0)) is of normal crossing type along D, and at making
explicit the summands. We now fix such a �, and set eN = grV� N for the remaining
part of the proof. Let � 2 Rn. Let us define eN� by the formula

eN� =
n
T

i=1

S

k

Ker(xi@xi
� �i)

k,

where we regard each (xi@xi
� �i)k as acting on eN through its action on N given by

(11.3.6). We then denote by Ni the action of 2⇡ i(xi@xi � �i) on eN� (and, as usual,
by E, resp. N, the action of t@t, resp. 2⇡ i(t@t � �) on eN and eN�). By using Bézout’s
theorem, one checks that eN� intersects only at zero any sum of submodules eN�0 ,
where �0 runs in a finite set not containing �, so we will only need to check the finite
dimensionality of each eN� and the existence of a decomposition eN '

P

�
eN� (hence

eN '

L

�
eN�). This will be done at the next step, and we start by modifying the

expression of eN�.
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Lemma 11.3.16. For every � 2 Rn, eN� is the image of V�N \

�

P

j M�+(��j)a ⌦ @jt
�

in eN .

Proof. Let us consider an arbitrary element of V�N , expressed as a finite sum
X

↵2Rn

X

j2N
m↵,j ⌦ @jt ,

with m↵,j 2 M↵. Assume that its image in grV� N = eN belongs to eN�, i.e.,
⇣

X

↵2Rn

X

j2N
m↵,j ⌦ @jt

⌘

· (xi@xi
� �i)

k
2 V<�N

for every i 2 I and some k � 0. Our aim is to prove that, modulo V<�N , only those
terms with ↵ = � + (� � j)a matter.

Lemma 11.3.17. In the situation considered above, one has
X

↵2Rn

X

j2N
m↵,j ⌦ @jt =

X

j2N
m�+(��j)a ⌦ @jt mod V<�N.

Proof. Let us start with an elementary lemma of linear algebra.

Lemma 11.3.18. Let T be an endomorphism of a complex vector space V , and W ⇢ V

a linear subspace with TW ⇢ W . Suppose that v
1

, . . . , vk 2 V satisfy

Tµ(v
1

+ · · ·+ vk) 2 W

for some µ > 0. If there are pairwise distinct complex numbers �
1

, . . . ,�k with
vh 2 E�h

(T ), then one has �hvh 2 W for every h = 1, . . . , k.

Proof. Choose a sufficiently large integer µ 2 N such that (T � �h)µvh = 0 for
h = 1, . . . , k, and such that Tµ(v

1

+ · · · + vk) 2 W . Assume that �k 6= 0. Set-
ting Q(T ) = Tµ(T � �

1

)µ · · · (T � �k�1

)µ, we have by assumption

Q(T )(v
1

+ · · ·+ vk) 2 W

The left-hand side equals Q(T )vk. Since Q(T ) and T � �k are coprime, Bézout’s
theorem implies that vk 2 W . At this point, we are done by induction.

We now go back to the proof of Lemma 11.3.17. Let us consider an element as in
the lemma. As we have seen before,

(m↵,j ⌦ @jt ) ·
�

(xi@xi
� �i) + ai(t@t � �)

�

= (m↵,j ⌦ @jt ) ·
�

Si � �i � ai(� � j)
�

,

and since some power of t@t � � also send this element in V<�N , we may conclude
that

(11.3.19)
X

↵2Rn

X

j2N

⇣

m↵,j ⌦ @jt ·
�

Si � �i � ai(� � j)
�k
⌘

2 V<�N

for every i 2 I and k � 0.
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In order to apply Lemma 11.3.18 to our situation, let us set V = N and W = V<�N ,
and for a fixed choice of i = 1, . . . , n, let us consider the endomorphism

Ti = (xi@xi
� �i) + ai(t@t � �);

Evidently, TiW ⇢ W . Since we have

Ti(m↵,j ⌦ @jt ) = (m↵,j ⌦ @jt ) ·
�

(Si � ↵i) + ↵i � �i � ai(� � j)
�

,

it is clear that m↵,j ⌦ @jt is annihilated by a large power of Ti � (↵i � �i � ai(� � j)).
Grouping terms according to the value of ↵i � �i � ai(� � j), we obtain

X

↵2Rn

X

j2N
m↵,j ⌦ @jt = v

1

+ · · ·+ vk

with vk 2 E�k
(Ti) and �

1

, . . . ,�k 2 R are pairwise distinct. According to Lemma
11.3.18, we have vh 2 W whenever �h 6= 0; what this means is that the sum of all
m↵,j ⌦ @jt with ↵i � �i � ai(� � j) 6= 0 belongs to V<�N . After subtracting this
sum from our original element, we may therefore assume that ↵i = �i � ai(� � j)
for every term. We obtain the asserted congruence by performing this procedure
for T

1

, . . . , Tn. This ends the proof of Lemma 11.3.17 and at the same time that of
Lemma 11.3.16.

Proof of Theorem 11.3.2, Step three: computation of nearby cycles. Suppose now that
� < 0 and �

1

, . . . ,�n 6 0, that we shall abbreviate as � 6 0. Let j 2 N. We observe
that

ai 6= 0 =) �i + (� � j)ai = (�i + �ai)� jai < �jai.

Given a vector mj 2 M�+(��j)a, this means that mj is divisible by xjai

i . Conse-
quently, mj = mxja for a unique m in M�+�a, and therefore

mj ⌦ @jt = (m⌦ 1) · tj@jt

is a linear combination of (m⌦1)(t@t)k for k = 1, . . . , j. Since m⌦1 2 V�N and V�N

is stable by t@t, we conclude that
X

j

M�+(��j)a ⌦ @jt = M�+�a[t@t] ⇢ V�N,

and, by Lemma 11.3.16, eN� is the image of M�+�a[t@t] mod V<�N . Let us con-
sider E as a new variable and let us endow M�+�a[E] := M�+�a ⌦C C[E] with the
C[N

1

, . . . ,Nn,N]-module structure such that Ni acts by 2⇡ i(Si��i�ai E) and N acts
by 2⇡ i(E��) (see (11.3.6)), and let us endow eN� with its natural C[N

1

, . . . ,Nn,N]-
module structure (see §11.2.a). We thus have proved the following result.

Proposition 11.3.20. We have a surjective C[N
1

, . . . ,Nn,N]-linear morphism

M�+�a[E] �! eN�

that takes m⌦ Ek to the class of m⌦ (t@t)k 2 V�N modulo V<�N .

Corollary 11.3.21. We have eN =
L

�
eN�.
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Proof. We have seen in the beginning of Step two that it is enough to prove eN =
P

�
eN�. Let us set eN60

=
L

�60

eN�. It is enough to check that eN =
P

k
eN60

@kx .
We have seen that V

(n)

�a M [E] ⇢ V�N and has image equal to eN60

. Then
P

k
eN60

@kx
contains the image of

P

k(V
(n)

�a M ⌦ 1)@kx , which is equal to V�N , by (11.3.9 ⇤).

Remark 11.3.22. At this point, it can be clearer to write M�+�a[E] = M�+�a[N]
and to consider the latter space as a free C[N]-module, where N is considered as a
new variable. The action of Ni on M�+�a induces an action denoted by Ni ⌦ 1 on
M�+�a[N], and we define the action of Ni on eN� as that induced by Ni ⌦ 1� aiN.

In order to have an explicit expression of eN� (� 6 0) and eventually prove its finite
dimensionality, it remains to find the kernel of the morphism in Proposition 11.3.20.
To do that, we introduce the set

Ig(�) = {i 2 I | ai 6= 0 and �i = 0} ⇢ Ig.

Given m 2 M�+�a, we have
�

m
Q

i2Ig(�)

xi

�

⌦ 1 = m⌦ t 2 V<�N and therefore also

(m⌦ 1)
Q

i2Ig(�)

xi@xi = (m⌦ 1) ·
Q

i2Ig(�)

(Si � ait@t) 2 V<�N.

In this way, we obtain a large collection of elements in the kernel.

Corollary 11.3.23. If � < 0 and � 6 0, eN� is isomorphic to the cokernel of the injective
morphism

(11.3.23 ⇤) '� :=
Y

i2Ig(�)

(Si/ai � E) 2 End(M�+�a[E]),

or equivalently

(11.3.23 ⇤⇤) '� :=
Y

i2Ig(�)

((Ni ⌦ 1)/ai �N) 2 End(M�+�a[N]).

Remark 11.3.24. We have assumed in Theorem 11.3.2 that M is a minimal extension
along the normal crossing divisor Di2I . However, the previous expression shows that,
for � < 0 and � 6 0, eN� only depends on the M↵’s with ↵i < 0 if i 2 Ig. For
such a �, we conclude that grV� N only depends on the localized module M(⇤g).

Moreover, by definition, the action of Ni (resp. N) on eN� is that induced by
Ni ⌦ 1� aiN (resp. N). We thus find that

Q

i2Ig
Ni acts by zero on eN�.

Corollary 11.3.25. If � < 0 and � 6 0, eN� is finite-dimensional.

Proof. Set b = |Ig(�)|. Corollary 11.3.23 implies that the natural C-linear morphism
b�1

L

k=0

M�+�a Ek
�!

eN�

is an isomorphism. Since every M�+�a is finite-dimensional, we obtain the desired
assertion.
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Note also that the action of E on eN�, and thus that of N = 2⇡ i(E��) is easily
described on this expression:

mEk
·E =

(

mEk+1 if k < b� 1,

m
⇥

Eb
�

Q

i2Ig(�)

(E�Si/ai)
⇤

if k = b� 1.

Proof of Corollary 11.3.23. Injectivity of '� is clear by considering the effet of '� on
the term of highest degree with respect to E. On the other hand, we already know
that every element of eN� is the image of some m =

P

k(mk⌦1)Ek with mk 2 M�+�a

for every k. If we expand this using E = t@t, we find

(11.3.26) m 2

L

j2N
M�+(��j)a ⌦ @jt .

Now suppose that m actually lies in V<�N . It can then be written as (see (11.3.15))

(11.3.27) m =
X

↵2Rn

k2NIg

(m↵,k ⌦ 1)@kx0 ,

where m↵,k 2 M↵ satisfies ↵i < �ai whenever ai 6= 0. If we expand the expression
(m↵,k⌦1)@kx0 according to (11.3.3), all the terms that appear belong to M↵+k�ja⌦@

j
t

for some j 6 |k| (we identify k with (k, 0) 2 Zn). Comparing with (11.3.26), we can
therefore discard those summands in (11.3.27) with ↵+k 6= �+�a without changing
the value of the sum. The sum in (11.3.27) is thus simply indexed by those k 2 NIg

such that ki > �i for all i 2 Ig and the index ↵ is replaced with � + �a� k.
Now, if ai 6= 0 then ↵i = (�i + �ai) � ki < �ki and so m↵,k is divisible by xki

i .
This means that we can write

m↵,k = m0
kx

0k

for some m0
k 2 M�+�a. Therefore, (11.3.27) reads

m =
X

k2NIg

ki>�i 8 i2Ig

(m0
k ⌦ 1)x0k@kx0 , m0

k 2 M�+�a.

If m0
k 6= 0, then ki > 1 for i 2 Ig(�) (since �i = 0), and consequently, x0k@kx0 is forced

to be a multiple of
Y

i2Ig(�)

xi@xi
=

Y

i2Ig(�)

(Si � ai E).

As a consequence,

m 2

X

`2NIg

(M�+�a ⌦ 1)x0`@`x0 ·

Y

i2Ig(�)

(Si � ait@t)

=
X

`2NIg

(M�+�a ⌦ 1)(S� at@t)
`
·

Y

i2Ig(�)

(Si � ait@t)

⇢ M�+�a[E] ·
Y

i2Ig(�)

(Si � ai E).
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We end this section by giving the explicit description of the quiver of eN = grV� N

for � < 0 (see Proposition 11.2.5). We thus consider the vector spaces eN� for
� 2 [�1, 0]n, and the morphisms

(11.3.28) eN��1i

cani(�)

((
eN�

vari(�)

ii

for every i such that �i = 0. We know from that Corollary 11.3.23 that eN� 6= 0 only
if �i = 0 for some i 2 Ig (i.e., such that ai 6= 0). Moreover, the description of eN�

given in this corollary enables one to define a natural quiver as follows.

(1) If i /2 Ig and �i = 0, we also have (� + �a)i = 0, and we will see that the
diagram

M�+�a�1i [N]

cani ⌦1
**

M�+�a[N]

vari ⌦1

jj

commutes with '� (which only involves indices j 2 Ig), inducing therefore in a natural
way a diagram

eN��1i

ci(�)

((
eN�

vi(�)

ii

We notice moreover that the minimal extension property for M is preserved for this
diagram, that is, ci(�) remains surjective and vi(�) remains injective.

(2) If i 2 Ig, we set '1i
= (Ni ⌦ 1)/ai � N so that, with obvious notation, '� =

'1i
'��1i

= '��1i
'1i

, and we can regard '�,'1i
,'��1i

as acting (injectively) both
on M�+�a[N] and M��1i+�a[N]. Moreover, the multiplication by xi, which is an
isomorphism M�+�a

⇠
�! M��1i+�a, is such that xi ⌦ 1 commutes with '��1i

. In
such a way, we can regard eN��1i

as Coker'��1i
acting on M�+�a[N]. We can then

define ci and vi as naturally induced by the following commutative diagrams:

M�+�a[N]
'��1i // M�+�a[N] // //

'1i

✏✏

eN��1i

ci(�)
✏✏

M�+�a[N] '�
// M�+�a[N] // // eN�

resp.

M�+�a[N]
'��1i // M�+�a[N] // // eN��1i

M�+�a[N]

'1i

OO

'�
// M�+�a[N] // // eN�

vi(�)

OO

In other words, ci(�) is the natural morphism

M�+�a[N]/ Im'��1i

'1i
����! M�+�a[N]/ Im'�,
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and vi(�) is the natural morphism induced by the inclusion Im'� ⇢ Im'��1i
:

M�+�a[N]/ Im'� �! M�+�a[N]/ Im'��1i
.

We note that vi(�) is surjective. Moreover,

Proposition 11.3.29. For � < 0, the quiver of grV� N has vertices eN� = Coker'� for
� 2 [0, 1]n such that

(1) � = ↵� �a for some ↵ 2 A+ Z,
(2) �i = 0 for some i 2 Ig.

It is isomorphic to the quiver defined by the morphisms ci(�), vi(�) as described above.

11.3.b. More on the structure of the nearby cycles. We keep the notation and
assumptions of Theorem 11.3.2 in the present setting (no filtration, C[x]h@xi-modules
of normal crossing type) and we will make more precise the C[x]h@xi-module structure
of eN := grV� N . The general principle is that the graded object grM• eN with respect to
the monodromy filtration of the nilpotent endomorphism N = 2⇡ i(E��) should be
simpler to understand, and enough for the purpose of Hodge theory, and moreover it
is completely determined by the primitive modules Pk

eN , by means of the Lefschetz
decomposition. We first exhibit the simplification brought by grading with respect to
a suitable finite filtration U•, and we will consider next the monodromy filtration.

Structure of V
(n)

0

eN . We consider E as a new variable and we set V
(n)

�a M [E] =

V
(n)

�a M ⌦C C[E]. We endow V
(n)

�a M [E] with the following twisted C[x]hx@xi[E]-
structure, compatible with (11.3.3):

(m⌦ Ek) · f(x) = mf(x)⌦ Ek,

(m⌦ Ek) · E = m⌦ Ek+1,

(m⌦ Ek) · xi@xi
= mxi@xi

⌦ Ek
�aim⌦ Ek+1 .

If ↵ is such that M↵ 6= 0 (see Definition 11.2.2), we set

Ig(�,↵) = {i 2 Ig | ↵i = �ai}.

Corollary 11.3.23 provides us with a presentation of V (n)

0

( eN) as the cokernel of

(11.3.30) ' =
L

↵6�a
'↵ :

L

↵6�a
M↵[E] �!

L

↵6�a
M↵[E],

with
'↵ :=

Y

i2Ig(�,↵)

(Si/ai � E).

This morphism is Chx@x,Ei-linear, and we have V
(n)

0

( eN) ' Coker' as a Chx@x,Ei-
module. Moreover, Corollary 11.3.23 also implies that, for every i = 1, . . . , n, the
V -filtration of eN in the direction of Di is determined by the formula

(11.3.31) V
(i)
�i

( eN) \ V
(n)

0

( eN) = image
�

(V (i)
�i+�ai

V (n)

�a M)[E]
�

, for �i 6 0.
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However, since xi does not commute with Si, the morphism ' is not C[x]hx@xi[E]-
linear.

We will recover C[x]hx@xi[E]-linearity after grading by a suitable finite filtration U•.
For ↵ 6 �a fixed, and for j 2 Ig(�,↵), we have

⇣

Y

i2Ig(�,↵)

xi@xi

⌘

· xj � xj ·

⇣

Y

i2Ig(�,↵)

xi@xi

⌘

= xj ·

Y

i2Ig(�,↵)

i 6=j

xi@xi ,

and the right-hand term sends M↵[E] in M↵�1j
[E]. Moreover, for j 2 Ig(�,↵), the

equality #Ig(�,↵ � 1j) = #Ig(�,↵) � 1 holds true. We are thus led to define the
finite increasing filtration by C[x]hx@xi[E]-submodules

UkV
(n)

�a M [E] =
L

↵6�a
#Ig(�,↵)6k

M↵[E].

Grading with respect to U• has the only effect of killing the action of xj on M↵[E]

for j 2 Ig(�,↵). Moreover, the image filtration U•V
(n)

0

eN is nothing but the filtration

UkV
(n)

0

eN =
L

�60

#Ig(�)6k

eN�.

Every C[x]hx@xi[E]-module grUk V
(n)

0

eN is the direct sum of its submodules (grUk V
(n)

0

eN)J
with

(grUk V
(n)

0

eN)J =
L

�|Ig(�)=J

eN�, for J ⇢ Ig with |J | = k,

and xj acts by zero on (grUk V
(n)

0

eN)J for j 2 J . In other words, (grUk V
(n)

0

eN)J is
supported on

T

i2J Di.

Proposition 11.3.32 (Structure of grUV (n)

0

( eN)). The morphism ' is strictly compatible
with the filtration U•V

(n)

�a M [E] and we have an exact sequence

0 �! grUV (n)

�a M [E]
grU'

�����! grUV (n)

�a M [E] �! grUV (n)

0

( eN) �! 0.

Proof. This is obvious since ' is graded as a C[x@x,E]-linear morphism.

Remarks 11.3.33.
(1) The computation shows that grUV (n)

0

( eN), hence V
(n)

0

( eN), hence eN , is sup-
ported by the divisor of g, as expected of course.

(2) As a consequence, we can also determine the negative jumping indices of the
V -filtration of N . Let A ⇢ [�1, 0)n be the finite set of exponents of M (see Definition
11.2.2). Let us fix � < 0. Then grV� N 6= 0 if and only if eN� 6= 0 for some � 6 0, that
is, Ig(�) 6= ?, that is, �ai 2 ↵i � N for some ↵ 2 A and some i 2 Ig. We conclude
the set of negative jumping indices is the set

S

i2Ig

1

ai
(↵i � N), ↵ 2 A.
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11.3.c. A simple example with monodromy filtration. We illustrate the pre-
vious general results on a simple example, where we can give more details on the
monodromy filtration on the nearby cycles eN = grV� N (� < 0).

Assumption 11.3.34. M is simple, that is, all properties of Example 11.2.9 are satisfied.
In particular the set of exponents is reduced to one element ↵ 2 [�1, 0)n, rkM↵ = 1
and M↵+k = 0 if ↵i = �1 and ki > 1.

Let us summarize the results already obtained in the present setting.
(i) The set of negative jumping indices � for the V -filtration is

S

i2Ig
1

ai
(↵i�N). For

such a a jumping index � 2 [�1, 0), we will set J(↵, �) := {i 2 Ig | ↵i ⌘ �ai mod Z}
and k� = #J(↵, �) � 1. Moreover, for j 2 {0, 1}I , we set kjk :=

P

i2J(↵,�) ji =
#{i 2 J(↵, �) | ji = 1}.

(ii) Such a jumping index � 2 [�1, 0) being fixed, and setting eN = grV� N , the
only possible � 6 0 such that eN� 6= 0 are of the form � = ↵ � �a � k for suitable
k 2 Nn: for all i 2 {1, . . . , n} we have ↵i � �ai > ↵i > �1, so ↵i � �ai � ki > 0 if
ki 6 �1. (Note also that some components of ↵ � �a can be > 0). There exists a
unique ko

2 Nn such that
(

koi = 0 if i /2 Ig,

�o
i := ↵i � �ai � koi 2 [�1, 0) if i 2 Ig,

and we set �o = ↵o
� �a, with ↵o := ↵� ko, so that in particular �o

i = ↵o
i if i /2 Ig.

Then eN has a single exponent, equal to �o, and its quiver (see Remark 11.2.6) has
vertices eN� with � = �o + j, j 2 {0, 1}I . The corresponding �+ �a is then equal to
↵o + j. We note that

J(↵, �) = {i 2 Ig | �o
i = �1} and Ig(�

o + j) = {i 2 J(↵, �) | ji = 1}.

(iii) The action of xi@xi
on M↵o

+j (with ↵o and j as above), that we have denoted
by Si above, is the multiplication by the constant ↵o

i + ji. On the other hand, the
action of xi@xi on M↵o

+j [E] is by Si � ai E. We note that, for i 2 Ig(�
o + j), we

have �o
i + ji = 0, hence �o

i = �1 and ji = 1, so (↵o
i + ji)/ai = �. Proposition 11.3.20

describes eN�o
+j as the cokernel of (E��)kjk acting on M↵o

+j [E].
Let us consider the operator N = 2⇡ i(E��), and identify in a natural way

M↵o
+j [E] with M↵o

+j [N]. Then, as a C[N]-module, we have
eN�o

+j = M↵o
+j [N]/ ImNkjk.

In other words, eN�o
+j is a Jordan block of size kjk with respect to N. In particular,

eN�o
+j = 0 for any j all of whose components on J(↵, �) are zero. The action of

Ni = 2⇡ i(xi@xi
� (�o

i + ji)) on eN�o
+j , which is induced from that on M↵o

+j [E], is by
�(ai/ 2⇡ i)N. As a consequence, the primitive part Pk( eN�o

+j) is zero if k 6= kjk � 1

and has dimension 1 if k = kjk�1. We then denote by P( eN�o
+j) this primitive part.

We conclude that for k 2 N, the quiver of Pk
eN is zero if k > k� , and otherwise has

vertices P( eN�o
+j) for j 2 {0, 1}I such that kjk = k + 1.
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(iv) Let now us describe the vari arrows in the quiver of eN . The action of xi on eN

is induced by that on M so, if ji = 1, xi : eN�o
+j !

eN�o
+j�1i

it is the morphism

xi ⌦ 1 : M↵o
+j [N]/ ImNkjk

�! M↵o
+j�1i

[N]/ ImNkj�1ik.

Therefore,
(a) if i /2 J(↵, �), we have kj � 1ik = kjk and xi : eN�o

+j !

eN�o
+j�1i is

injective, since xi : M↵o
+j ! M↵o

+j�1i by our assumption of minimal extension
on M . For the same reason, xi : P eN�o

+j ! P eN�o
+j�1i is injective.

(b) If i 2 J(↵, �), then xi induces zero on the N-primitive part P eN�o
+j , so

vari is zero on the quiver of Pk
eN for every k.

(v) We consider the cani arrows in the quiver of eN . So we consider @xi
:

eN�o
+j�1i !

eN�o
+j with ji = 1.

(a) If i /2 Ig, then the action of @xi on M�o
+j�1i [N] is simply induced from

that on M�o
+j�1i

(see (11.3.3)), hence cani is onto since kj�1ik = kjk and by
our assumption of minimal extension on M . The same property holds for every
Pk

eN .
(b) If i 2 Ig r J(↵, �), then �o

i 2 (�1, 0) and cani is an isomorphism by our
convention (Remark 11.2.6). The same property holds for every Pk

eN .
(c) If i 2 J(↵, �), then for a given k 2 N, either Pk

eN�o
+j or Pk

eN�o
+j�1i is

zero, so cani is zero on the quiver of Pk
eN for every k.

Summarizing the discussion, let us emphasize the consequences on the primitive
parts PkgrV� N .

Corollary 11.3.35. The C[x]h@xi-module PkgrV� N vanishes for k > k� and the support
of PkgrV� N has codimension k if k 6 k� . More precisely, if k 6 k� , then

Pkgr
V
� N =

L

J⇢J(↵,�)
#J=k

(Pkgr
V
� N)J ,

where each (PkgrV� N)J is supported on DJ :=
T

i2J Di and, when regarded as a
C[xJ ]h@xJ

i-module, it is of normal crossing type along the divisor induced by
S

i/2J Di

and the corresponding quiver is isomorphic to the (I r J)-quiver of M . In particular,
Pk�

grV� N is a minimal extension with support along Di2I .

The general case. How much of the previous discussion remains valid in the general
case of a C[x]h@xi-module M of normal crossing type which is a minimal extension
along Di2I? Firstly, we can assume that the set A of exponents of M is reduced to
a single element ↵ 2 [�1, 0)n since M is the direct sum of such modules (see Remark
11.2.18(2)). Therefore, Properties (i) and (ii) of the simple case still hold.

However, in Property (iii), we have to take into account the nilpotent part Snilpi of
the action of xi@xi

on M↵o
+j . We can then describe eN�o

+j as

eN�o
+j = M↵o

+j [N]/ Im
⇣

Q

i2Ig(�o
+j)(N� Snilpi /ai)

⌘

.
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In Property (iv) (resp. (v)), the statements (iva) (resp. (va) and (vb)) remain true,
but it is not clear how to compute the primitive parts of eN�o

+j , and therefore (ivb)
and (vc) do not extend in a simple way.

11.3.d. Nearby cycles for coherent D-modules of normal crossing type

We now consider Theorem 11.3.2 in the analytic setting, but we forget the fil-
tration. Given M of normal crossing type along D as in §11.2.b, we denote by M

the associated C[x]h@xi-module, so that M = DX ⌦C[x]h@xi M . In oder to simplify
the notation, we will set N := D◆g⇤M. Then, using the notation of §11.3.a, we have
N = DX⇥C ⌦C[x,t]h@x,@ti N and grV� N = DX ⌦C[x]h@xi gr

V
� N . As a consequence from

the results proved for M and N in §11.3.a, we obtain that Theorem 11.3.2 holds for
M. The results of §11.3.b also extend to M and N in a straightforward way. Let us
end this subsection by adapting Proposition 11.3.32 to M.

Structure of V (n)

0

eN. We have

V
(n)

0

eN = OX ⌦C[x]h@xi V
(n)

0

eN = OX ⌦C[x]h@xi

⇣

X

�60

eN�

⌘

.

The OX -module V
(n)

�a M[E] := V
(n)

�a M ⌦C C[E] = OX ⌦C[x]h@xi V
(n)

�a M [E] is endowed
with an induced action of V (n)

0

DX (and the obvious action of E, see below), and we
have a surjective V

(n)

0

DX -linear morphism

(11.3.36) V (n)

�a M[E] �! V
(n)

0

N.

In the analytic setting, the filtration U• is defined by analytification of that on
V

(n)

�a M [E] and V
(n)

0

eN and the analytification of grU' gives rise to a V
(n)

0

DX -linear
presentation for each k > 0

(11.3.37) grUk V
(n)

0

N = Coker
h

grUk V
(n)

�a M[E]
'k

���! grUk V
(n)

�a M[E]
i

,

and 'k is injective.
The filtration U•V

(n)

�a M (and then U•V
(n)

�a M[E]) can be defined in terms of M only.
For J ⇢ Ig, let us denote Jc := Ig r J and Icg := I r Ig, so that I = Jc

t J t Icg . Let
us decompose correspondingly a = (aJc ,aJ , 0Ic

g
) and n = (nJc ,nJ ,nIc

g
). Then, by

considering first V
(n)

�a M , one checks that

UkV
(n)

�a M =
X

J⇢Ig
#J6k

V
(nJc

)

<�aJcV
(nJ )

�aJ
V

(nIcg
)

0

M, grUk V
(n)

�a M =
L

J⇢Ig
#J=k

V
(nJc

)

<�aJcV
(nIcg

)

0

grV
(nJ )

�aJ
M.
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We can give an interpretation of the filtration U•V
(n)

�a M as a convolution of filtrations,
as in Exercise 8.8(1). Let us define the following filtrations on V

(n)

�a M, for i 2 I:

U
(i)
�1

V (n)

�a M = 0,

U
(i)
0

V (n)

�a M =

(

V
(i)
<�ai

V
(n)

�a M if i 2 Ig,

V
(n)

�a M if i /2 Ig,

U
(i)
1

V (n)

�a M = V (n)

�a M.

(11.3.38)

Then

(11.3.39) UkV
(n)

�a M = (U (1)

• ? · · · ? U (n)
• )kV

(n)

�a M.

11.3.e. Nearby cycles for coherent filtered D-modules of normal crossing
type

We now take up the proof of Theorem 11.3.2 in the filtered case, and we set
(N, F•N) = D◆g⇤(M, F•M), or equivalently N = D◆g⇤M .

Step one: improvement of (11.3.9 ⇤). We first aim at improving Formula (11.3.9 ⇤)
(extended to N := OX ⌦C C[x]). As usual, we set FpV� := Fp \ V� .

Lemma 11.3.40. For � < 0 and any p 2 Z, we have

FpV�N =
X

k2Nn

(Fp�|k|V
(n)

�a M⌦ 1) · @kx .

Proof of Lemma 11.3.40. We first simplify the right-hand side by only taking into
account indices i 2 Ig, i.e., for which ai 6= 0, as in Remark 11.3.14, from which we
keep the notation. We set Nn = Nn0

⇥Nn00
with n0 = #Ig and n00 = n�n0. We claim

that
X

k2Nn

(Fp�|k|V
(n)

�a M⌦ 1) · @kx = F 0
pV�N :=

X

k02Nn0

(Fp�|k0|V
(n0

)

�a0 M⌦ 1) · @k
0

x .

By the second line in (11.2.30), arguing as for the proof of Proposition 11.2.34(2), we
have

FqM =
X

k002Nn00

Fq�|k00|V
(n00

)

k00 M · @k
00

x .

Therefore, summing first on k00 in the right-hand side of Lemma 11.3.40, and using
that (m⌦ 1)@xi

= m@xi
⌦ 1 for i /2 Ig, we get the desired assertion.

The assertion of the lemma amounts thus to

FpN \ V�N = F 0
pV�N (� < 0, p 2 Z),

and an easy computation shows that it is equivalent to the injectivity of

(11.3.41) grF
0
V�N �! grFN.

In a way similar to what is done in Remark 11.3.14, we set

K� = V
(n0

)

�a0 M⌦OX
OXh@x0 ,Ei,
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where the action of t is obtained by the second line of (11.3.3). For i 2 Ig, let us
set �i = Idxi@xi

⌦ 1� (Id⌦1)xi@xi
� (Id⌦1)ai E 2 End(K�), and let us consider the

Koszul complex K•
� := (K� , (�i)2Ig ). We have a natural morphism

K� �! N = M[@t]

sending m⌦ @k
0

x to (m⌦ 1)@k
0

x and m⌦ ai E to mxa0
⌦ @t. (1)

By Remark 11.3.14 and since �i vanishes on N (i 2 Ig), the previous morphism
factorizes through surjective morphisms (� < 0)

K� �! Hn0
(K� , (�i)2Ig ) �! V�N.

Let us filter K� by

FpK� :=
X

j

Fp�jV
(n0

)

�a0 M⌦OX
FjOXh@x0 ,Ei,

where FjOXh@x0 ,Ei is the filtration by the degree in @x0 ,E. We will prove the following
two assertions which immediately imply the injectivity of (11.3.41):

(a) The natural morphism grFK� ! grF
0
V�N is onto.

(b) The natural morphism Hn0
grFK•

� ! grFN is injective.

Proof of (a). By the previous surjective morphism, FpK� surjects onto F 0
pV�N: this

is already true if we start from the submodule
P

j Fp�jV
(n0

)

�a0 M⌦OX
FjOXh@x0

i of
FpK� (by forgetting E), so it suffices to notice that Fp�1

V
(n0

)

�a0 M ⌦OX
E is sent to

FpV
(n0

)

�a0 M⌦ 1 + (Fp�1

V
(n0

)

�a0 M⌦ 1)@xi
, which follows from Formula (11.3.4).

Proof of (b). In order to manipulate the filtration F•K� and its graded objects, it is
convenient to introduce the auxiliary filtration

GqK� := V
(n0

)

�a0 M⌦OX
FqOXh@x0 ,Ei,

and correspondingly,
GpN =

L

j6p

M⌦ @jt

which induces in a natural way a filtration on grFN, so that it is sufficient to prove
the injectivity of

grGHn0
grFK•

� �! grGgrFN.

We will prove
(c) The complex grGgrFK•

� has nonzero cohomology in degree n0 at most.

From (c) one deduces that Hn0
Gj�1

grFK•
� ! Hn0

GjgrFK
•
� is injective for every j,

and therefore

grGHn0
grFK•

� = Hn0
grGgrFK•

� = Hn0
grF grGK•

� ,

1. Note that the tensor product used in N is over C, while that used in K� is over OX .
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so it is enough to prove the injectivity of

(11.3.42) Hn0
grF grGK•

� �! grF grGN.

On the one hand, we have

Fpgr
G
q K� = Fp�qV

(n0
)

�a0 M⌦OX
OX [⇠0,E]q,

where OX [⇠0,E]q consists of polynomials of degree q in ⇠0 = (⇠i)i2Ig (class of @xi)
and E (still denoting the class of E), and thus (2)

grF grGK� = grFV (n0
)

�a0 M⌦OX
OX [⇠0,E].

The bi-graded endomorphism corresponding to �i reads � Id⌦(xi⇠i + ai E). On the
other hand, grGN = M[⌧ ], where ⌧ is the class of @t, and grF grGN = (grFM)[⌧ ]. The
morphism grF grGK� ! grF grGN is the morphism

(grFV (n0
)

�a0 M)[⇠0,E] �! (grFM)[⌧ ]

induced by the natural morphism grFV (n0
)

�a0 M ! grFM and sending ⇠i to @g/@xi · ⌧

and E to g · ⌧ . It factorizes through the inclusion (grFV (n0
)

�a0 M)[⌧ ] ! (grFM)[⌧ ].
Let us also recall that the localization morphism grFV (n0

)

�a0 M ! (grFV (n0
)

�a0 M)(g�1) is
injective (first line of (11.2.30)).

Assertion 11.3.43. The sequence (xi⇠i + ai E)i2Ig is a regular sequence on
⇣

(grFV (n0
)

�a0 M)(g�1)
�

(grFV (n0
)

�a0 M)
⌘

[⇠0,E].

It is easy to check that (xi⇠i + ai E)i2Ig is a regular sequence on the localized
module (grFV (n0

)

�a0 M)(g�1)[⇠0,E], since one is reduced to consider the sequence
(⇠i + ai E /xi)i2Ig . The assertion implies that (xi⇠i + ai E)i2Ig is also a regular
sequence on grFV (n0

)

�a0 M[⇠0,E], which in turn implies (c) above. Let us check that it
also implies the injectivity of (11.3.42). We wish to prove the injectivity of

(grFV (n0
)

�a0 M)[⇠0,E]
�

(xi⇠i + ai E)i2Ig �! (grFV (n0
)

�a0 M)[⌧ ](11.3.44)
⇠i 7�! @g/@xi · ⌧, E 7�! g · ⌧.

It is easy to see that its localization by g is an isomorphism. It is therefore enough to
prove that the localization morphism for the left-hand side of (11.3.44) is injective.
This in turn follows form the assertion.

In order to end the proof of Lemma 11.3.40, we are left to proving the assertion.
Since

gk : (grFV (n0
)

�a0 M)g�k
�

(grFV (n0
)

�a0 M)g�k+1

�! (grFV (n0
)

�a0 M)
�

(grFV (n0
)

�a0 M)g k > 0

2. In the following, we do not make precise the bi-grading of the objects and how the isomorphisms
are bi-graded, as it is straightforward.
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is an isomorphism, an easy induction reduces to proving that (xi⇠i + ai E)i2Ig is a
regular sequence on

�

(grFV (n0
)

�a0 M)
�

(grFV (n0
)

�a0 M)g
�

[⇠0,E]. It is therefore enough to
prove that

�

(xi⇠i + ai E)i2Ig , g
�

is a regular sequence on (grFV (n0
)

�a0 M)[⇠0,E].
Let us set X = X 0

⇥X 00, where X 00 has coordinates xi with i 2 I 0g := I r Ig and
has dimension n00. Firstly,

�

(xi⇠i + ai E)i2Ig , g
�

is a regular sequence on OX0 [⇠0,E],
since one computes easily that the zero set of the corresponding ideal has codimension
n0 + 1 in X 0

⇥ An0
+1. It is thus enough to prove that grFV (n0

)

�a0 M is OX0 -flat.
Let us recall that, for �00

2 Rn00
such that �i < 0 for all i 2 Icg , grFV

(n0
)

�a0 V
(n00

)

�00 M

is OX -locally free (see Remark 11.2.26(d)), hence OX0 -flat. By using the OX0 -linear
isomorphisms @xi (i 2 Icg) as in the second line of (11.2.30), one finds inductively
(by using the compatibility 11.2.25(3)) that grFV (n0

)

�a0 V
(n00

)

�00 M is OX0 -flat for any �00.

Taking the inductive limit for �00
! 1, one obtains the OX0 -flatness of grFV (n0

)

�a0 M.
This ends the proof of Lemma 11.3.40.

Step two: R-specializability properties for � < 0. As in Lemma 11.3.10, we deduce from
Lemma 11.3.40 that t : FpV�N

⇠
�! FpV��1

N for � < 0 and any p, as required by
Proposition 7.3.17(a).

Step three: R-specializability and middle extension properties for � > 0. We aim at prov-
ing that, for � > 0 and any p 2 Z,

FpV�N := FpN \ V�N = (FpN \ V<�N) + (Fp�1

V��1

N) · @t.

By definition, FpN =
L

k>0

Fp�kM⌦ @kt . On the other hand,

FpM =
X

k2Nn

Fp�|k|V
(n)

<0

M · @kx ,

according to Proposition 11.2.34(2) and Remark 11.2.36. Then, if m =
P

k>0

mk⌦@
k
t

belongs to FpN\V�N, and if we set m
0

=
P

k m0,k@
k
x with m

0,k 2 Fp�|k|V
(n)

<0

M, the
first line of (11.3.3) shows that

m = m0 +
X

k

(m
0,k ⌦ 1)@kx ,

(

m0
2 FpN \ V�N \N · @t,

P

k(m0,k ⌦ 1)@kx 2 FpV<0

N.

Now, by definition, FpN \N · @t = Fp�1

N · @t. Moroever, since @t : grV� N ! gr�+1

N

is injective for � 6= �1, we deduce easily that, for � > 0, V�N \ N · @t = V��1

N · @t.
In conclusion,

FpN \ V�N \N · @t = (Fp�1

N · @t) \ (V��1

N · @t) = (Fp�1

N \ V��1

N) · @t,

where the latter equality follows from the injectivity of @t on N, and so

FpV�N ⇢ (FpN \ V<0

N) + (Fp�1

V��1

N) · @t,

as wanted.



11.3. NEARBY CYCLES ALONG A MONOMIAL FUNCTION 301

Step four: normal crossing type properties. Let us fix � 2 [�1, 0) and take up the
notation eN = grV� N like in Example 11.3.8. By Theorem 11.3.2 without filtration,
we know that eN is a coherent DX -module of normal crossing type along D. We wish
to show that this result also holds with filtration, namely that (grV� N, F•grV� N) is a
coherent filtered DX -module of normal crossing type along D (Definition 11.2.25).

The formula given in Lemma 11.3.40 implies that, setting eN60

:= V
(n)

0

eN as in
Proposition 11.2.34,

Fp
eN =

X

q>0

(Fp�q
eN60

) · FqDX ,

so Proposition 11.2.37 reduces to proving the following properties:
(a) (eN60

, F•
eN60

) is R-specializable along every component Di of D (as defined in
the proposition),

(b) the filtrations (F•
eN60

, V (1)

•
eN60

, . . . , V (n)
•

eN60

) are compatible (where V (i)
•

eN60

:=

V (i)
•

eN \

eN60

),
(c) each grFp gr

V (n)

↵
eN60

(p 2 Z, ↵ 2 [�1, 0]n) is C-locally free.

Proof of (b). We will use the presentation (11.3.37) and it will be easier to define and
analyze the filtrations on V

(n)

�a M[E]. In a natural way we set

Fp(V
(n)

�a M[E]) :=
X

q>0

Fp�qV
(n)

�a M⌦ Eq,

V
(i)
�i

(V (n)

�a M[E]) := (V (i)
�i+�ai

M \ V (n)

�a M)[E] (�i 6 0).

Claim 1. The filtrations F•
eN60

, V (i)
•

eN60

are respectively the images of the filtrations
above by the morphism (11.3.36) V

(n)

�a M[E] ! eN60

.

Proof. For the filtrations V (i), this has been seen in (11.3.31). We have seen (and
used) that V

(n)

�a M[E] =
P

j>0

V
(n)

(��j)aM⌦ @jt ⇢ N. Therefore,

FpN \ V (n)

�a M[E] =
X

j>0

Fp�jV
(n)

(��j)aM⌦ @jt ⇢ N.

Since Fp�jV
(n)

(��j)aM = Fp�jV
(n)

�a M · xja, we conclude that

FpN \ V (n)

�a M[E] =
X

j>0

Fp�jV
(n)

�a M⌦ tj@jt = Fp(V
(n)

�a M[E]).

Claim 2. The family (F•, V
(1)

• , . . . , V (n)
• ) of filtrations of V (n)

�a M[E] is compatible.

Proof. This is true if we replace this family by the family (G•, F
0
•, V

(1)

• , . . . , V (n)
• ),

where G• is the filtration by the degree in E and F 0
• is (F•V

(n)

�a M)[E], due to the
compatibility on V

(n)

�a M. Now, F• being the convolution of F 0
• and G•, we can apply

Exercise 8.8.

Let K be the kernel of the surjective (V
0

DX)[E]-linear morphism V
(n)

�a M[E] ! V
0

eN.
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Claim 3. The family induced by (F•, V
(1)

• , . . . , V (n)
• ) on K is compatible and that the

inclusion K ,! V
(n)

�a M[E] is (n+ 1)-strict.

This claim implies the compatibility of (F•, V
(1)

• , . . . , V (n)
• ) on eN60

as in (b) above.
We will use the criterion of Lemma 8.3.21.

We first work on the graded objects with respect to the filtration U• (which takes
the role of F 0) and with the induced family (F•, V

(1)

• , . . . , V (n)
• ). Obviously, Condi-

tions (a) and (b) of this lemma are satisfied. We are thus reduced to prove the claim
for grUk V

(n)

�a M[E] for every k.
Let us fix k > 0. According to (11.3.37), grUk K is the image of the injective

morphism 'k, that we regard as an (n+1)-filtered morphism of degree k with respect
to F•. We will apply once more Lemma 8.3.21 to grUk V

(n)

�a M[E], where now the
filtration F 0 is the filtration G• of grUk V

(n)

�a M[E] by the degree in E. It is obvious that
'k is G-strict. Moreover, grGq grUk V

(n)

�a M[E] = grUk V
(n)

�a M ·Eq and grG'k is simply the
multiplication by Ek. Moreover, V (i)

• (grUk V
(n)

�a M[E]) = V (i)
• (grUk V

(n)

�a M)[E], so

V (i)
• (grGq gr

U
k V

(n)

�a M[E]) = V (i)
• (grUk V

(n)

�a M) · Eq .

On the other hand, the filtration F induced on grUk V
(n)

�a M[E] is still equal to the con-
volution of the filtration F 0

•gr
U
k V

(n)

�a M[E] induced by F 0
•V

(n)

�a M[E] = (F•V
(n)

�a M)[E],
and the filtration G•. Therefore,

Fpgr
G
q gr

U
k V

(n)

�a M[E] = (Fp�qgr
U
k V

(n)

�a M) · Eq .

It is then clear that grG'k = ·Ek is (n+1)-strict on every grGq gr
U
k V

(n)

�a M[E]. Lastly, let
us check compatibility of the induced family (F•, V

(1)

• , . . . , V (n)
• ) on grGq gr

U
k V

(n)

�a M[E].
It amounts to that on grUk V

(n)

�a M. For that purpose, we remark that the family
of filtrations (U•, F•, V

(1)

• , . . . , V (n)
• ) is compatible on V

(n)

�a M. Indeed, the family
without U• is compatible, and the filtration U• can be expressed as a convolution of
filtrations whose terms are terms of the V (i)-filtrations, by (11.3.39). Exercise 8.8
applies then as in Claim 2. As a consequence, we obtain the desired compatibility
(see Remark 8.3.10(1), or use the flatness criterion).

Proof of (a). We know that xi : FpV
(n)

�a M ! FpV
(n)

�a M has image FpV
(n)

�a�1i
M. By

Claim (1) and the (n + 1)-strictness of V (n)

�a M[E] ! eN60

, the same property holds
for Fp

eN60

= FpV
(n)

0

eN. That @xi sends FpV
(i)
�1

eN60

into Fp+1

V
(i)
0

eN60

is clear.

Proof of (c). By the same argument as in the last part of the proof of (b), the family
of filtrations (U•, F•, V

(1)

• , . . . , V (n)
• ) is compatible on eN60

. As a consequence, grading
with respect to F, V (i), U can be made in any order, and it is enough to prove the
C-local freeness of grFp grV

(n)

↵ grUk
eN60

for every k. This is obtained as in the last part
of the proof of (b).

This ends the proof of Theorem 11.3.2.
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11.3.f. A simple example. We take up the simple example of Section 11.3.c and,
together with Assumption 11.3.34, we assume that

Assumption 11.3.45. (M, F•M) is a coherent filtered DX -module of normal crossing
type, such that FpM = M↵ · FpDX for all p. Let us decompose any k 2 Zn as
k = k+

� k� with k+,k�
2 Nn with disjoint support. Then (and according to

Assumption11.3.34), considering M = M↵+Zn with the graded filtration

F�1

M = 0, FpM =
L

k2Zn

|k+|6p

M↵+k (p > 0),

we have FpM = OX ⌦C FpM .

Theorem 11.3.46. Under the previous assumptions, the following properties hold for
every � 2 S1:

(1) for every k > 1,

Nk : (grMk  g,�M, F•gr
M

k  g,�M)
⇠
�! (grM�k g,�M, F•gr

M

�k g,�M)(�k)

is a strict isomorphism,
(2) For every k > 0, the morphism

grM cant : (Pk+1

 g,1M, F•Pk+1

 g,1M) �! (Pk�g,1M, F•Pk�g,1M)(�1)

is an isomorphism.

Remark 11.3.47. Using the formalism of eDX -modules as in Chapter 7, we set M =
RFM. This eDX -module is strictly specializable along (g) and is a minimal extension
along g, as follows from the results of Section 11.3.e. Then the first statement that Nk

is a strict isomorphism is equivalent, according to Proposition 7.4.11, to the property
that every grMk grV� M is strict (k 2 Z), equivalently so is every primitive part PkgrV� M .

Proof. It is not difficult to check that the description (i)–(v) of Section 11.3.b extends
with the filtration F to a description of PgrV� N , since this amounts to taking into
account the degree in N only. The first point of the theorem follows.

For the second point, we have seen that, using the language of eDX -modules, N is
strictly R-specializable along (t) and is a minimal extension as such. The morphism
cant is then isomorphic to N : grV�1

N ! ImN and the desired isomorphism follows
from Lemma 3.1.13(f).

11.4. Sesquilinear pairings

11.4.a. Basic currents. The results of §6.3.a in dimension one extend in a straight-
forward way to �n. We will present them in the context of right D-modules, that is,
we will consider currents instead of distributions. We will denote by ⌦n the (n, n)-
form dx

1

^ · · ·^dxn^dx
1

^ · · ·^dxn, that we also abbreviate by dx^dx. We continue
using the simplifying assumptions 11.1.2.
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Proposition 11.4.1. Fix ↵,� 2 (R60

)n and k 2 N, and suppose a current u 2 C(�n) =
Dbn,n(�n) solves the system of equations

(11.4.1 ⇤) u(xi@xi
� ↵i)

k = u(xi@xi
� �i)

k = u@xj
= u@xj

= 0 (i 2 I, j /2 I).

for an integer k > 0.

(a) If ↵,� 2 (R<0

)n, we have u = 0 unless ↵� � 2 Zn.
(b) If � = ↵, then, up to shrinking �n, u is a C-linear combination of the basic

currents

(11.4.1 ⇤⇤) u↵,p = ⌦n

Y

i2I
↵i<0

|xi|
�2(1+↵i)

L(xi)pi

pi!

Y

i2I
↵i=0

L(xi)pi+1

(pi + 1)!
@xi

@xi ,

where 0 6 p
1

, . . . , pn 6 k � 1. These currents are C-linearly independent.

Proof. Assume first ↵,� 2 (R<0

)n. If Suppu ⇢ D, then uxm = 0 for some m 2 Nn

and, arguing as in the proof of Proposition 6.3.2, we find u = 0.
Otherwise, set xi = e⇠i and pullback u as eu on the product of half-planes Re ⇠i > 0.

Set v = e�↵⇠e��⇠
eu. Then v is annihilated by (@⇠i@⇠i)

k for every i = 1, . . . , n –
therefore by a suitable power of the n-Laplacian

P

i @⇠i@⇠i – and a suitable k > 1,
and by @xj and @xj , that we will now forget. By the regularity of the Laplacian,
v is C1 and, arguing with respect to each variable as in Proposition 6.3.2, we find
that v is a polynomial P (⇠, ⇠) and thus eu = e↵⇠e�⇠P (⇠, ⇠). We now conclude (a), as
well as (b) for ↵,� 2 (R<0

)n, as in dimension one.
Assume now that ↵ = � 6 0. We will argue by induction on #{i 2 I | ↵i = 0},

assumed to be > 1. Let I 0 = {i 2 I | ↵i < 0}, I 00 [ {io} = {i 2 I | ↵i = 0}. Set
↵ = (↵0, 0, 0io), e↵ = ↵ � 1io = (↵0, 0,�1io) and let us decompose correspondingly
p 2 Nn as p = (p0,p00, po). By induction we find

u · |xio |
2 =

X

p

cp0,p00,po+2

· ue↵,p, cp 2 C,

for pi = 0, . . . k � 1 (i = 1, . . . , n), and this is also written as
X

q

cque↵,q@xio
@xio

· |xio |
2,

with qi = 0, . . . k � 1 for i 6= io and qo = 2, . . . , k + 1. Let us set

v = u�

X

q

cque↵,q@xio
@xio

,

so that v · |xio |
2 = 0. A computation similar to that in §6.3.a shows that the basic

currents ue↵,q satisfy the equations (11.4.1 ⇤) (with respect to the parameter ↵) except
when qo = k + 1, in which case we find

ue↵,q0,q00,k+1

@xio
@xio

· (xio@xo
)k = 2⇡ i ◆⇤u

(↵0,0),(q0,q00
)

,
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and similarly when applying (xio@xo
)k, where ◆⇤ denotes the pushforward of currents

by the inclusion Dio ,! X. On the other hand, according to Exercise 10.2 and as in
Proposition 6.3.3, the equation v · |xio |

2 = 0 implies

v = ◆⇤v0 +
X

j>0

(◆⇤v
0
j · @

j
xio

+ ◆⇤v
00
j · @jxio

),

where v
0

, v0j , v
00
j are sections of CDio

on a possibly smaller �n�1. Applying (xio@xio
)k

and its conjugate to

u =
X

q

cque↵,q@xio
@xio

+ ◆⇤v0 +
X

j>0

(◆⇤v
0
j · @

j
xio

+ ◆⇤v
00
j · @jxio

)

gives

0 = 2⇡ i cq0,q00,k+1

· ◆⇤u
(↵0,0),(q0,q00

)

+
X

j>1

jk◆⇤v
0
j · @

j
xio

,

0 = 2⇡ i cq0,q00,k+1

· ◆⇤u
(↵0,0),(q0,q00

)

+
X

j>1

jk◆⇤v
00
j · @jxio

.

By the uniqueness of the decomposition in CDio
[@xio

, @xio
], we conclude that

cq0,q00,k+1

= 0, ◆⇤v
0
j = ◆⇤v

00
j = 0 (j > 1),

and finally u =
P

q cqu↵,q + ◆⇤v0, up to changing the notation for cq in order that qi
varies in 0, . . . , k�1 for all i. Now, v

0

has to satisfy Equations (11.4.1 ⇤) on Dio , so has
a decomposition on the basic currents (11.4.1 ⇤⇤) on Dio by the inductive assumption,
and we express ◆⇤v0 as a basic current by using the formula proved in Exercise 6.14
with respect to the variable xio .

11.4.b. Sesquilinear pairings between holonomic DX-modules of normal
crossing type

We make explicit the expression of a sesquilinear pairing between holonomic
DX -modules of normal crossing type, by extending to higher dimensions Proposition
6.3.5. Here, we mainly work in the right setting, while the dimension-one case is
given in the left setting.

Proposition 11.4.2. Let c be a sesquilinear pairing between M0,M00 of normal crossing
type.

(1) The induced pairing c : M 0
↵0 ⌦M 00

↵00 ! C
�

n vanishes if ↵0
�↵00 /2 Zn.

(2) If m0
2 M 0

↵ and m00
2 M 00

↵ with ↵ 6 0, then the induced pairing c(↵)(m0,m00)
is a C-linear combination of the basic distributions u↵,p (p 2 Nn).

As in dimension one, we find a decomposition

c(↵) =
X

p2Nn

c↵,p · u↵,p,
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where c↵,p : M 0
↵ ⌦C M 00

↵ ! C is a sesquilinear pairing and, setting c↵ = c↵,0, we can
write in a symbolic way

c(↵)(m0,m00) = ⌦nc↵

✓

Y

i|↵i<0

|xi|
�2(1+↵i+Ni)

Y

i|↵i=0

|xi|
�2Ni

� 1

Ni
m0,m00

◆

·

Y

i|↵i=0

@xi@xi ,

where Ni = (xi@i � ↵i). As a corollary we obtain:

Corollary 11.4.3. With the assumptions of the proposition, we have

c(m0,m00) · xi@xi
= c(m0,m00) · xi@xi

.

Notice also that the same property holds for xi@xi �↵i since ↵i is real. Therefore,
with respect to the nilpotent operator Ni, c : M 0

↵ ⌦M 00
↵ ! CX satisfies

c(Nim
0,m00) = c(m0, Nim00).

On the other hand, Ni := 2⇡ i(xi@xi � ↵i) is skew-adjoint with respect to c.

11.4.c. Induced sesquilinear pairing on nearby cycles. We now consider the
setting of Section 11.3.d. Suppose we have a sesquilinear pairing c : M0

⌦CM00
! C

�

n .
We still denote by c the pushforward sesquilinear pairing N0

⌦ N00
! C

�

n+1 by the
inclusion defined by the graph of g(x) = xa.

The purpose of this section is to find a formula for the induced pairing

grV� c : gr
V
� N

0
⌦ grV� N

00
�! C

�

n

for � 2 [�1, 0), as defined by (10.5.6 ⇤), that we fix below. Since we already know
that grV� N

0, grV� N
00 are of normal crossing type, grV� c is uniquely determined by the

pairings

ec� : eN 0
� ⌦

eN 00
� �! C

for � 6 0. What we have to do then is to derive a formula for ec� in terms of the
original pairing c�+�a.

Fix m0
2 M 0

�+�a ⇢ M 0
�+�a[E] and m00

2 M 00
�+�a ⇢ M 00

�+�a[E], and let us con-
sider their images n0, n00 by the morphism in Proposition 11.3.20. The induced pair-
ing is given by the formula, for ⌘o 2 C1

c

(�n) and a cut-off function � 2 C1
c

(�)
(see (10.5.6 ⇤))

h

ec�(n
0, n00), ⌘oi =

i

2⇡
Ress=�hc�+�a(m

0
⌦ 1,m00

⌦ 1), ⌘o|t|
2s�(t)i

=
i

2⇡
Ress=�hc�+�a(m

0,m00), ⌘o|g|
2s�(g)i.
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If we set N = E��, any element of eN 0
� can be expanded as

P

j n
0
jN

j where n0
j is in

the image of M 0
�+�a, and similarly with M 00

�+�a, and we find

(11.4.4)
D

ec�
⇣

P

j>0

n0
jN

j ,
P

k>0

n00
kN

k
⌘

, ⌘o

E

=
i

2⇡
Ress=�

⇣

(s� �)j+k
X

j,k2N
hc�+�a(m

0
j ,m

00
k), ⌘o|g|

2s�(g)i
⌘

.

Using the symbolic notation from above, the current c�+�a(m0,m00) is equal to

⌦nc�+�a

✓

Y

i|�i+�ai<0

|xi|
�2(1+�i+�ai+Ni)

Y

i|�i=ai=0

|xi|
�2Ni

� 1

Ni
m0,m00

◆

·

Y

i|�i=ai=0

@xi
@xi

.

The factor �(g) does not affect the residue, and |g|2s = |x|2as. If we now define F (s)
as the result of pairing the current

⌦nc�+�a

✓

Y

i|�i+�ai<0

|xi|
2ais�2(1+�i+Ni)

Y

i|�i=ai=0

|xi|
�2Ni

� 1

Ni
m0,m00

◆

against the test function
Q

i|�i=ai=0

@xi@xi⌘o(x), then F (s) is holomorphic on the half
space Re s > 0, and

h

ec�(n
0, n00), ⌘oi =

i

2⇡
Ress=0

F (s).

Recall the notation Ig = {i 2 I | ai 6= 0} and Ig(�) = {i 2 Ig | �i = 0}. Looking at
Y

i2Ig(�)

|xi|
2ais�2�2Ni

Y

i2IgrIg(�)

|xi|
2ais�2(1+�i)�2Ni

Y

i|�i=ai=0

|xi|
�2Ni

� 1

Ni
,

we notice that the second factor is holomorphic near s = 0; the problem is therefore
the behavior of the first factor near s = 0. To understand what is going on, we apply
integration by parts, in the form of the identity (5.4.5 ⇤⇤); the result is that F (s) is
equal to the pairing between the current

⌦nc�+�a

✓

Y

i2Ig(�)

|xi|
2ais�2Ni

� 1

Ni � ais)2

Y

i|�i<0

|xi|
2ais�2(1+�i+Ni)

Y

i|�i=ai=0

|xi|
�2Ni

� 1

Ni
m0,m00

◆

and the test function
Y

i|�i=0

@xi@xi⌘o(x).

The new function is meromorphic on a half space of the form Re s > �", with a
unique pole of some order at the point s = 0. We know a priori that Ress=0

F (s)
can be expanded into a linear combination of hu�,p, ⌘oi for certain p 2 Nn, and that
ec�(n0, n00) is the coefficient of u�,0 in this expansion; here

u�,0 = ⌦n

Y

i|�i<0

|x|�2(1+�i)
Y

i2Ig(�)

L(xi)@xi@xi .
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Throwing away all the terms that cannot contribute to hu�,0, ⌘oi, we eventually arrive
at the formula

ec�(n
0, n00) = c�+�a

⇣

i

2⇡ Ress=0

Y

i2Ig(�)

1

Ni � ais
m0,m00

⌘

,

where the residue simply means here the coefficient of 1/s. In particular, we have
ec�(n0, n00) = 0 if #Ig(�) > 2. By means of (11.4.4), we obtain the final result:

(11.4.5) ec�
⇣

P

j>0

n0
jN

j ,
P

k>0

n00
kN

k
⌘

= c�+�a

⇣

i

2⇡ Ress=0

P

j,k2N
Q

i2Ig(�)

sj+k

Ni � ais
m0,m00

⌘

.

11.5. Comments

This chapter is intended to be an expanded version of the part of Section 3 in
[Sai90] which is concerned only with filtered D-modules. As already explained, we
do not refer to perverse sheaves, so the perverse sheaf version, which is present in
loc. cit., is not relevant here. Nevertheless, the content of §11.2.b is much inspired
by it.


