CHAPTER 11

2-MODULES OF NORMAL CROSSING TYPE

Summary. This chapter, although somewhat technical, is nevertheless essential
to understand the behaviour of Hodge modules when the singularities form a
normal crossing divisor. It analyzes the compatibility properties on a given
R-specializable Z-module with respect to various functions, when these functions
form part of a coordinate system. The results of this chapter will therefore be
of a local nature.

11.1. Introduction

Notation 11.1.1. In this chapter, the setting is as follows. The space X = A" is a
polydisc in C™ with analytic coordinates z1,...,z,, we fix £ < n and we denote
by D the divisor {z1 - -z, =0}. We also denote by D; (i = 1,...,¢) the smooth
components of D and by Dy their intersection D1 N ---N Dy. We will shorten the
notation C[zy,...,x,] into Clz] and Clz1,...,2¢(0s,, ..., 0z,) into C[z](05). We will
set I ={1,...,(}.

Given a non-constant monomial function vanishing on D at most, that we denote
by g =x* =a{"---x7* (a; > 0 for i € I and a; > 0 for some 7), we denote by I, C I
the non-empty set of ¢ € I such that a; # 0.

We will mainly consider right 2-modules.

Simplifying assumptions 11.1.2. All over this section, we will consider the simple case
where ¢ = n, that is, D is reduced to the origin in A", in order to make the
computations clearer. We then have I = {1,...,n}. The general case ¢ # n brings
up objects which are Op , -locally free and the adaptation is straightforward.

The notion of coherent Zx-module of normal crossing type is a natural generaliza-
tion to higher dimension of the case of a regular holonomic Z-module in dimension
one, as considered in Section 6.2. In terms of Z-module theory, that we will not use,
we could characterize such Z-modules as the regular holonomic Z-modules whose
characteristic variety is adapted to the natural stratification of the divisor D. In
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other words, these are the simplest objects in higher dimension, that we analyze in
Section 11.2.b. Adding an F-filtration to the picture leads us to take much care of
the behaviour of this filtration with respect to the various V-filtrations along the
components D; of the divisor D. The compatibility property (Definition 8.3.9), is
essential in order to have a reasonable control on various operations on these filtered
Z-modules.

Our main objective in this chapter is to compute the nearby cycles of such filtered
2-modules along a monomial function (with respect to coordinates adapted to D).
This will be done in Section 11.3. Lastly, we will also compute the behaviour of a
sesquilinear pairing with respect to this functor, and we will end by making even more
explicit the example of a simple coherent filtered Z-module of normal crossing type.

11.2. Normal crossing type

Let M be a coherent Zx-module. Assume that M is R-specializable along each
component D; of D. How do the various V-filtrations interact? The notion of normal
crossing type aims at reflecting that these V-filtrations behave independently, i.e.,
without any interaction. In other words, the transversality property of the compo-
nents of D is extended to the transversality property of the V-filtrations. Similarly,
for a coherent filtered Px-module (M, F,M), we will express the independence of the
V-filtrations in the presence of F, M.

11.2.a. C[z](d,;)-modules of normal crossing type. In this section, we consider
the algebraic setting where we replace the sheaf Zx with the ring C[z](d,) and cor-
respondingly (right) Zx-modules with (right) Clz](d,)-modules, that we denote by a
capital letter like M.
Let us consider, for every oo € R™, the subspace My of M defined by
Mq = N UKer(z;0,, — a;)".
iel k

This is a C-vector subspace of M. The endomorphism z;0,, acting on M, will be
denoted by E; and 27 i(z;0,, — ai)m by N;. The family (Ny,...,N,,) forms a com-
muting family of endomorphisms of M, giving M, a natural C[Ny,...,N,]-module
structure, and every element of M, is annihilated by some power of each N;. More-
over, for ¢ € I, the morphism z; : M — M (resp. 0, : M — M) induces a C-linear
morphism z; : My — Ma_1, (vesp. Oy, : Mo, = Ma11,). For each fixed a € R™, we

have
M, N ( Z Ma/> =0 in M.
a'#ao

Indeed, for m = Za,;éa Mar, if m € Mgy, then m — > | Mg is annihilated by

r_
al_a

. ko .
/ a
some power of x10;, —a; and by a polynomial Ha#al (2105, —af) "1, hence is zero,
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so we can restrict the sum above to of = ay. Arguing similarly for i = 2,...,n gives
finally m = 0. It follows that
(11.2.1) M:i= @ MoCcM

acRn?

is a C[z](0,)-submodule of M.

Exercise 11.1. Show that x; : My — Mq_1, is an isomorphism if o; < 0 and 0,, :
My — May1, is an isomorphism if a; > —1.

Definition 11.2.2. Let M be a C[z](0,)-module. We say that M is of normal crossing
type along D if the following properties are satisfied.

(a) There exists a finite subset A C [—1,0)", called the set of exponents of M,
such that My =0 for a ¢ A+ 7.

(b) Each M, (a € R™) is finite-dimensional.

(¢) The natural inclusion (11.2.1) is an equality.

Exercise 11.2. Show that a C[z](0,)-module of normal crossing type is of finite type
over Cl[z](9;). Moreover, show that M<a = D,cq Mo is a Clz](z0;)-module
which is of finite type over C|[z], and C[xz]-free if a; < 0 for all i € T

Remark 11.2.3. For every a € A, let us set
Motz = @ Maqr,
kezn
so that M = @, c g Matzn. Then Mg zn is a Clz](0;)-module. In such a way, M is
the direct sum of C[z](0,)-modules of normal crossing type having a single exponent.

The category of C[x](9,)-modules of normal crossing type along D is, by definition,
the full subcategory of that of C[x](0,)-modules whose objects are of normal crossing
type along D.

Proposition 11.2.4. Every morphism between C[x](0,.)-modules of normal crossing type
along D is graded with respect to the decomposition (11.2.1), and the category of
C[x](0z)-modules of normal crossing type along D is abelian.

Proof. By C|x](0,)-linearity and using Bézout’s theorem, one checks that any mor-
phism ¢ : M; — M> sends M o to M3 o, and has no component from M; o to Mz g

if B # a. O

Proposition 11.2.5 (Description by quivers). Let us fix a € [—1,0)" and let us set
Ila) ={i € I| a; = —1}. Then the category of C[x](0,)-modules of normal crossing
type with exponent o, that is, of the form Mgz, is equivalent to the category of
I(a)-quivers having the verter Mo 1k equipped with its C[Ny, ..., N,]-module structure
at the place k € {0,1}(®) and arrows

can; : Motk — Matk+1,,

if k; =0,
var; : Ma+k+li — Ma+k7
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subject to the conditions

{vari ocan; = N; : Mok — Mok, if ks = 0.

can;ovar; = N; : Moyk+1, — Matk+1,,

(It is understood that if I(a) = &, then the quiver has only one vertex and no arrows.)

Proof. 1t is straightforward, by using that, for k € Z", 0, : Mat+r — Meo+tk+1, is an
isomorphism if ¢ ¢ I(a) or i € I(ax) and k; > 0, while z; : Moy — Matk—1, is an
isomorphism if i ¢ I(a) or i € I(ex) and k; < —1. O

Remark 11.2.6. In order not to specify a given exponent of a C[z](d,)-module of
normal crossing type along D, it is convenient to define the quiver with vertices
indexed by {0,1} instead of {0,1}/(®). We use the convention that, for a fixed
a € [—1,0)" and for i ¢ I(a), var; = Id and can; = o; Id +N;/27i = E; (hence both
are isomorphisms). Then the category of C[z]|{(d,)-modules of normal crossing type
along D is equivalent to the category of such quivers.

Exercise 11.3. Let i, € I and let My1z» be a C[z](d,)-module of normal crossing
type with the single exponent o € [—1,0)"™.

(1) Show that Mgz~ is supported on D, if and only if o;, = —1 and, for k € Z",
Mok = 0if k;, <0, that is, if and only if i, € I(c) and, setting k = (K', k;,), every
vertex Mo (x,0) of the quiver of Mgz~ is zero.

(2) Show that Mgizn = Moz (%D;,), i.e., ;, acts in a bijective way on My 470,
if and only if i, ¢ I(a) or i, € I(ax) and var;, is an isomorphism.

(3) Show that the quiver of My4zn(xD; ) is that of Mgz if i, ¢ I(a) and,
otherwise, setting k = (k', k;,), is isomorphic to the quiver is obtained from that of
Mg zn by replacing Mo (k1) With Mo (.0, var;, with Id and can;, with Nj,.

Let now M be any C[z](9;)-module of normal crossing type along D, and consider
its quiver as in Remark 11.2.6.

(1) Show that M is supported on D, if and only if, for any exponent e € [—1,0)",
we have a;, = —1 and every vertex of the quiver with index k € {0,1}" satisfying
k;, = 0 vanishes.

(2) Show that M = M (xD;,) if and only if var;, is bijective.

Definition 11.2.7. We say that M is dual localized (resp.a minimal extension)
along D, , that we denote by M = M(!D; ) (resp. M = M(!xD;))) if can;, is
bijective (resp. can;, is onto and var;_ is injective).

(The relation with the notion of dual localization and of minimal extension intro-
duced in Chapter 9 will be explained in the next subsection.)

Exercise 11.4. Define the endofunctor (!D; ) resp. (1*D; ) of the category of
C[x](0)-modules of normal crossing type along D so that the quiver of Mgz~ (!D;,),
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resp. Moz (1%D;,) is that of Mg zn if i, ¢ I(a) and, otherwise, setting k = (k', k;,),
the quiver is obtained from that of Mz~ by replacing

o Moy k,0) With Mo (1), var;, with N; and can;, with Id,

o resp. Mo (k1) With image[N;, : Moy (k,0) = Mok ,0)], var;, with the natural
inclusion and can,, with N;_.
Show that there is a natural morphism M (1D, ) — M (xD;_) whose image is M (IxD;_).

Definition 11.2.8. We say that M is a minimal extension along D,y if, for each i € I,
every can; is onto and every var; is injective.

Exercise 11.5. Say that M minimal extension with support along D¢ if, for each i € I,
either the source of every can; is zero, or every can; is onto and every var; is injective.
In other words, we accept Clz](d,)-modules supported on the intersection of some
components of D, which are minimal extension along any of the other components.

Show that any C[z]{(d,)-module M of normal crossing type along D is a successive
extension of such C[z](9,)-modules which are minimal extensions with support along
Diey.

Example 11.2.9 (The simple case). Let M be a C[z](0,)-module of normal crossing
type along D which is simple (i.e., has no non-trivial such sub or quotient module).
By the previous exercise, it must be a minimal extension with support along D;c;.
Moreover, every nonzero vertex of its quiver has dimension one, so that E; acts as «;
on M, and N; acts by zero.

Remark 11.2.10 (Suppressing the simplifying assumptions 11.1.2)

If £ < n, every My, (o € RY) has to be assumed Op,,-coherent in Definition
11.2.2(b). Since it is a Zp,-module, it must be Op, -locally free of finite rank. All
the previous results extend in a straightforward way to this setting by replacing C[z]
with Op,, [z] (where x := (z1,...,2¢)) and C[z](0,) with Zp, [z](0s).

11.2.b. Coherent Zx-modules of normal crossing type. Let M be a coherent
Px-module. In order to express the normal crossing property for V-filtrations, we
introduce for every o« € R™ the sub-space My of M defined by
My = () UKer(2;0,, — )",
iel k
This is a C-vector subspace of M, which is contained in VCS})M n---N Vogff)M it M
is R-specializable along each component D; of D and we have C-linear morphisms
it Mo — Mg—1, (resp. Oy, : Mo — May1,) as in the algebraic setting. Arguing as
for C[z](0,)-modules,
(11.2.11) M:= @ M,
acR?

is a C[z](0,)-submodule of M, and there is a natural morphism

(11.2.12) M @cpayo,) Ix — M,
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which is injective since Zx is Clz](0,)-flat (because Ox is C[z]-flat).

Definition 11.2.13. Let M be a coherent Zx-module. We say that M is of normal
crossing type along D if the following properties are satisfied.

(a) The Clx](0y)-submodule M is of normal crossing type along D (Definition
11.2.2).
(b) The natural morphism (11.2.12) is an isomorphism.

Proposition 11.2.14. Let M be a coherent Px -module which is of normal crossing type
along D. Then the following properties are satisfied.

(1) M is R-specializable along D; (i € 1), giving rise to V -filtrations VOM. In
particular, all properties of Definition 7.3.12 hold for each filtration V_(i)M.

(2) The V-filtrations VSOM (i € 1) are compatible, in the sense of Definition 8.3.9
(see also Theorem 8.3.11).

(3) For a = (aq,...,ap) € R, we set VEIM = Nicr VIOM. Then V&M is a
VO(")@X -module which is Ox-coherent, and Ox -locally free if a; <0 for alli € I.

(4) For any multi-index a € R™, the natural morphism of C[Ny,...,N,]-modules

v v @
T, "7 8T, M

My — ngm)M =g

is an isomorphism (see Remark 8.3.15 for the multi-grading).

Caveat 11.2.15. In order to apply Definition 8.3.9, one should regard VOM as a
filtration indexed by Z, by numbering the sequence of real numbers «; such that
grxi(l)M # 0. See also the setup in Section 8.5.a. Setting

via= 3" vivn,
Bsa
B#a

the compatibility implies ng(H)M = Vo(ln)M/ V<(Z)M.

Proof of Proposition 11.2.14.

(1) By Exercise 11.1, M<a = D<o Mo is a Clz](20,)-module which is of finite
type over C[z]|, and C[z]-free if a; < 0 for all i € I. The definition of V-filtra-
tions along the hypersurfaces z; = 0 extend in an obvious way to this algebraic case
(which in fact was first considered by Bernstein for the definition of the Bernstein
polynomial). One checks that Vogf)M =& o'l <as M satisfies the characteristic
properties of the V()-filtration of M, and thus so does

VI = VM @0 Yo P,

for M. In such a way, we get the R-specializability of M along D,.
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(2) With the previous definition of VOS?M, we have Vo(t")M = M¢a. Set a =
(ar, a5, ag) and choose of < agand o’; < ;. The compatibility property amounts
to complete the star in any diagram as below in order to produce exact sequences:

Mg(a’l,aj,a;() MS(OLLC!J,OLK) "
Mg (a0l ak) Mg (ar,o),ax) T

Alé(GIJIJJIK)

AQKQLGLQK) }Aﬂqanamak)

T W Mﬁ(a}vahax)

Mg (a;,a),ak)

Mg(ay.aly.arn) = M<(ara.ax)

<(af,al),ak)
The order < is the partial natural order on R": o’ < a < a; < a4, Vi. Then

* = @ Ma”
afLa{<ar
a’;La’j<ay
ay<ag
is a natural choice in order to complete the diagram.
By flatness of V(n).@X over V\"™C[x 0), the similar diagram for M is obtained
0 0 g
by tensoring by VO(") Px, and is thus also exact, leading to the compatibility property
of VIOM (i € I).
(3) The argument above reduces the proof of (3) to the case of M, which has been
obtained in (1).
(4) This is now obvious from the previous description, since grg(n)M = ng(H)M .
O

The morphisms between Zx-modules of normal crossing type can also be regarded
as being of normal crossing type, as follows from the next proposition.

Let ¢ : M; — M5 be a morphism between coherent Zx-modules of normal crossing
type. Then ¢ is compatible with the V-filtrations V9, and for every a € R™,
its multi-graded components grg(")Ml — grg(w My do not depend on the order

of grading (according to the compatibility of the V-filtrations and Remark 8.3.16).

y(n
[e3

submodule of M, we notice that ¢ sends M; o to M3 o, due to the Z-linearity, and has
no component from M; o to Ms g if B # a. We denote by ¢4 the induced morphism
M o = M3 o. The following is now obvious.

We denote this morphism by gr )<p. On the other hand, regarding M, as an C-

Proposition 11.2.16. With respect to the isomorphism Mg — grg(n)M of Proposition

11.2.14(4), pa coincides with grx(n)go. O

Corollary 11.2.17. The category of Px-modules of normal crossing type along D 1is
abelian.
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Proof. Each ¢, is C-linear, hence its kernel and cokernel are also finite-dimensional.
O

Remarks 11.2.18.

(1) If M is of normal crossing type along D, then for any ¢ € I and any «; € R,
grxi(i)M is of normal crossing type on (D;,J;,; D;) and V.(j)grxi(i)M is the filtration
naturally induced by V.(j )M on ngf“M, that is,

v j (4)
V(j)grv(z) _ ‘/;(j)M ﬁ VOL,; M
* ST ©)) ORVE
Ve MN Vg, M
Indeed, due to the isomorphism (11.2.12), it is enough to prove the result for the
multi-graded module M := ng(MM, for which all assertions are clear.
(2) We deduce from (11.2.12) a decomposition M = Mgz similar to that
of Remark 11.2.3. We have

acA

Vo(:_)mMa+Z” = @ Ma+n'

nm
It follows that, for a € A (so that a; < 0 for all ), we have
Vo(tn)Ma_;,_Zn = Mq ®c (C[.I‘],

and we conclude that Vén)Ma+Zn is C[z]-locally free of finite rank. It follows then
easily that the same property holds for Vo(ﬁ)kMaJan for every k € N and that
V;TkMaJan is of finite type over Cx] for every k € Z™. From (11.2.12) we conclude

that Vo((n) M is Ox-coherent for every a € R™ and is Ox-locally free in the neighbour-
hood of the origin for o € (—o0,0)™. In the latter case, we can thus regard (VO(Ln)J\/E)left
as an Ox-locally free module of finite rank endowed with a flat D-logarithmic connec-
tion. Moreover, for any a € R™, Vo(tn)M x-D 18 Ox_p locally free, and more precisely
Vén)M(*D) is Ox (xD)-locally free.

Behaviour with respect to localization, dual localization and minimal extension

Let us fix ¢ € I and set @ = (&, ;). By R-specializability along D; we have
isomorphisms

x; chf)Jv[ = V(x)_lj\/[, (; <0) and 0O, : gr};;i)M = grxjilj\/[, (o > —1).
One checks on M, and then on M due to (11.2.12), that they induce isomorphisms

zi s VIUM = Vo(ﬁ)liM, (a; < 0)

(11.2.19) () Y Omr ) @
Oz, Voo 'gra, M— V5 Tgre oM, (o > —1).

The following lemma shows that the localization (resp. dual localization, resp. mini-
mal extension) property along one component D; of D is compatible the other fil-
trations V(*).
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Lemma 11.2.20. Assume that M is of normal crossing type along D. Let us fix i, € I
and let us set n’ = n — 1, corresponding to forgetting i,. Then, for every o' € ]R”/,
one of the following properties

' (o) ’ (i) , L
can;, : Vo(f )gryl M — VO(;L )gr(‘)/ M is onto, resp. bijective,

var;, : Vo(fll)grgm)M — Vcifll)gry(lmj\/[ is injective, resp. bijective,
holds as soon as it holds when forgetting Vc(;l/).

Proof. We first work with M. Setting & = (&, a;, ), the morphism z;_ : gr(‘)/(iO)M —
grY;iO)M decomposes as the direct sum of morphisms z;, : Mo 0 = Mas,—1, and
similarly for 0., . Therefore var;, is injective (resp. bijective) or can;, is surjective
(resp. bijective) if and only if each a’-component is so. This implies the lemma for M.
One concludes that the lemma holds for M by flat tensorisation. O

By a similar argument, considering M first, we obtain:

Lemma 11.2.21. Let M be a coherent module of normal crossing type along D. Let us
fix i, € I. Then M(xD;,), M(!D;,), M(1xD;_) are of normal crossing type along D.
O

Remark 11.2.22. 1t is now easy to show that the two possible definitions of M(!D;,)
and M (!+D;,) (see Definition 11.2.7) coincide.

Definition 11.2.23. We say that M is a minimal extension along D;c; if the corre-
sponding M is a minimal extension in the sense of Definition 11.2.8.

Exercise 11.6. Let M be a coherent module of normal crossing type along D. Show
that M is a successive extension of modules of normal crossing type along D, each
of which being moreover a minimal extension with support along D;c;. [Hint: use
Exercise 11.5.]

Remark 11.2.24 (Suppressing the simplifying assumptions 11.1.2)
If £ < n, we apply the same changes as in Remark 11.2.10. All the previous results
extend in a straightforward way to this setting.

11.2.c. Coherent filtrations of normal crossing type. We now extend the no-
tion of “normal crossing type” to filtered coherent Z-modules. Of course the under-
lying Z-module should be of normal crossing type, but the isomorphism (11.2.12),
together with the decomposition (11.2.11), is not expected to hold at the filtered level.
This would be a too strong condition. On the other hand, the properties in Proposi-
tion 11.2.14 can be naturally extended to the filtered case. We keep the simplifying
assumptions 11.1.2.

Definition 11.2.25. Let (M, F,M) be a coherent filtered Zx-module. We say that
(M, F,M) is of normal crossing type along D if
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(1) M is of normal crossing type along D (see Definition 11.2.13),
(2) (M, F,M) is R-specializable along every component D; of D (see Section 8.4),
(3) the filtrations (F,M, V.UM, ..., V.MM) are compatible (see Definition 8.3.9).

Remarks 11.2.26.

(a) Condition (3) implies that gr’ gr”"™ M does not depend on the way gr¥. ™' M
is computed.

(b) Note that (2) implies 11.2.14(1) for M, and similarly (3) implies 11.2.14(2). So
the condition that M is of normal crossing type along D only adds the existence of
the isomorphism (11.2.12).

(¢) Let us recall that VM is @x-coherent for every a € R"™ (see Remark
11.2.18(2)). Since F,M is @x-coherent, it follows that F,VSMM := F,M N V™M
(see §8.4) and glrzljm Vén)M are also Ox-coherent and therefore the filtration F,Vén)M
is locally finite, hence is a coherent F,Vo(n)@X—ﬁltration.

(d) Moreover, each gr) VAMM is Ox-locally free if a; < 0 for all i € I. In-

deed, the family (F,M, V., M.,V M) (p € Z, ki,... k, € N) is a com-

patible family; the &'x-coherent sheaf grf

< dimgrﬁVén)M/(:L‘l, oy Ty); but

VAWM has generic rank (on its support)

ZdimgrﬁVén)M/(ml, ) = dim VM (24, .. 2)

P
=tk VMM = rkerf VMM,
P
so in fact grgVén)M/(xl,...,:cn) has dimension equal to the generic rank of

grf Vo(tn)M. As a consequence, grg Vén)M is Ox-locally free.
(e) Since each ng"”M is finite dimensional, the induced filtration F,grg(n)M is
finite, and there exists a (non-canonical) splitting compatible with F,:

v (n) -~ F__ym
Fpgrg, M=~ @ gryer, M.
q<p

(f) There are a priori two ways for defining the filtration F, My, namely, either by

v (n)

o M and transport it by means of

inducing it on M, C M, or by inducing it on gr

v(n)
a

the isomorphism M, — gr¥""" M. We always consider the latter one. The filtration
F,M is a priori not isomorphic to @, F. grg(n)M by means of the isomorphism M =~
gry’” induced by 11.2. an .2.12). Using the compatibility of the

L erZ™ M induced by 11.2.14(4) and (11.2.12). Using th bility of th

filtrations, we have
FyMa = Mo 0 (E,VIM + VM) € M.

The graded filtered module (P, Mo, P, F.Ma) is obviously of normal crossing
type if (M, F,M) is so.

Inductive arguments below will make use of the following lemma.
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Lemma 11.2.27. Assume that (M, F,M) is of normal crossing type along D. Then

for any i € I and any «; € R, (grv(l)M F,gr (I)M) is of normal crossing type on

D;,U.. , where F, ng M is the filtration naturally induced by F,M on ng( "M.
J#t

Proof. We know by Remark 11.2.18(1) that grxi(i)M is of normal crossing type on
(Di;Ujz; Dj), and that the filtrations V) on grximj\/[ are naturally induced by
VM. Tt follows that (F,gr,‘l/;l)M, (V.9 grv(i)M)j#) are compatible (see Remark
8.3.10). We know, by Proposition 8.8.2, (grgj M, F.grxi(l)M) is coherent as a filtered
Zp,-module. Note also that, setting o’ = (o) 2 and n' = (j);;, we have

nggrgf grgi(i)M =gr, grv( "M

(since, by the compatibility property, we can take graded objects in any order).
It remains to showing the R-specializability property, namely,

B Vgl UM s BV UM, Y Vi £ ey <0,
O, Fpgr(‘g”gr&( M Fp+1grajilgrxim3\/f, Vp,Vj#i, Va; > -1
Let us first show that, by applying grgi(i), we get isomorphisms
(11228) o gl BVOM 5 ol BV M, Y, VA Va; <0,
(11.2.29) 0Oy, grv( )Fpgrgjj)M = grgi(i Fp+1gra +1M Vp,Vj#i, Va; > —1.

By the R-specializability of (M, F,M) along D; and since M is of normal crossing

type, we have isomorphisms
T 0 VOvm VOV m
FVIM — F,V,” M, -, o
~ ’ v viv o~ v v,

hence isomorphisms

VAERVIM  a [VEPERVY M

(@) (4) (@) %;)1
V<(¥1FPVO‘_7 M - V<(111FPVOAJ‘—1M7
and thus the isomorphisms (11.2.28). We argue similarly for the isomorphisms

(11.2.29). Now, the desired assertion follows from the compatibility property (3)
which enables us to switch F, VOEJ )or F, gr " with grv( ). O

By the same argument as above, setting a = (o', a;) and n’ = n — 1, the filtered
analogue of (11.2.19) holds (any o/ € R, p € Z):

RV M—>FV(">V” M ifa; <0,
(11.2.30) . P
Vel M 1 B VI e M ey > -1,
The following lemma is similar to Lemma 11.2.20, but weaker when considering
surjectivity for can,,.
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Lemma 11.2.31. Assume that (M, F,M) is of normal crossing type along D. Let us
fix i, € I and let us set ' = n—, corresponding to forgetting i,. Then, for every
o € R™, one of the following properties

can;, : FpVo(;l/)gr‘_/(liO)M — FPHVO(JI/)ngUO)M 1s bijective,
(11.2.31 %)

! (io) ! (i0) ) 1mjective,
var;, : FpVO(L’,I )gr(‘)/ M — FpVO(;l )gr‘_/1 M s J o
resp. bijective,

holds for all p as soon as it holds when forgetting VO(;L/). O

Remark 11.2.32. As a consequence, if var;_ is injective, then the first line of (11.2.30)
with j = 4, also holds for o; = 0. That the lemma does not a priori hold when can;,
is onto leads to the definition below.

Definition 11.2.33 (Minimal extension along D;c ). Let (M, F,M) be a coherent filtered
Px-module of normal crossing type along D. We say that (M, F,M) is a minimal
extension along D;cy if M is a minimal extension along each D; (i € I) and moreover,
for each i, € I, and every o € R" (equivalently, every o’ € [—1,0]"),

cany, : B,V gV M — B, VI el "M s onto, V.

Note that, if we forget the F-filtration, there is no ambiguity according to Lemma
11.2.20, and if n = 1 this notion is equivalent to that of Definition 7.7.3.

Proposition 11.2.34 (Properties of F,VA"™'M). Let (M,F,M) be a coherent filtered
Dx-module of normal crossing type along D. Set Mgy := VO(")M. For a € R", let us
set F,VAMM := F,MN VAWM. Then
(1) F.VA™M is a coherent F.Von)_@X -filtration.
(2) The filtrations (F,Mo, V.V My, ..., VI My) are compatible and
F,M = (FpeqMyo) - FyPx.

q=0

Proof. The compatibility property of the filtrations on M clearly follows from that
on M, as noted in Remark 8.3.10(2). By the same argument we have compatibility
for the family of filtrations on each ARAY (. € R™).

It remains to justify the expression for F, M. We have seen in the proof of Lemma
11.2.27 that, for k > 0 and any i € I, setting k = (k’, k;), we have an isomorphism

Dy Fp_lv,yl/)grkvimj\/[ = FpV,c(fl/)grkV;flM,
and thus
FVI M = B, VM-, + BV,
which proves (2) by an easy induction. O
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The property 11.2.34(2) can be made more precise. For e« € [—1,0]" and p € Z,
let Eq p be a finite C-vector space of sections of FpVo(t")M whose image in grg grg(m M
is an C-basis of sections of this free C-module. Given any + € R", we decompose it
as (v,0,74"), where each component 7; of v (resp. v"') satisfies v; < 0 (resp. 7y; > 0).
When ~ is fixed, any a € [—1,0]" decomposes correspondingly as (o', a®, &), of
respective size n’, n°, n”.

Proposition 11.2.35. With these assumptions and notation, for every v € R™ and
p € Z, we have

— (n) b’
FPV’Y(n)M - Z Z prlb//“/('y’,O,a”)M : a:v ’

a’e(-1,0" b”
Vi, bito; <vi

and, for every o’ € (—1,0]””,

(n) _ 4
FViy o,amM = Z Ea 0,0y, - Ox,

a’e[—1,0)"

where a’ has the indices of 7' and for each such index i, a; — a; < 7y, that is,

@ = {['Yz] —1 dfa; <vi— [y -1
l bl if i > =[] - 1.

Proof. The first equality is obtained by induction from the second line of (11.2.30),
and the second equality comes from the first line of (11.2.30). O

Remark 11.2.36 (The case of a minimal extension along D;.)

In that case (Definition 11.2.33), Proposition 11.2.34 holds with the replacement
of My with Mo := VIM = (¢, V<(i0)3\/[, and Proposition 11.2.35 reads as follows.
We now decompose v as (v',~"), where each component 7; of 4" (resp. v"') satisfies
~vi < 0 (resp. 7; = 0). Then

i b//
BViMM = ) > EBappr-2¥d Ox,
ac[—1,0)n b
Vi, bi+o; <vi

where a’ is as in Proposition 11.2.35.

The compatibility property of the filtrations (F,M,V.OM, ... VM) can be
checked on Vo(n)M, as asserted by the proposition below.

Proposition 11.2.37 (From Mg to M). Let M be a coherent Zx-module of normal
crossing type along D. Set My := VO(n)JV[. Denote by VOM, the filtration nat-
urally induced by V.(i)J\/[ and let F,My be any coherent F,VO(")@X-ﬁltmtion such
that (F,MO,V.(UMO, .. .,V.(")Mo) are compatible filtrations and that (Mg, F,My) is
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R-specializable along each D;, in the sense that x; F V,X(L)MO F, V 1My for every i
and a; < 0, and 05, sends FpV_(lMo into Fp+1Vo MO. Set
F,M = (FpegMy) - Fy .
q=0

Then

(1) (M, F,M) is R-specializable along each D;, and for a € [-1,0]",

E,V MMy == F,Mo NV MMy = E,M N VMM,
(2) and (F,M,VAOM, ..., VM) are compatible filtrations.

Proof. For every v € R™, we define
(11.2.38) Gp(VAMM) = > F,_ VMM o4

a<0, >0
ati<y

For example, we have GP(V.Y(n) M) = V(n)M if v <0,1i.e., v <0 forall i. Similarly,
if v = (7;)iy;>0 denotes the “p051tlve part” of v and v_ the non-positive part, we
have, with obvious notation,

(11.2.39) Gp(VAIM) = > By VD M-

a’<0, 420
o/ +i'<

Let us note that
QG (VAmM) = > FpojViIM- 08 = F,_ ;Mo - 03 =: F,M.
a<0,52>0 3j=0
We set V(i)V,.,?L M=VEOMN Vﬂy(n)M. We will prove the following properties.
a) Let B8 < v (ie, B < for all i and B # «). Then G,(V- ")M) Vﬂgn)M =
ViMIM).
b) (G (Vén)M) V(l)V(n)M V(”)V(n)M) are compatible filtrations,
) the following inclusion is (n + 1)-strict:

(
Gy(
(
(c
(V"ML G (V™ D0, (VIO Mier) = (VI™ML G (VM) (VIOVI™ M)ser).
Let us indicate how to obtain 11.2.37 from (a)—(c). The R-specializability of
(M, F,M) along D; amounts to

Fpt MOV, M C (BMOVEIM) -0y, + VY M) if B > —

By taking the inductive limit on v > 0 (i.e., ¥y =4’) in (a), we obtain
F,MNVIYM = Gy (VM)
for every B3, and taking S > 0 for k # i gives
FEMAVIM= Y B viOM- ol

;<0,52>0
a;+3i<Bi
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and thus, if g; > —1,
Fpp MOV M= (EMAVIM) -0+ > By VEIM - 07,

@;<0, 520
Ji=0
hence the desired R-specializability, since Vogf)M - Vég 1 M. The other assertions
in 11.2.37 are also obtained by taking the inductive limit on v. We also note that
(a) and (b) for 4 imply (c) for «, according to Example 8.3.20. Conversely, (c) for ~
implies (a) for ~.

Let us first exemplify the proof of (a) and (b) in the case n = 1. Condition (b)
is empty. For (a), we can assume v > 0, and it is enough, by an easy induction on
~v — 3, to prove G,,(Vv(l)M) N V<(%Y)M = G,,(VSY)M). For that purpose, we notice that

Gp(VEOM) = G (VE)N) + F, VIIM - 0

1’
where j is such that v — j € (—1,0] and « := v — j. Hence
G (VON) NV M = G (VM) + (B VO - 82, nvE ).

Now, by the R-specializable property, Fp,jVogl)M - 8%1 N V<(£/)M = Fp,ngX)M . (‘33{1,
so we obtain (a) in this case.

We will prove (a)—(c) by induction on the lexicographically ordered pair (n, |v']).
The case n = 1 is treated above, so we can assume n > 2. Moreover, if |[v/| =0, i.e.,
if 4 < 0, there is nothing to prove. Assume that 71 > 0 and let «; € (—1,0] be such
that j; := 1 — ay is an integer. We also set v = (v1,v”) and n” =n — 1.

In order to prove (a), we can argue by decreasing induction on 3, and we are
reduced to the case where 3 is the predecessor in one direction, say k, of ~, that is,
Bi = 7 for i # k and [y, is the predecessor of «y;. Assume first that v, > 0, so we can
also assume k = 1. We then have

Gp(VAMIM) = Gyt (VA M) - 8y + (VM)

o
and we are reduced to proving

Gpor (VA M) - 85, NVEIM € GR(VE™ ).
Since 1 > 0 and M is of normal crossing type, we have an isomorphism

n n n (1) ~ n (1) n
Duy VAL MYV M= VAP el v 5 VAP g M = VMM VM

which sends surjectively, hence bijectively, the image of Gp_l(Vv(f)llM) to that of
G,(VA™MM). 1t follows that

Gpor (V™ M) - 05y N VM =[Gt (VA M) N VY, M - O,

By the inductive assumption on -, the latter term is contained in G, (Vﬁ(f)llj\/[) O, s
hence in Gp(Vﬂn)M).
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For induction purpose, let us consider M) := grgfl)M, which is a Zp,-module
of normal crossing type for which the V®-filtrations (i = 2,...,n) are those nat-
urally induced by the V-filtrations on M. We set M{" = Vo(n”)J\/[(l), that we
endow with the naturally induced filtration F,Mél). By Remark 8.3.10(1), the fam-
ily (F.M (1) , (V! ')M(l))2<z<n) is compatible. The inductive assumption on n implies
that(a)-(c) hold for V7" /MM. Note that V' 'M® = v w/v™

We now claim that G, (V0" 'MM) is the filtration induced by Gy (V7 M)

(a1,y
Indeed, this follows from the expression (11.2.39), which does not involve the vari-

able z1. Now, (‘331 induces an 1somorphlsm Mm = ng( >M which is strictly com-

patible with the filtrations induced by V/YM. On the other hand, the filtration
induced by G (V((a ' )M) is sent surJectlvely (hence bijectively) onto that induced

y GP(V,gn)M). By induction on n, (a)-(c) hold for grﬂ‘//l(l)M, and the filtrations are
those induced by the filtrations on VAS")J\/[.

Let us now assume that v, < 0. To prove G (V(n)M) Vﬁ(n)M = Gp(Vﬂ(")M) for
all p, it is enough to prove Gp(V.ﬁn)M) N GPH(V[;")M) = Gp(Vﬁ(n)M) for all p, and
(replacing p with p — 1), this amounts to proving for all p the injectivity of

grgVé")M — grgVﬂE")M.

Set v = (1,7"), ¥ = (<7,7"), B = (m,8") and B = (<71,8"), with B =
(Y2, -y <Yk, --,7Vn)- By the inductive assumption on n and v’, we have a diagram

0*>ng‘/( M—>ngVé )MﬁngVﬁ(,’f )ngI)M%O

[ | |

0 —— gr§ VA M —— gr§ V™M —— SV gV —— 0

where the horizontal sequences are exact (by the first part of the proof of (a)) and
both extreme vertical arrows are injective (because |¥'| < |v/| for the left one, and
" < n for the right one). We conclude that the middle vertical arrow is injective,
which finishes the proof of (a).
Let us now prove (b) and let us come back to the case where 3 is the predecessor of

~v1 > 0. We have seen that Gp(V,y}N)gr%)M) is the filtration induced by Gp(V,,n)M),
so the previous injective morphism can be completed for all p into the exact sequence

0— ngVé")J\/[ — grS VMM — ngV(N gr(1 M — 0,
hence, since G, is bounded below,
0 — GVIMM — G VMM — GV gl — 0.

The inductive assumption implies that (b) holds for Vﬁgn)M and for V,y(ff”) gr(yll)M. We
can now apply Exercise 8.8(2a) to conclude that (b) holds for VAS")M. O
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Remark 11.2.40 (The case of a minimal extension along D;c;)

Assume moreover that, in Proposition 11.2.37, M is a minimal extension along
each D; (i € I). Then we can replace everywhere Mo with Mo := [,¢; V<(i0)3\/[ and we
can moreover conclude that (M, F,M) is a minimal extension along D;c; (Definition
11.2.33). In the proof, we modify the definition of GP(V.gn)M) for v > —1, by summing

over o € [—1,0)".

11.3. Nearby cycles along a monomial function

We continue to refer implicitly to Notation 11.1.1 and the simplifying assumptions
11.1.2. We consider a monomial function g = z®.

Notation 11.3.1. The indices for which a; = 0 do not play an important role. Let us
denote by Iy, = I(a) := {i | a; # 0} C {1,...,n} the complementary subset, a’ =
(ai)icr, and n' = #1,. Accordingly, we decompose the set of variables (z1,...,2,)
as (z',2"), with o' = (2;)ier, -

We aim at proving the following theorem.

Theorem 11.3.2. Let (M, F,M) be a coherent filtered Px-module of normal crossing
type (Definition 11.2.25). Assume that (M, F,M) is a minimal extension along D;cr
(see Definition 11.2.33).

Then (M, F,M) is R-specializable along (g) and is a minimal extension along (g).
Moreover, for every A € S*, (g \M, F,104 \M) is of normal crossing type along D.

11.3.a. Nearby cycles for C[z](0,)-modules of normal crossing type

In this section, we consider the variant of Theorem 11.3.2 where we forget the
filtration F, and where we consider the case of C[z](0,)-modules, with the notation
of Section 11.2.a. The proof will be done by giving an explicit expression of the
V-filtration of ¢4+ M with respect to ¢, as well as its associated graded modules. The
proof will also make precise the set of jumping indices of the V-filtration (see Remark
11.3.33(2)).

In order to simplify the notation, we will set N = 4. M, which is a C[z, t](0,, 0;)-
module. According to (A.8.8x), the action of Clz, ¢]{0,,d;) is as follows:

(m®dF) -0, =m okt
(11.3.3) (m@1) -8y, = mdy, ®1— (ayma®') ® 0
(m®1)- f(z,t) =mf(z,z%) @ 1.

As a consequence, for 7 € I; we have

(11.3.4) (m®1) td=(mz®*®1) -0 = i [(mz;0,, ® 1) — (m ® 1)2;0,].

K2
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Notation 11.3.5. In order to distinguish between the action of x;0,, trivially coming
from that on M and the action x;0,, on N, it will be convenient to denote by S; the
first one, defined by
(m ®0F) - S; = (ma;0,,) @ OF.
Then we can rewrite S; as
(m®0F)-Si=(ma1)- (2;0s, +aitdy)0F = (m @ 0F) - (2:0,, + a;(td; — k)),

a formula that can also be read
(11.3.6) (m @ OF) - 1;0,, = (M ® ) - (S; — a;td; + azk).

Note that N is naturally graded: N = @a,k My ® OF.

Proof of Theorem 11.3.2, Step one: R-specializability of N along (t)
Proposition 11.3.7. The C[xz,t](0y, Or)-module N is R-specializable along (t). Moreover,
N = N[t«t].

We will show the R-specializability by making explicit a V-filtration of N. To get
started, consider the following simple example.

Example 11.3.8. Let v € R. Assume we know that N = gr;/N is of normal crossing
type along D. Suppose that for some m € M, and some k > 0, the section m @ 9F
belongs to V, IV, and that its projection to ngN is nonzero and happens to lie in the
subspace

N@ = (gr}Y/N)g.
In this situation, v, e, 3, and k are related. Indeed, the identity in (11.3.6) shows that
(m® 35) ) ((l’iaxi — Bi) = (Si — a;) + a;(E —7)) =(m®e 35) : (ai — Bi —ai(y — k))~

By assumption, E —y = t0; —y and ;0,, —; = x;0,, — 3; both act nilpotently on Ng;
since S; — a; acts nilpotently on M, ® 9F, the conclusion is that a = B + (v — k)a.

Thus we expect elements of Mg, (y_r)a ® OF to contribute to the subspace Ng.
This computation motivates the following definition.
Definition 11.3.9. For v < 0, we set

(11.3.9%) V,N=(VPM@1) Clal(d,) = Y (VWM ®1)- k.
keNn

For every v € [—1,0) and j > 1, we define inductively
(11.3.9 %) Vo iN =V,N -0} + Vo, ;N.

Note that the latter formula is natural if we expect that N is a middle extension
along (t).

Lemma 11.3.10. The filtration V,N is a Kashiwara-Malgrange filtration for N.
We first need to check that (11.3.9%) and (11.3.9 %x) define a V-filtration.
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Lemma 11.3.11. For every v € R, V,N is a Vo (Clz, t](0, Or))-module that satisfies
Vy,N-tCV,_1N, V,_iN- -0+ Vo N CV,N,
with equality in the first inclusion if v < 0 and in the second one if v > 0.

Proof. Assume first that v < 0. By definition, V, N is a C[z](9,)-module, so it remains
to prove stability by the actions of ¢ and ¢J;. On the one hand,

_ _ ™
(VM ®1)-t =V Ma® @ 1=V Mo1,

hence
(11.3.12) V,N-t=V, N C V,N.
On the other hand, (11.3.4) shows that, for any i € I, we have

(VM @1)t0, c VM@ 1+ (VM @ 1)0,,.
We conclude that the statements of the lemma hold for v < 0. Moreover, (11.3.12)
gives, for v < 0:
(11.3.13) VN = (VM ® 1) - C[z](9,)[t].

The assertions for v > 0 follow then easily from Definition (11.3.9 ). O

Remark 11.3.14. Note that, for i ¢ I, (Notation 11.3.1), we have ya;, = 0 and

Z(VOZ')M(@ 1)k = Z({/O(i)Mafj ®1)=Ma1.

ki=0 ki =0
As a consequence, for v < 0, (11.3.9 %) can be simplified as follows:
(11.3.15) v,N= Y (vEIMe1)- ok

k'eNn’

Let us consider the C[z’, 2", t](0y, Oy, t0¢)-module

Ky = V)M @cppr om0, Cla' s 2|00, O, 0),
where the action of ¢ is obtained by the second line of (11.3.3). We thus have a
surjective morphism of Cz’, 2" t|{(0yr, Oy, t0¢)-modules:

K, — V,N

sending any mx;0;, ® 1 — m ® ;0,, — (m ® 1)a;t0; to zero (i € I), according to
(11.3.4).

Proof of Lemma 11.3.10 and Proposition 11.3.7. Let us start with v < 0. Since
V%’ )M has finite type over C[z], Formula (11.3.9 %) implies that V, N has finite type
over C[z](0,), and a fortiori over Vi(C[z, t](0x, O¢)).

In order to show that some power of (t9; —7) sends V,N to V., N we first notice
that a power of S; — va; does so for every i =1,...,n. It is thus enough to check

that [[;c; (Si — a;td;) sends (Vv(g)M ® 1) into V,y N for some 7' < . (Indeed, this
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will imply that some power of (td; — ) sends (V.Y(Z)M ®1) into V,y N, and (11.3.9%)
enables us to conclude.)

We have ya —1;, < 7'a for some 7' < v, so (VW(Z)M(X) 1)-1_[1.619 x; C (VW(,T;)MQ@ 1),
and thus, by (11.3.9 %),

VIM@1)- ] wite, = (ViPM @ 1) [ 2 [] 02, € Vo N

i€ly i€ly i€ly

Therefore,
(ViM@1)- [ (Si - aitdy) € Vo N.
iel,

In order to conclude that N is R-specializable along (¢) and that V,N is its
Kashiwara-Malgrange filtration along (), it only remains to prove that N = U7 V,N,
and so it is enough to prove that any element of M ® 1 belongs to some V,N. Let us
consider a component Mg ® 1 with 8 € R”, that we write 8=a+ky —k_,ax € A,
ky,k_ € N* with disjoint support. The middle extension property of M implies that
2kt My — Mg is onto. We can thus use iteratively (11.3.3) to write any element
of Mg as a sum of terms (u ® 1) - 97 (k > 0), where the components of each jy, in
the decomposition (11.2.11) ounly involve indices in (R<()", and therefore belongs to
V,Y(S)M for some v < 0.

Let us end by proving that N is a minimal extension along (¢). We first remark
that ¢ acts injectively on N: if we consider the filtration G,N by the degree in 0,
then the action of t on gr N ~ M[r] is equal to the induced action of 2% on M][r],
hence is injective by the assumption on M a fortiori, the action of £ on N is injective.
We thus have N C N[xt]. By Definition 11.3.9 and the exhaustivity of V,N proved
above, N is the image of VooN ® Clz,t](0z,0¢) in N[xt]. This is nothing but N|[!xt]
(see Definition 9.5.2 and Definition 9.4.1). O

Proof of Theorem 11.3.2, Step two: normal crossing type of gry N. We aim at proving
that each grly/N (v € [-1,0)) is of normal crossing type along D, and at making
explicit the summands. We now fix such a ~, and set N = gr}y/N for the remaining
part of the proof. Let 3 € R™. Let us define 1\75 by the formula

Ng = ﬂ UKer(x;0,, 51) ,

=1k

where we regard each (x;0,, — (;)* as acting on N through its action on IV given by
(11.3.6). We then denote by N; the action of 27 i(z; O, — Bl) on Ng (and, as usual,
by E, resp. N, the action of td;, resp. 2w i(td; — ) on N and N@) By using Bézout’s
theorem, one checks that ]Vg intersects only at zero any sum of submodules Ngl
where 8’ runs in a finite set not containing 3, so we will only need to check the finite
dimensionality of each Nﬁ and the existence of a decomposition N ~ 3 8 Ng (hence
N ~ @ﬂ Ng). This will be done at the next step, and we start by modifying the

expression of Ng.
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Lem~ma 11.3.16. For every B € R™, Ng is the image of V,N N (Z] Mgy (v—j)a @ 8%)
in N.
Proof. Let us consider an arbitrary element of VIV, expressed as a finite sum

D D may 0,

a€R" jEN
with meq,; € Mo. Assume that its image in grfr/N =N belongs to Nﬁ% ie.,

(3 X may @) - (s, — B)" € Ve N
a€R™ jEN

for every ¢ € I and some k > 0. Our aim is to prove that, modulo V., N, only those

terms with & = 8+ (v — j)a matter.

Lemma 11.3.17. In the situation considered above, one has

NS e ©9 = mgi(r-jja®3] mod Vo, N.

a€R™ jEN jEN
Proof. Let us start with an elementary lemma of linear algebra.

Lemma 11.3.18. Let T be an endomorphism of a complex vector space V, and W C V
a linear subspace with TW C W. Suppose that vy, ...,vx € V satisfy

TH(vy 4+ +v,) €W
for some p > 0. If there are pairwise distinct complex numbers A1, ..., A\, with

vy, € E, (T), then one has Apvp, € W for every h =1,... k.

Proof. Choose a sufficiently large integer p € N such that (T — A\p)* v, = 0 for
h = 1,...,k, and such that T"(v; + --- + vx) € W. Assume that A\p # 0. Set-
ting Q(T) = TH(T — M\)* -+ (T — Ag—1)", we have by assumption

QT (v + - +wv) eW
The left-hand side equals Q(T)vg. Since Q(T) and T — Ay are coprime, Bézout’s
theorem implies that vy € W. At this point, we are done by induction. O

We now go back to the proof of Lemma 11.3.17. Let us consider an element as in
the lemma. As we have seen before,

(Maj ©0]) - (2305, = Bi) + ai(td = 7)) = (ma; ©3}) - (Si = Bi — aily = 1)),

and since some power of tJ; — 7y also send this element in V., N, we may conclude
that

(11.3.19) S Z(mw @0 (Si— B —aily — j))k) € Ve, N

acR™ jEN

for every i € I and k > 0.
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In order to apply Lemma 11.3.18 to our situation, let usset V= N and W = VN,
and for a fixed choice of i = 1,...,n, let us consider the endomorphism

T; = (i0z;, — Bi) + ai(tdr — 7);
Evidently, ;W C W. Since we have
Ti(Maj ® ) = (Ma; @ ) - ((Si — ) + i — Bi — ai(y — §)),

it is clear that mq ; © 8] is annihilated by a large power of T; — (e — i — ai(y — 7).
Grouping terms according to the value of a; — 8; — a;(y — j), we obtain

Z Zma,jé@@f =v1+ -+ vE

acR” jEN
with v, € E), (T;) and A1,..., \r € R are pairwise distinct. According to Lemma
11.3.18, we have v, € W whenever )\, # 0; what this means is that the sum of all
Ma,; ® 0] with o; — B; — a;(y — j) # 0 belongs to V,N. After subtracting this
sum from our original element, we may therefore assume that «; = 8; — a;(v — J)
for every term. We obtain the asserted congruence by performing this procedure
for T1,...,T,. This ends the proof of Lemma 11.3.17 and at the same time that of
Lemma 11.3.16. O

Proof of Theorem 11.3.2, Step three: computation of nearby cycles. Suppose now that
v < 0 and f1,...,B, <0, that we shall abbreviate as 3 < 0. Let j € N. We observe
that

a; #0= B + (v — j)ai = (Bi +vai) — ja; < —ja;.

Given a vector m; € Mg, (y—j)q, this means that m; is divisible by xfa . Conse-

quently, m; = ma?® for a unique m in Mg1~a, and therefore
m; @8 =(mel) 7o
is a linear combination of (m®1)(td;)* for k = 1,...,5. Sincem®1 € V, N and V, N
is stable by t0;, we conclude that
Z Mgt (y—j)a @ 8g = Mpiva [t0] C VyN,
J
and, by Lemma 11.3.16, Ng is the image of Mgt~q[t0;] mod Vo, N. Let us con-
sider E as a new variable and let us endow Mgi~q[E] := Mgty ®c C[E] with the
C|[Ny,...,N,, N]-module structure such that N; acts by 27 i(S; — 8; —a; E) and N acts
by 27i(E —7) (see (11.3.6)), and let us endow Ng with its natural C[Ny,...,N,,, N]-
module structure (see §11.2.a). We thus have proved the following result.
Proposition 11.3.20. We have a surjective C[Ny, ..., N,, N]-linear morphism
Mpi~alE] — Np
that takes m @ EF to the class of m @ (t0y)* € V, N modulo VeyN. O

Corollary 11.3.21. We have N = @4 Ng.
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Pmof We have seen in the begmnmg of Step two that it is enough to prove N =
PP Ng. Let us set Ngg = ®Ds<o Ng It is enough to check that N = >k Neodk.

We have seen that VV(;L) MI[E] C V,N and has image equal to N¢g. Then 37, N¢od®
contains the image of Zk(VW(Z{)M ® 1)0F, which is equal to V,N, by (11.3.9%). O

Remark 11.3.22. At this point, it can be clearer to write Mgy q[E] = Mgiya[N]
and to consider the latter space as a free C[N]-module, where N is considered as a
new variable. The action of N; on Mg,q induces an action denoted by N; ® 1 on
Mpg4+a|N], and we define the action of N; on ng as that induced by N; ® 1 — a;N.

In order to have an explicit expression of N, 3 (B < 0) and eventually prove its finite
dimensionality, it remains to find the kernel of the morphism in Proposition 11.3.20.
To do that, we introduce the set

I,(8)={ieI|a; #0and 3, =0} C I.
Given m € Mgyya, We have (m Hlel )xi) ®1=m®t e V. N and therefore also
(m X 1) HiEIg(,H) l’zazl = (m & ]_) . Hielg(ﬁ) (Sz - aitat) € V<-YN
In this way, we obtain a large collection of elements in the kernel.

Corollary 11.3.23. If v <0 and B <0, N/@ is isomorphic to the cokernel of the injective
morphism

(11.3.23 %) pp:= |] (Si/a; —E) € End(Mga[E)),
i€ly(B)
or equivalently
(11.3.23 xx) vp:= [ (Ni®1)/a; —N) € End(Mg~a[N]).
i€ly(B)

Remark 11.3.24. We have assumed in Theorem 11.3.2 that M is a minimal extension
along the normal crossing divisor D;c;. However, the previous expression shows that,
for v < 0 and B < 0, Nﬁ only depends on the Mg’s with «; < 0 if ¢ € I;. For
such a v, we conclude that gr,YVN only depends on the localized module M (xg).
Moreover, by definition, the action of N; (resp. N) on ﬁg is that induced by

N; ® 1 — ;N (resp. N). We thus find that [[,.,; N; acts by zero on Ng.

i€l,
Corollary 11.3.25. If v <0 and B <0, ]\Nfg is finite-dimensional.
Proof. Set b = |I,(B)|. Corollary 11.3.23 implies that the natural C-linear morphism
b—1 _
D Mpira B — Np
k=0

is an isomorphism. Since every Mg,.q is finite-dimensional, we obtain the desired
assertion. O
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Note also that the action of E on Ng, and thus that of N = 27i(E —v) is easily
described on this expression:

m . =
m[Eb HiGIg(,@)(E _Sl/az)] lf k = b — 1.

Proof of Corollary 11.3.23. Injectivity of g is clear by considering the effet of 3 on
the term of highest degree with respect to E. On the other hand, we already know
that every element of N is the image of some m = 3, (my, ®1) E* with my € Mgi+a
for every k. If we expand this using E = t9;, we find
(11.3.26) me @ Mgy (y_jya® ;.

JEN
Now suppose that m actually lies in V., N. It can then be written as (see (11.3.15))

(11.3.27) m= > (Mmax®1)0%,

acR”
keNlg

where mq , € My satisfies «; < ya; whenever a; # 0. If we expand the expression
(Mot ®1)0F according to (11.3.3), all the terms that appear belong to Ma+k,ja®8tj
for some j < |k| (we identify k with (k,0) € Z™). Comparing with (11.3.26), we can
therefore discard those summands in (11.3.27) with a+ k # 8+ ~va without changing
the value of the sum. The sum in (11.3.27) is thus simply indexed by those k € Ns
such that k; > §; for all ¢ € I; and the index « is replaced with 8 + va — k.
Now, if a; # 0 then «; = (8; + va;) — k; < —k; and so mq i is divisible by xf
This means that we can write
Mok = mpa'®

for some mj, € Mgiq. Therefore, (11.3.27) reads

m = Z (mf, ® 1)2’*0%, mj), € Mgy a.

keNlg
ki>B; ViEl,

If mj, # 0, then k; > 1 for i € I,(8) (since B; = 0), and consequently, 2’#9¥, is forced

to be a multiple of
H xiﬁxi = H (Sz — a; E)
i€l (B) i€ly(8)
As a consequence,

m € Z (Mg yya ® 1)2"00%, - H (S; — a;tdy)
2eNTg i€ly(B)

= Z (Mﬁ+'ya X 1)(8 — at@t)e . H (Sl — aitBt)
£eNTg i€ly(B)
C Mgi~alEl- [ (Si-aE). O
i€14(8)



11.3. NEARBY CYCLES ALONG A MONOMIAL FUNCTION 291

We end this section by giving the explicit description of the quiver of N = grﬂ‘{/N
for v < 0 (see Proposition 11.2.5). We thus consider the vector spaces ]\Nfg for
B € [-1,0]", and the morphisms

can;(03)
/\ N

(11.3.28) Np_1, Ng
v
var; (3)

for every i such that 5; = 0. We know from that Corollary 11.3.23 that Krﬁ # 0 only
if B; = 0 for some i € I; (i.e., such that a; # 0). Moreover, the description of Ng
given in this corollary enables one to define a natural quiver as follows.

(1) If i ¢ I, and B; = 0, we also have (8 + va); = 0, and we will see that the
diagram
can; ®1
— T
Mgtya—1,[N] Mg ~a[N]
\—/
var; ®1

commutes with ¢g (which only involves indices j € I,), inducing therefore in a natural
way a diagram

ci(B)
/\ N

Np-1, Ns
T
vi(B

We notice moreover that the minimal extension property for M is preserved for this
diagram, that is, ¢;(3) remains surjective and v;(3) remains injective.

(2) If i € I, we set p1, = (N; ® 1)/a; — N so that, with obvious notation, ¢g =
Y1,98-1, = Pp—1,%1,, and we can regard g, v1,, a1, as acting (injectively) both
on Mgia[N] and Mg_1,4~a[N]. Moreover, the multiplication by z;, which is an
isomorphism Mg yq = Mg_1,+~a, is such that z; ® 1 commutes with ¢g_1,. In
such a way, we can regard Nﬁ,li as Coker pg_1, acting on Mgi~q[N]. We can then
define ¢; and v; as naturally induced by the following commutative diagrams:

¥B-1; > ¥B-1; 3
MB+’ya[N} I Mﬁ+wa[N] —» Ng_1, Mgirya [N] —— Mpira [N] —» Np-1,
<,011l ¢ (ﬂ)l resp. 8011T Vi (ﬂﬁ
Mg 4a[N] - Mp1a[N] — N Mg a[N] ——= Mgya[N] —» Ny

In other words, ¢;(3) is the natural morphism

P1;
MB+VG[N}/Im‘Pﬁ71i —_— Mﬁera[N]/Im‘Pﬁ»
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and v;(8) is the natural morphism induced by the inclusion Im pg C Impg_1;,:

Mp~a[N]/Impg — Mg i4a[N]/Impg_1,.

We note that v;(8) is surjective. Moreover,

Proposition 11.3.29. For v < 0, the quiver of gr;/N has vertices Ng = Coker g for
B € [0,1]™ such that

(1) B=a—~va for some ax € A+7Z,

(2) Bi =0 for some i€ I,.
1t is isomorphic to the quiver defined by the morphisms c;(3),v;(8) as described above.

11.3.b. More on the structure of the nearby cycles. We keep the notation and
assumptions of Theorem 11.3.2 in the present setting (no filtration, C[z](0)-modules
of normal crossing type) and we will make more precise the C[x](9,)-module structure
of N := gr‘v/ N. The general principle is that the graded object grl.\/[J\? with respect to
the monodromy filtration of the nilpotent endomorphism N = 27i(E —v) should be
simpler to understand, and enough for the purpose of Hodge theory, and moreover it
is completely determined by the primitive modules Pk]v , by means of the Lefschetz
decomposition. We first exhibit the simplification brought by grading with respect to
a suitable finite filtration U,, and we will consider next the monodromy filtration.

Structure of VO(")N. We consider E as a new variable and we set VW(ZL)M [E] =
Vi®'M @c CIE]. We endow Vi) M[E] with the following twisted C[z](xd,)[E]-
structure, compatible with (11.3.3):

(m ®EY) - f(z) = mf(z) © B,
(m@E")-E=meEF!,
(m® Ek) 210y, = Mx;0p, ® EF —a;m @ EF L.
If o is such that My # 0 (see Definition 11.2.2), we set
Iy(v, @) = {i € Iy | i = yai}.

Corollary 11.3.23 provides us with a presentation of Vo(n)(ﬁ ) as the cokernel of

(11.3.30) o= P pa: P MJE— P M[E],
agsya asya agya
with
Vo = H (Si/a; — E).
i€l (7,00)
This morphism is C{xd,, E)-linear, and we have VO(") (N) ~ Coker ¢ as a C(zd,,E)-
module. Moreover, Corollary 11.3.23 also implies that, for every ¢ = 1,...,n, the

V-filtration of N in the direction of D; is determined by the formula

(11.3.31) VAP (N) N V™ (N) = image (Vi . VAW M)[E]),  for ; < 0.
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However, since x; does not commute with S;, the morphism ¢ is not C[z](x0,)[E]-
linear.

We will recover Clz]|(x0,,)[E]-linearity after grading by a suitable finite filtration U,.
For a < 7ya fixed, and for j € I, (7, o), we have

H :cl-@zi)wnjijo( H :Eiazi):xj' H 204,

i€ly(vy,a) 1€1,(y,0) iEI??(éj,a)
17]

and the right-hand term sends Mq[E] in Mq_1,[E]. Moreover, for j € I,(v, a), the
equality #1,(y,a — 1;) = #I,(v,a) — 1 holds true. We are thus led to define the
finite increasing filtration by C[z](zd,)[E]-submodules

UVWMEl = @  ME]L

asya
#1g(v,)<k

Grading with respect to U, has the only effect of killing the action of z; on Mq[E]
for j € I,(v, ). Moreover, the image filtration U.Vo(n)N is nothing but the filtration
UVMN= @ Ng

B<O
#1,(B)<k

Every Clz]{x0,)[E]-module grg%(")]v is the direct sum of its submodules (grgVO(n)N)J
with
elVIMN), = @ Ng, forJcC I, with|J| =k,
Bl (8)=J
and z; acts by zero on (grg%(")ﬁ)J for j € J. In other words, (grkUVO(n)N)J is
supported on (1, ; D;.

Proposition 11.3.32 (Structure of grUVO(")(JV )). The morphism ¢ is strictly compatible
with the filtration U.VW(S)M[E} and we have an exact sequence

U _
0 — g’V ME] 220 UV MIE] — gV V™ (N) — 0.

Proof. This is obvious since ¢ is graded as a C[zd,, E]-linear morphism. O

Remarks 11.3.33.

(1) The computation shows that grUVO(n)(J\N/'), hence Vb(") (N), hence N, is sup-
ported by the divisor of g, as expected of course.

(2) As a consequence, we can also determine the negative jumping indices of the
V-filtration of N. Let A C [—1,0)™ be the finite set of exponents of M (see Definition
11.2.2). Let us fix v < 0. Then gry N # 0 if and only if Ng # 0 for some 3 < 0, that
is, I,(B) # @, that is, va; € o; — N for some a € A and some ¢ € I;. We conclude
the set of negative jumping indices is the set

U i(ai —-N), acA

icly i
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11.3.c. A simple example with monodromy filtration. We illustrate the pre-
vious general results on a simple example, where we can give more details on the
monodromy filtration on the nearby cycles N = gry N (v <0).

Assumption 11.3.34. M is simple, that is, all properties of Example 11.2.9 are satisfied.
In particular the set of exponents is reduced to one element o € [—1,0)", tk My =1
and Mgy =0if oy = —1 and k; > 1.

Let us summarize the results already obtained in the present setting.

(i) The set of negative jumping indices «y for the V-filtration is Uielq ai (o;—N). For
such a a jumping index v € [~1,0), we will set J(a,7) := {i € I, | &y = va; mod Z}
and k, = #J(a,v) — 1. Moreover, for j € {0,1}!, we set ||| := Yiesam i =
#i € Je) i = 1. )

(i) Such a jumping index v € [~1,0) being fixed, and setting N = gry' N, the
only possible 8 < 0 such that ]\75 # 0 are of the form 8 = o« — ya — k for suitable
k e N": for all i € {1,...,n} we have a; — va; > a; > —1, so a; — vya; — k; > 0 if
k; < —1. (Note also that some components of & — ya can be > 0). There exists a
unique k° € N™ such that

ko =0 ifid I,
B9 =0y —ya; —k{ € [-1,0) ifie I,

and we set 3° = a® — ya, with a® := a — k°, so that in particular 52 = of if i ¢ I.
Then N has a single exponent, equal to 3°, and its quiver (see Remark 11.2.6) has
vertices ZV,@ with B = 8° + 3, j € {0,1}!. The corresponding 3 + ~va is then equal to
a’ + 3. We note that

J(a,v)={icl, | =—-1} and I,(B°+j)={ie J(a,7)]|ji =1}

(ili) The action of 2;0,, on Mqo4; (with a® and j as above), that we have denoted
by S; above, is the multiplication by the constant of + j;. On the other hand, the
action of z;0,, on Mqo4;[E] is by S; — a; E. We note that, for i € I,(8° + j), we
have 82 + j; = 0, hence 52 = —1 and j; = 1, so (& + j;)/a; = 7. Proposition 11.3.20
describes Ngoﬂ as the cokernel of (E —)I91 acting on Myo, ;[E).

Let us consider the operator N = 27i(E —v), and identify in a natural way
Mo ;]E] with Maoy;[N]. Then, as a C[N]-module, we have

Ngotj = Mao4[N]/Tm NI,

In other words, J\Nfgwrj is a Jordan block of size ||F|| with respect to N. In particular,
Nﬁoﬂ = 0 for any j all of whose components on J(«, ) are zero. The action of
N; = 27mi(2;0, — (B¢ +7:)) on NB“Hv which is induced from that on Mqo;[E], is by
—(a;/ 2w i)N. As a consequence, the primitive part Pk(ﬁgoﬂ») is zero if k #£ ||7]| — 1
and has dimension 1 if & = ||j|| — 1. We then denote by P(]\~fgo+j) this primitive part.

We conclude that for k£ € N, the quiver of Pkﬁ is zero if k > k., and otherwise has
vertices P(Kfﬁoﬂ-) for j € {0, 1} such that ||j|| = k + 1.
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(iv) Let now us describe the var; arrows in the quiver of N. The action of z; on N
is induced by that on M so, if j; =1, x; : Nﬂtu,.j — NB“-&-j—n it is the morphism
2 @1 Myoy 5[N]/ Im NI — Mo 54 [N]/Tm NIT=2il
Therefore,

(a) if i ¢ J(a,7), we have || — 1;|| = [|§]| and @; : Ngoyj — Ngoyj_1, is
injective, since x; : Mqo4j — Mao4j—1, by our assumption of minimal extension
on M. For the same reason, x; : PNgo.H — P]\Nfﬁo_,_j_li is injective.

(b) If i € J(ex,7y), then x; induces zero on the N-primitive part Pﬁﬁo+j7 SO
var; is zero on the quiver of Py N for every k.

(v) We consider the can; arrows in the quiver of N. So we consider Oz,
Ngoyj1, = Ngoyj with j; = 1.

(a) If ¢ ¢ I, then the action of 0,, on Mgo,;_1,[N] is simply induced from
that on Mgeo,;j_1, (see (11.3.3)), hence can; is onto since ||j — 1;|| = ||7|| and by
our assumption of minimal extension on M. The same property holds for every
P.N.

(b) If i € Iy . J(ex,7), then ¢ € (—1,0) and can; is an isomorphism by our
convention (Remark 11.2.6). The same property holds for every Pka .

(c) If i € J(ev,7y), then for a given k € N, either Pkﬁgoﬂ or Pk]\N/'ﬁoH_li is
zero, so can; is zero on the quiver of Pk]\Nf for every k.

Summarizing the discussion, let us emphasize the consequences on the primitive
parts PkgrlY/N.

Corollary 11.3.35. The Clz)(0.)-module Prgry N vanishes for k > k., and the support
of PkngN has codimension k if k < k.. More precisely, if k < k-, then
PrgtY N= @ (PegryN)y,
JCJ ()
#J=k
where each (Prgry N); is supported on Dy = (¢,
Clz (0, )-module, it is of normal crossing type along the divisor induced by U, ¢ ; D;
and the corresponding quiver is isomorphic to the (I ~\ J)-quiver of M. In particular,
Py, grly/N s a minimal extension with support along D;cy. O

D; and, when regarded as a

The general case. How much of the previous discussion remains valid in the general
case of a C[z](d,)-module M of normal crossing type which is a minimal extension
along D;c? Firstly, we can assume that the set A of exponents of M is reduced to
a single element o € [—1,0)™ since M is the direct sum of such modules (see Remark
11.2.18(2)). Therefore, Properties (i) and (ii) of the simple case still hold.

However, in Property (iii), we have to take into account the nilpotent part S?ilp of
the action of ©;0,, on Mqo4;. We can then describe J\NZBO_H' as

Noo 15 = Maos5IN/ T (Tlier, g4y (N = S17P/a) ).
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In Property (iv) (resp. (v)), the statements (iva) (resp. (va) and (vb)) remain true,
but it is not clear how to compute the primitive parts of Ngoy;, and therefore (ivb)
and (vc) do not extend in a simple way.

11.3.d. Nearby cycles for coherent Z-modules of normal crossing type

We now consider Theorem 11.3.2 in the analytic setting, but we forget the fil-
tration. Given M of normal crossing type along D as in §11.2.b, we denote by M
the associated C[z](0,)-module, so that M = Zx ®c[a)(9,) M. In oder to simplify
the notation, we will set N := 4. M. Then, using the notation of §11.3.a, we have
N = Dxxc Oclz,1(8,,0,) N and ngN Dx @cla)(d,) 8~ V' N. As a consequence from
the results proved for M and N in §11.3.a, we obtain that Theorem 11.3.2 holds for
M. The results of §11.3.b also extend to M and N in a straightforward way. Let us
end this subsection by adapting Proposition 11.3.32 to M.

Structure of V\"™'N. We have

Vo' N = Ox ®cpan Vo N = Ox @ciulon (Z Nﬁ)'
B<O

The Ox-module Vﬂ,(g)M[E] = V»Y(S)M ®c C[E] = Ox ®clz)(a,) V»Y(Z)M[E] is endowed
with an induced action of VO")_@X (and the obvious action of E, see below), and we
have a surjective V})(")@X—linear morphism

(11.3.36) VIMIE] — V3™N.

In the analytic setting, the filtration U, is defined by analytification of that on
V,Y(;l M [E] and Vo(n)N and the analytification of gr¥¢ gives rise to a Vo(n)@X—linear
presentation for each k > 0

(11.3.37) gry Vo(n)N Coker [grk V(")M[ ] LN gry V(")M[ ]}

and g is injective.

The filtration U.VW(Z M (and then U, VV(;L )M[E]) can be defined in terms of M only.
For J C I, let us denote J¢ := I, \ J and I := I \ Iy, so that I = J°U J U 7. Let
us decompose correspondingly a = (aj-,ay, OI;) and n = (nje,ny, nlg). Then, by

considering first Vﬁj )M , one checks that

)grv(nﬁM.

yaj

n c n g) n c
VOM = S v vy IM, @l v = @ v vy"
Jcl, JCl,

2I<k #I=k
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We can give an interpretation of the filtration U, V,y(g )M as a convolution of filtrations,
as in Exercise 8.8(1). Let us define the following filtrations on VA,(ZZ M, for i € It

vV =0,
{VQ% VM ifie I,

(11.3.38) U VM = ¢ o
ALY if i ¢ I,

ya
U VM = v
Then

(11.3.39) UV M = (U -5 U) VI

11.3.e. Nearby cycles for coherent filtered Z-modules of normal crossing
type
We now take up the proof of Theorem 11.3.2 in the filtered case, and we set
(N, EN) = pge (M, FE.M), or equivalently A = pige s .
Step one: improvement of (11.3.9x). We first aim at improving Formula (11.3.9x)
(extended to N := Ox ®c Clz]). As usual, we set F,V, := F,NV,.

Lemma 11.3.40. For v < 0 and any p € Z, we have
VAN = Z (Fpop Vi M @ 1) - 9%
keN?
Proof of Lemma 11.3.40. We first simplify the right-hand side by only taking into
account indices i € Iy, i.e., for which a; # 0, as in Remark 11.3.14, from which we

keep the notation. We set N* = N*' x N*" with n’ = #I, and n” =n—n'. We claim
that

SN (EwVEMe1) 0= EVN = Y (Fpp VMo 1) 08

keNn k' eNn’
By the second line in (11.2.30), arguing as for the proof of Proposition 11.2.34(2), we
have

FM= Y Fp Vim0
k'’ eNn"
Therefore, summing first on k” in the right-hand side of Lemma 11.3.40, and using
that (m ® 1)0;, = m0y, ® 1 for ¢ ¢ I, we get the desired assertion.
The assertion of the lemma amounts thus to

ENNVN=F VN (v<0,p€cZ),
and an easy computation shows that it is equivalent to the injectivity of
(11.3.41) gr” VN — grf'N.
In a way similar to what is done in Remark 11.3.14, we set

:K:’Y = V(n,)M ®6’X ﬁX <aw’a E>7

ya’
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where the action of ¢ is obtained by the second line of (11.3.3). For i € I, let us
set 0; =Id2;0,, ® 1 — (Id®1)2;0;, — (Id®1)a; E € End(X,), and let us consider the
Koszul complex X7, := (X, (d;)er,). We have a natural morphism

K, — N =M[)]

sending m ® 9¥ to (m ® 1)0% and m ® a; E to ma® ® 9;. (V)
By Remark 11.3.14 and since §; vanishes on N (i € I;), the previous morphism
factorizes through surjective morphisms (y < 0)

Ky — H" (K, (6:)er,) — V3.
Let us filter X, by

—J " ~a'

F,X, = ZFP -V(n,)M ®ex FjOx (0, E),
J

where F;Ox (0., E) is the filtration by the degree in 9./, E. We will prove the following
two assertions which immediately imply the injectivity of (11.3.41):

(a) The natural morphism gr’%., — grt”’ V, N is onto.

(b) The natural morphism H”'ngﬂC,'Y — grf'N is injective.
Proof of (a). By the previous surjective morphism, Fj,X, surjects onto F,V,N: this
is already true if we start from the submodule } Fp_jVW(:/ )/M ®eoy FjOx(0y) of
F,X., (by forgetting E), so it suffices to notice that Fp_lvv(:,)M ®ey E is sent to
vaw(:/ Mo1+ (Fp,lv§3 M ® 1)0y,, which follows from Formula (11.3.4).
Proof of (b). In order to manipulate the filtration F,X, and its graded objects, it is
convenient to introduce the auxiliary filtration

GQ:K'Y = V(n,)M ®ﬁx FqﬁX <am/7 E>>

ya'
and correspondingly,

GN=P M

J<p
which induces in a natural way a filtration on grf’N, so that it is sufficient to prove
the injectivity of
ngH"/ngiK; — gr%rf'N.
We will prove
(c) The complex gr&grf’ X7, has nonzero cohomology in degree n' at most.
From (c) one deduces that H™ Gj_lngﬂC:Y — H" ngrFﬂC:Y is injective for every j,

and therefore

ngH"/ngUC; = H",grcngUC; = H”,ngng'YfK;7

1. Note that the tensor product used in N is over C, while that used in X is over Ox.
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so it is enough to prove the injectivity of
(11.3.42) H"/ngngUC; — grfar®N.
On the one hand, we have

FpgqujC’Y = FP*QV"/(Z’ )M Rex Ox [5/7 E]q7

where Ox[¢',E], consists of polynomials of degree ¢ in " = (&;)icr, (class of Jy,)
and E (still denoting the class of E), and thus (?)

grferx, = ngVW(:,)J\/[ Rey Ox[¢,E]
The bi-graded endomorphism corresponding to 0; reads —Id ®(x;&; + a; E). On the
other hand, gr®N = M[7], where 7 is the class of ;, and grf'gr®N = (grfM)[7r]. The
morphism grf’ ngjcV — grf’gr®N is the morphism

(e VN[ E] — (e M)[7]

va'
induced by the natural morphism gr? ny(://)M — grf’M and sending &; to dg/0x; - T

and E to g - 7. It factorizes through the inclusion (grf’ VW(:,/)M) (] = (grfM)[7].
Let us also recall that the localization morphism gr’’ VW(://)M — (gr? VW(Z,/)M) (g7 1) is

injective (first line of (11.2.30)).

Assertion 11.3.43. The sequence (x;&; + a; E)ie]g s a regular sequence on
(e v W09/ (" Vi ™) ) [ )

It is easy to check that (2;; + a; E)icz, is a regular sequence on the localized

module (grf’ V,Y(:,/)M)(gfl)[{’ ,E], since one is reduced to consider the sequence
(& +a;E/x;)icr,. The assertion implies that (z;§; + a;E)icr, is also a regular
sequence on grf’ V,Y(Z,/)J\/[[f' ,E], which in turn implies (c) above. Let us check that it
also implies the injectivity of (11.3.42). We wish to prove the injectivity of
(11.3.44) (e VEIN)[E B/ (@i + ai Eier, — (" VM) (7]

& —0g/0x;-T, Er—g-T.

It is easy to see that its localization by g is an isomorphism. It is therefore enough to
prove that the localization morphism for the left-hand side of (11.3.44) is injective.
This in turn follows form the assertion.
In order to end the proof of Lemma 11.3.40, we are left to proving the assertion.
Since
gk . (ngv(n/)M)gfk/(ngv(n/)M)gkarl — (ngV(nl)M)/(gI‘FV(n,)M)g k > 0

vya' ya' ya' vya'

2. In the following, we do not make precise the bi-grading of the objects and how the isomorphisms
are bi-graded, as it is straightforward.
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is an isomorphism, an easy induction reduces to proving that (z;§; + a; E)ics, is a
regular sequence on ((gr” Vﬂ/(;l/)M) /(gr” VW(Z/)M)g) [¢',E]. It is t,hcrcfore enough to
prove that ((z;&; + a; E)icr,,g) is a regular sequence on (ngVV(:, )M) [¢',E].

Let us set X = X' x X", where X" has coordinates z; with i € I}, := I \ I, and
has dimension n”. Firstly, ((xzfZ + a; E)l-e[g,g) is a regular sequence on Ox-[¢', E],
since one computes easily that the zero set of the corresponding ideal has codimension
n +1in X’ x A" 1. It is thus enough to prove that ngVW(Z, M is Ox-flat.

Let us recall that, for 8" € R™" such that 3; < 0 for all i € I3, ngV,Y(Z/)VAT}”)M
is Ox-locally free (see Remark 11.2.26(d)), hence Ox/-flat. By using the Ox-linear

isomorphisms 0, (i € Ij) as in the second line of (11.2.30), one finds inductively
(by using the compatibility 11.2.25(3)) that ngVW(Z/)Vé,T,L”)M is Ox:-flat for any 3.

Taking the inductive limit for 3" — oo, one obtains the &x/-flatness of gr’ VA/(:,/)M.
This ends the proof of Lemma 11.3.40. O

Step two: R-specializability properties for v < 0. As in Lemma 11.3.10, we deduce from
Lemma 11.3.40 that t : F,V,N — F,V,_1N for v < 0 and any p, as required by
Proposition 7.3.17(a).

Step three: R-specializability and middle extension properties for v > 0. We aim at prov-
ing that, for v > 0 and any p € Z,

F,VuN = FNONVIN = (EpNN Vo N) + (Fpo1Vy—iN) - 0y
By definition, F)N =P Fp-sM @ OF. On the other hand,
FM =Y F_ VM- ok,
keNn
according to Proposition 11.2.34(2) and Remark 11.2.36. Then, if m =}, -, my ®F

belongs to F, NNV, N, and if we set mg =), m07k8f with mg € Fp,|k|V<(g)J\/[, the
first line of (11.3.3) shows that

m=m'+Y (mor®1)0F,

{m' e ENNV,NNN-d;,
k

>k (mok ®1)0% € F,VN.

Now, by definition, F;NNN -9, = F,_1N - 0;. Moroever, since 9 : gr}_{N — grg N
is injective for § # —1, we deduce easily that, for v > 0, VyNNN -0, = V,_1N - 0;.
In conclusion,

FpN n V,YNO N-o; = (Fp_lN' 815) n (V»y_lN . 8,5) = (Fp_le ny_lN) - O,
where the latter equality follows from the injectivity of d; on N, and so
F, VN C(FpNNVeoN) + (Fpo1Vy—iN) - Oy,

as wanted.
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Step four: normal crossing type properties. Let us fix v € [—1,0) and take up the
notation N = gr,‘y/N like in Example 11.3.8. By Theorem 11.3.2 without filtration,
we know that N is a coherent Zx-module of normal crossing type along D. We wish
to show that this result also holds with filtration, namely that (gr}Y/N, F,gr,‘Y/N) is a
coherent filtered Zx-module of normal crossing type along D (Definition 11.2.25).

The formula given in Lemma 11.3.40 implies that, setting Ngo = Vo(")ﬁf as in
Proposition 11.2.34,

FpN = Z(Fp—qﬁ@) -y Dx,
q20

so Proposition 11.2.37 reduces to proving the following properties:

(a) (ﬁfgo, F,ifgo) is R-specializable along every component D; of D (as defined in
the proposition),

(b) the filtrations (F,N<o, V.U N, ..., V" Ngg) are compatible (where V)N :=
VION N Neo),

(¢c) each grfjgrg(n)ﬂgo (p €Z, a € [-1,0]") is C-locally free.

Proof of (b). We will use the presentation (11.3.37) and it will be easier to define and
analyze the filtrations on V§Z$ )M[E] In a natural way we set
Fp(V'y(g)M[ED = Z Fp—quy(:)M ® E,
q20

VAN (VIME]) = (V) MAVIPM)E] (8; < 0).

Claim 1. The filtrations F,ﬂgo, V.(i)ifgo are respectively the images of the filtrations
above by the morphism (11.3.36) Vw(g)M[E] — Ngo.

Proof. For the filtrations V(*), this has been seen in (11.3.31). We have seen (and

used) that VA,(Q)M[E] =2 >0 V((,Yn_)j)aj\/[ ® & C N. Therefore,

ENOVIIME] =Y F, V™, Mool N

J

Jj=0
Since Fp_jV((;l_)j)aM = F,_; VAWM - 29% we conclude that
FENAVIIME] =Y F, VWM @ t/0] = F,(VME)). O
j=0

Claim 2. The family (F,, VY, ..., V™) of filtrations of V,Y(Q)M[E] is compatible.

Proof. This is true if we replace this family by the family (G,, F/, V(D ... V),
where G, is the filtration by the degree in E and F! is (F.VAY(;L )M) [E], due to the

compatibility on Vn,(g M. Now, F, being the convolution of F! and G,, we can apply
Exercise 8.8. O

Let K be the kernel of the surjective (Vo Zx )[E]-linear morphism Viz'M[E] — Vo .
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Claim 3. The family induced by (F,, V.V, ... V™) on K is compatible and that the
inclusion K — V,Y(ZJ)M[E] is (n + 1)-strict.

This claim implies the compatibility of (F,, V.1, ..., V") on Ngo as in (b) above.
We will use the criterion of Lemma 8.3.21.

We first work on the graded objects with respect to the filtration U, (which takes
the role of F°) and with the induced family (F,, V.V, ... V(™). Obviously, Condi-
tions (a) and (b) of this lemma are satisfied. We are thus reduced to prove the claim
for gry VWG)M[ E] for every k.

Let us fix & > 0. According to (11.3.37), gr¥ K is the image of the injective
morphism ¢y, that we regard as an (n+ 1)-filtered morphism of degree k with respect
to F,. We will apply once more Lemma 8.3.21 to grgv§2 )M[E], where now the
filtration FV is the filtration G, of gr¥ v§;’ )M[ E] by the degree in E. It is obvious that
¢k is G-strict. Moreover, grSgr} va )J\/[[ E] = gry Vﬁi M-E? and gr€yy, is s1mp1y the
multiplication by E*. Moreover, V. (gr{ VW(;L)M[E]) =V (g¥ VW(,?)M)[ E], s

VO (gl erl VIWME]) = VO (gl V(M) - B9

On the other hand, the filtration F' induced on gry, nyg )M[ E] is still equal to the con-
volution of the filtration F/gr{ VV(Q)M[ E] induced by F!V- V(G)M[E] = (F.VV(Z)M)[E],
and the filtration G,. Therefore,

Fogr{ grl VI MIE] = (Fp—qerf VM) - B

It is then clear that gr&p;, = EF is (n+1)-strict on every gry grUV(")M[ E]. Lastly, let
us check compatibility of the induced family (F,, V.V, ..., V(™) on gry grkUV(n)Jv[[ E].
It amounts to that on grng(g )M. For that purpose, we remark that the family
of filtrations (U,,F,,V",..., V(") is compatible on V.Y(S)M. Indeed, the family
without U, is compatible, and the filtration U, can be expressed as a convolution of
filtrations whose terms are terms of the V()-filtrations, by (11.3.39). Exercise 8.8
applies then as in Claim 2. As a consequence, we obtain the desired compatibility
(see Remark 8.3.10(1), or use the flatness criterion). O

Proof of (a). We know that z; : FpV,Y(g)M — va§3)M has image F, Vw(a) 1, M. By
Claim (1) and the (n + 1)-strictness of VVZ)M[ E] — 'N<07 the same property holds

for Fpif<o F, Vo( )N. That Oz, sends F, V( )N<0 into F; +1V0( )TN<0 is clear. O

Proof of (c). By the same argument as in the last part of the proof of (b), the family
of filtrations (U,, F,, V.1, ..., V(™) is compatible on ﬂgo. As a consequence, grading
with respect to F, V() U can be made in any order, and it is enough to prove the
C-local freeness of gr, grv( gry N<0 for every k. This is obtained as in the last part
of the proof of (b).

This ends the proof of Theorem 11.3.2. O
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11.3.f. A simple example. We take up the simple example of Section 11.3.c and,
together with Assumption 11.3.34, we assume that

Assumption 11.3.45. (M, F,M) is a coherent filtered Zx-module of normal crossing
type, such that F,M = My - F,9x for all p. Let us decompose any k € Z" as
k =kt — k™ with k7,k~ € N” with disjoint support. Then (and according to
Assumption11.3.34), considering M = My 4z with the graded filtration

F1M=0, F,M= @ Mot (p=0),

S
|kT|<p

we have F,M = Ox ®c FpM.

Theorem 11.3.46. Under the previous assumptions, the following properties hold for
every A € S1:
(1) for every k > 1,

Nk : (grll;/lwg,AM7F-grg[wg,>\M) ; (grl\—/[kwg,)\Ma Fogrll/[kq/}g)\m)(ik)

is a strict isomorphism,
(2) For every k > 0, the morphism

gr™cany : (Pry1¥g i M, F.Pry19g i M) — (Prg 1M, F, Py 1 M)(—1)
is an isomorphism.

Remark 11.3.47. Using the formalism of éx—modules as in Chapter 7, we set 4 =
RpM. This Zx-module is strictly specializable along (¢9) and is a minimal extension
along g, as follows from the results of Section 11.3.e. Then the first statement that N*
is a strict isomorphism is equivalent, according to Proposition 7.4.11, to the property
that every gr};/[ grﬂ‘// A is strict (k € Z), equivalently so is every primitive part Py, grfy/ M.

Proof. Tt is not difficult to check that the description (i)—(v) of Section 11.3.b extends
with the filtration F' to a description of Pgr,‘Y/JV , since this amounts to taking into
account the degree in N only. The first point of the theorem follows.

For the second point, we have seen that, using the language of éx—modules7 N s
strictly R-specializable along (¢) and is a minimal extension as such. The morphism
cany is then isomorphic to N : gr¥,.#" — ImN and the desired isomorphism follows
from Lemma 3.1.13(f). O

11.4. Sesquilinear pairings

11.4.a. Basic currents. The results of §6.3.a in dimension one extend in a straight-
forward way to A™. We will present them in the context of right Z-modules, that is,
we will consider currents instead of distributions. We will denote by €, the (n,n)-
form daxq A---Adxy, AdZTy A« - - AdT,, that we also abbreviate by doz AdZ. We continue
using the simplifying assumptions 11.1.2.
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Proposition 11.4.1. Fiz o, 8 € (R¢o)™ and k € N, and suppose a current u € €(A™) =
D™ (A™) solves the system of equations

(11.4.1%) w20, — )" = w(@i0z, — Bi)F =udy, =uds, =0 (€1, j¢lI).

for an integer k > 0.

(a) If a, B € (Ro)™, we have u =0 unless a — B € Z"™.
(b) If B = «, then, up to shrinking A™, u is a C-linear combination of the basic

currents
B v L(:Ei)pi L(mi)l)ri'l
(11.4.1 %) Uap = H || 2(1ta) H . O
) | . | Lo
i€l P Ger (pi + 1!
;<0 a;=0
where 0 < p1,...,pn < k— 1. These currents are C-linearly independent.

Proof. Assume first a, 8 € (R.)™. If Suppu C D, then uz™ = 0 for some m € N
and, arguing as in the proof of Proposition 6.3.2, we find u = 0.

Otherwise, set 2; = €% and pullback v as @ on the product of half-planes Re &; > 0.
Set v = e e P&y, Then v is annihilated by (851051_)’“ for every i=1,...,n —
therefore by a suitable power of the n-Laplacian ), O, 62 — and a suitable k > 1,
and by 0., and g, that we will now forget. By the regularity of the Laplacian,
v is C* and, arguing with respect to each variable as in Proposition 6.3.2, we find
that v is a polynomial P(&,€) and thus & = e*$eB& P(£,€). We now conclude (a), as
well as (b) for o, 8 € (R<p)"”, as in dimension one.

Assume now that o = 8 < 0. We will argue by induction on #{i € I | o;; =0},
assumed to be > 1. Let I' = {i €I | a; <0}, I"U{io} = {i €I | a; =0}. Set
a=(a,0,0;),a=a-1;, = (a’,0,—-1;) and let us decompose correspondingly
peN"asp=(p,p”,p,). By induction we find

2 _
u- |z, |* = E :Cp’,p”,po+2 “ugp, cp€C,

p
forp; =0,...k—1(i=1,...,n), and this is also written as
Zcflua,qaﬂﬂio afio : |xio|27

q

with ¢; =0,...k—1fori#1i, and g, =2,...,k+ 1. Let us set
v :u_chuaﬂawioafio’
q

so that v - |z;,|> = 0. A computation similar to that in §6.3.a shows that the basic
currents ug ¢ satisfy the equations (11.4.1 %) (with respect to the parameter ) except

when ¢, = k + 1, in which case we find

k .
Ua)q/)q//)k+1amio 6@.0 . (Qiioawo) =2mi L*u(a’,O),(q’,q”)>
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and similarly when applying (7;,0z, )¥, where ¢, denotes the pushforward of currents
by the inclusion D;, < X. On the other hand, according to Exercise 10.2 and as in
Proposition 6.3.3, the equation v - |z;,|?> = 0 implies

’ ] " j
V= 1,00 + E (eevf - 03, + vy - 05, ),
Jj=20
where vy, v}, v} are sections of €p, on a possibly smaller A", Applying (z;,0.,, )k
and its conjugate to
/ j "
u= g CqUa,q0z,, O, + t+V0 + E (evj - 07, + ) -0 )
q §>0
gives
. -k / 1
0=2micq q" kt1 - teU(a’,0),(q,q") T E 3 v ~8§%7
jz1
: 2 :-k " j
0= 27Tlcql7qu7k+1 “LxU(a’ ,0),(q',q") —+ 7 [’*Uj . 8%10
j>1
By the uniqueness of the decomposition in €p, [0, ,0z, ], we conclude that
/ " .
Cq g k1 =0, vy =07 =0 (j21),

and finally u =" q Calla,g 1 LxVo, Up to changing the notation for cq in order that g;
varies in 0, ..., k—1 for all i. Now, vy has to satisfy Equations (11.4.1x*) on D;_, so has
a decomposition on the basic currents (11.4.1 %) on D, by the inductive assumption,
and we express (,vg as a basic current by using the formula proved in Exercise 6.14
with respect to the variable ;. O

11.4.b. Sesquilinear pairings between holonomic Zx-modules of normal
crossing type

We make explicit the expression of a sesquilinear pairing between holonomic
P x-modules of normal crossing type, by extending to higher dimensions Proposition
6.3.5. Here, we mainly work in the right setting, while the dimension-one case is
given in the left setting.

Proposition 11.4.2. Let ¢ be a sesquilinear pairing between M', M" of normal crossing
type.
(1) The induced pairing ¢ : M., @ M”,, — €an vanishes if &’ — o' ¢ 7.

a//
(2) If m' € M}, and m” € M/ with a < 0, then the induced pairing ¢(c)(m’,m”)
is a C-linear combination of the basic distributions uqp (p € N™). O

As in dimension one, we find a decomposition

(o) = Z Ca,p " Ua,p

peENn
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where ¢o p : M), ®c M/, — C is a sesquilinear pairing and, setting c¢o = ¢, We can
write in a symbolic way

_ |=2N: 0
c(a)(m’,m") =0 ia H |xi|72(1+a7’,+N7:) H |zz|m/’m//>. H acia@’

, A N; ,

i]o; <0 i|oy=0 i|a; =0
where N; = (z;0; — «;). As a corollary we obtain:
Corollary 11.4.3. With the assumptions of the proposition, we have

c(m’,m") - 2,0, = c(m',m") - T;0x. O

Notice also that the same property holds for z;0,, — a; since «; is real. Therefore,
with respect to the nilpotent operator N;, ¢ : M), ® M! — €x satisfies

o(Nym/,m”) = ¢(m/, Nym”).

On the other hand, N; := 27i(z;0,, — «;) is skew-adjoint with respect to c.

11.4.c. Induced sesquilinear pairing on nearby cycles. We now consider the

setting of Section 11.3.d. Suppose we have a sesquilinear pairing ¢ : M’ @c M — Can.

We still denote by ¢ the pushforward sesquilinear pairing N’ ® N’ — €ant1 by the
a

inclusion defined by the graph of g(z) = x2.
The purpose of this section is to find a formula for the induced pairing

gryc:gry N @ grV N — €an

for v € [—1,0), as defined by (10.5.6 x), that we fix below. Since we already know
that gr}Y/N’ , grfy/ N are of normal crossing type, grfy/c is uniquely determined by the
pairings

/E,@ : Né X ]’\775 — C
for B < 0. What we have to do then is to derive a formula for Eﬁ in terms of the
original pairing ¢g4~a-

Fix m" € Mg, , C Mg, ,[E] and m" € Mg, , C Mg, ,[E], and let us con-
sider their images n’,n” by the morphism in Proposition 11.3.20. The induced pair-
ing is given by the formula, for n, € C°(A™) and a cut-off function xy € C°(A)
(see (10.5.6 %))

- i -
(Eﬁ(nla n"), o) = by Ress:v<cﬁ+va(ml ®1,m"®1), 770|t|25X(t)>

27

Ress="/<cﬁ+’7a(m/7 W)a 770|g|2SX(g)>
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If we set N = E —, any element of ]\N/',’6 can be expanded as Zj n;Nj where n; is in
the image of Mp, . ,, and similarly with Mg, ,, and we find

(1144) <Eﬁ(2j20 n;Nj,Zk20 nZNk)7770>
i . P
= 5= Reses (s =7 7 (epmalm),mi) molg*x(9)) ).
j4,kEN
Using the symbolic notation from above, the current ¢g~q(m'’ ,m") is equal to

2(14-B; +yai +Ni e P

anﬁ-l-'ya H |37z|_ (14Bi+~a;+N;) H Tm ,m” ) - H Dy, 05,

ilBi+va;<0 i|Bi=a;=0 ! i|Bi=a;=0

The factor x(g) does not affect the residue, and |g|** = |z|>3°. If we now define F(s)
as the result of pairing the current

2a;s—2(148; +Ni) g 2N -1,
SR G | P EERE AR | e
i|Bi+vai<0 i|Bi=a;=0 g

against the test function Hi‘ 3,
space Res > 0, and

—a,—002,07,M0(z), then F(s) is holomorphic on the half
(¢a(n’,n"),m,) = QL Ress—o F(s).
7
Recall the notation I, = {i € I | a; # 0} and I,(8) = {i € I, | B; = 0}. Looking at

| TR | T GO O | | Jaa| 728 =1
1 i ’

N;

i€ly(B) i€lg~1I4(B) {5 —a—o ;

we notice that the second factor is holomorphic near s = 0; the problem is therefore
the behavior of the first factor near s = 0. To understand what is going on, we apply
integration by parts, in the form of the identity (5.4.5%x); the result is that F(s) is
equal to the pairing between the current

O 12a;5—2(14+B;+N;) ‘xi‘72Ni -1 w7l
n¢B+va H H |z H — Y m,m

i€14(B) i|B:<0 i|Bi=a;=0 i

|zi|2aisf2Ni -1
Ni — ais)Q

and the test function
I 020510 (@).
i|8:=0
The new function is meromorphic on a half space of the form Res > —e, with a
unique pole of some order at the point s = 0. We know a priori that Ress—q F(s)
can be expanded into a linear combination of (ug p,1,) for certain p € N”, and that
ta(n’,n”) is the coefficient of ug, in this expansion; here

uﬂ70:Qn H |$|_2(1+Bi) H L(xl)awlagl

i|B:<0 i€ly(B)
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Throwing away all the terms that cannot contribute to (ug o, 1,), we eventually arrive
at the formula
Eg(n/,m) = B+va ( ﬁ Ress=o ‘ H ﬁ m/aW)a
i€ly(B)
where the residue simply means here the coefficient of 1/s. In particular, we have
t(n’,n”) =0 if #1,(8) > 2. By means of (11.4.4), we obtain the final result:

(11.4.5) ?B(Zj>0n;Nj,Zk>o”ZN’“>

; A 7}
= (B4ra ( 5- Ress=o Zj)k)EN HieIg(ﬁ) N —a:s m,m )
(3

(2

11.5. Comments

This chapter is intended to be an expanded version of the part of Section 3 in
[Sai90]| which is concerned only with filtered Z-modules. As already explained, we
do not refer to perverse sheaves, so the perverse sheaf version, which is present in
loc. cit., is not relevant here. Nevertheless, the content of §11.2.b is much inspired
by it.



