
CHAPTER 10

D-MODULES ENRICHED WITH
A SESQUILINEAR PAIRING

Summary. Our aim in this chapter is to extend the notion of (r,r)-flat
sesquilinear pairing, used for the definition of a variation of C-Hodge struc-
ture (see Definition 4.1.3), to the case where the flat bundle is replaced with a
D-module. The case of a holonomic D-module will of course be the most inter-
esting for us, but it is useful to develop the notion with some generality in order
to apply derived functors.

In this chapter, we keep Notation 7.0.1. However, we will only consider OX -modules
and DX -modules, as coherent filtrations will not play any role here. We will use the
constructions and results of Chapter 7 in this framework.

10.1. Introduction

One of the ingredients of a variation of polarized Hodge structure is a flat Her-
mitian pairing (that we have denoted by Q), which is (�1)p-definite on Hp,w�p. In
this chapter, we introduce the notion of sesquilinear pairing between holonomic DX -
modules. It takes values in the sheaf of distributions (in fact a smaller sheaf, but we
are not interested in characterizing the image). This notion will not be used directly
as in classical Hodge theory to furnish the notion of polarization. Instead, we will take
up the definition of a C-Hodge structure as a triple (see Section 2.4.c) and mimic this
definition in higher dimension. Our aim is therefore to define a category of D-triples
(an object consists of a pair of DX -modules and a sesquilinear pairing between them)
and to extend to this abelian category the various functors considered in Chapter 7.

10.2. Sesquilinear pairings for DX-modules and the category D-Triples

10.2.a. Distributions an currents on a complex manifold. Let X denote the
complex manifold conjugate to X, i.e., with structure sheaf OX defined as the sheaf
of anti-holomorphic functions OX . Correspondingly is defined the sheaf of anti-
holomorphic differential operators DX . The sheaf of C1 functions on X is acted on



218 CHAPTER 10. D-MODULES ENRICHED WITH A SESQUILINEAR PAIRING

by DX and DX on the left and both actions commute, i.e., C1
X is a left DX ⌦C DX -

module. Similarly, the sheaf of distributions DbX is a left DX ⌦C DX -module: by
definition, on any open set U ⇢ X, DbX(U) is dual to the space A 2n

c

(U) of C1

2n-forms with compact support, equipped with a suitable topology, and the presheaf
defined in this way is a sheaf. On the other hand, the space of CX(U) of currents
of degree 0 on X is dual to C1

c

(U) with suitable topology. Then CX is the right
DX ⌦C DX -module obtained from DbX by the left-to-right transformation for such
objects, i.e.,

CX = (!X ⌦C !X)⌦
(OX⌦OX)

DbX .

The stupid conjugation functor M 7! M transforms OX -modules (resp. DX -mod-
ules) into OX -modules (resp. DX -modules): let us regard OX as an OX -module by
setting f ·g := fg, and similarly let us regard DX as a DX -module; for an OX -module
(resp. a DX -module) M we then define M as OX ⌦OX

M (resp. DX ⌦DX
M). In other

words, for a local section m of M, we denote by m the same local section, that we act
on by f 2 OX (resp. DX) with the formula f ·m := fm.

Notation 10.2.1. From now on, the notation AX,X will mean AX ⌦C AX (A = O
or D).

One can easily adapt Exercise A.5.5 to prove that the C1-de Rham complex
E 2n+•
X ⌦C1

X
DX,X = E •

X ⌦OX,X
DX,X [2n], where the differential is obtained from

the standard differential on C1 k-forms and the universal connection rX +rX on
DX,X , is a resolution of E n,n

X = E 2n
X as a right DX,X -module.

We denote by Dbn�p,n�q
X = E n�p,n�q

X ⌦C1
X

DbX or DbX,p,q the sheaf of currents
of degree (p, q) (we also say of type (n� p, n� q)), that is, continuous linear forms on
C1

c

differential forms of degree p, q.
The distributional de Rham complex gives then a resolution of CX as a right DX,X -

module:

(10.2.2) Db
•
X [2n]⌦OX,X

DX,X
⇠
�! CX .

Let us make precise that the morphism is induced by

Dbn,nX ⌦DX,X = CX ⌦DX,X �! CX , u⌦ P 7�! u · P.

10.2.b. Sesquilinear pairings. Let us start with the case of right DX -modules.

Definition 10.2.3 (Sesquilinear pairing).
(1) A sesquilinear pairing c between right DX -modules M0,M00 is a DX,X -linear

morphism c : M0
⌦C M00

! CX . When M0 = M00 = M, we speak of a sesquilinear
pairing on M.

(2) The adjoint of c is c⇤ : M00
⌦C M0

! CX defined by c⇤(m00,m0) = c(m0,m00),
with hc(m0,m00), ⌘i := hc(m0,m00), ⌘i for any test function ⌘. We clearly have c⇤⇤ = c.
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Remark 10.2.4 (Extension to C1 coefficients). Let us define a right action of DX,X on
M ⌦OX

C1
X by setting (m ⌦ ⌘) · @xi

= m@xi
⌦ ⌘ �m ⌦ @⌘/@xi and (m ⌦ ⌘) · @xi

=

�m⌦ @⌘/@xi. Then c extends in a unique way as a C1
X -linear morphism

(M0
⌦OX

C1
X )⌦C1

X
(M00

⌦OX
C1
X ) �! CX

which satisfies, for any local section ⇠ of ⇥X or ⇥X ,

c(µ0, µ00)⇠ = c(µ0⇠, µ00) + c(µ0, µ00⇠),

by setting
c(m0

⌦ ⌘0,m00
⌦ ⌘00) := c(m0,m00)⌘0⌘00.

Conversely, given such a pairing, one recovers the original c by restricting to M0
⌦CM00.

Remark 10.2.5 (The case of left DX -modules and side-changing)
If M0,M00 are left DX -modules and c = cleft : M0

⌦C M00
! DbX is a sesquilinear

pairing, that is, a left DX,X -linear morphism, then it determines in a canonical way
a sesquilinear pairing

(10.2.5 ⇤)
cright : (!X ⌦M0)⌦C (!X ⌦M00) �! !X ⌦ !X ⌦DbX = CX

(!0
⌦m0,!00

⌦m00) 7�! !0
^ !00

⌦ cleft(m0,m00).

Conversely, from a sesquilinear pairing between right DX -modules one recovers one
for left DX -modules.

The compatibility with adjunction is given by the following relation:

(10.2.5 ⇤⇤) (cright)⇤ = (�1)n(c⇤)right,

since !0
^ !00 = (�1)n!00

^ !0.

Let us notice the following.

Lemma 10.2.6. If M0 and M00 are OX-coherent (hence OX-locally free of finite rank),
the pairing c takes values in C1 forms of maximal degree (resp. functions).

Proof. We know (see Example A.4.b) that M0,M00 are OX -generated by their flat local
sections. For such local sections m0,m00, the current (resp. distribution) c(m0,m00) is
annihilated by @ and @, hence is locally a constant. It follows that, for any local
sections m0,m00, c(m0,m00) is real-analytic, so in particular C1.

10.2.c. The category of D-triples. The category D-Triples(X) is a prototype,
without any Hodge filtration, of the category of Hodge modules. It serves as a model
for it, but is also a constituent of it, as we will see in Chapter 12. It is an abelian
category, and possesses the basic functors we need for studying pure Hodge modules,
as a consequence of the results of the previous sections. Moreover, we will define sign
rules for various functors in order to eliminate various signs which have appeared in
the previous formulas, and to be compatible with the notion of Lefschetz structure
(see Chapter 3) when possible.
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Definition 10.2.7. The category D-Triples(X) has
• objects consisting of triples T = (M0,M00, c), where M0,M00 are DX -modules and

c is a sesquilinear pairing between them (with values in DbX in the left case, and in
CX in the right case),

• morphisms ' : T
1

! T
2

consisting of pairs ' = ('0,'00), where '0 : M0
1

! M0
2

and '00 : M00
2

! M00
1

are DX -linear, such that for all local sections m0
1

of M0
1

and m00
1

of M00
2

,

(10.2.7 ⇤) c
1

(m0
1

,'00(m00
2

)) = c
2

('0(m0
1

),m00
2

).

In particular, D-Triples(X) is an abelian subcategory of Mod(DX)⇥Mod(DX)op.
We say that an object T of D-Triples(X) is coherent, resp. R-specializable,

resp. smooth, if its components M0,M00 are DX -coherent, resp. R-specializable,
resp. OX -locally free of finite rank.

Definition 10.2.8 (Side-changing in D-Triples(X)). Let T = (M0,M00, c) be a left DX -
triple. We set

Tright := (M0right,M00right, cright),

where cright is defined by (10.2.5 ⇤). The right-to-left side changing is defined corre-
spondingly, so that the composition of both is the identity.

Definition 10.2.9 (Adjunction). The adjoint of an object T = (M0,M00, c) of
D-Triples(X) is the object T⇤ := (M00,M0, c⇤). The adjoint of a morphism ' = ('0,'00)

is the morphism '⇤ := ('00,'0). We clearly have T⇤⇤ = T and '⇤⇤ = '.

Remark 10.2.10 (Adjoint of a graded triple). Let T• =
L

k Tk be a graded object in
D-Triples(X). We write Tk as (M0

k,M
00
�k, ck). The adjoint object is then

T⇤
• =

L

k

T⇤
k :=

L

k

(T�k)
⇤.

Remark 10.2.11 (Side-changing and adjunction in D-Triples(X))
With the previous definitions, adjunction does not commute with side-changing

when n is odd, because of the sign in (10.2.5 ⇤⇤).

Definition 10.2.12 (Pre-polarization, see Definition 2.4.32). A pre-polarization of
weight w of an object T of D-Triples(X) is a morphism Q : T ! T⇤ which is
(�1)w-Hermitian. In the graded category, we ask Q to be graded. We say Q is
non-degenerate if it is an isomorphism.

Let us make this definition more explicit. We write Q = ((�1)wQ,Q), where Q is
a morphism M0

! M00 which satisfies

c(m0
1

,Qm0
2

) = (�1)wc⇤(Qm0
1

,m0
2

)) := (�1)wc(m0
2

,Qm0
1

),

and the sesquilinear pairing on M0

(m0
1

,m0
2

) 7�! c(m0
1

,Qm0
2

)
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is (�1)w-Hermitian in the usual sense. In the graded case, Qk = (Qk, (�1)wQ�k),
where each Qk is an isomorphism M0

k ! M00
�k which satisfies

ck(m
0
k,Q�km0

�k) = (�1)wc�k(m0
�k,Qkm0

k),

so the graded sesquilinear pairing M0
k ⌦M00

�k ! CX (or DbX)

(m0
k,m

0
�k) 7�! ck(m

0
k,Q�km0

�k)

is (�1)w-Hermitian in the graded sense.
The following is shown as in Remark 3.2.26.

Lemma 10.2.13. Any non-degenerate pre-polarized triple (T,Q) of weight w is isomor-
phic to a triple T

1

= (M
1

,M
1

, c
1

) such that c⇤
1

= (�1)wc
1

(i.e., with polarization
((�1)w Id, Id)).

Similarly, any non-degenerate graded pre-polarized triple (T•,Q•) of weight w is
isomorphic to a graded triple T

1• = (M
1•,M1•, c1•) such that c⇤

1,k = (�1)wc
1,�k :

M
1,�k ⌦M

1,k ! CX (or DbX).

In other words, working with non-degenerate pre-polarized triples of weight w

amounts to working with pairs (M, c), where c is a (�1)w-Hermitian pairing M ⌦

M ! CX (or DbX). Given such a pair, we associate to it the object (M,M, c) of
D-Triples(X) with pre-polarization ((�1)w Id, Id).

Example 10.2.14 (Two basic examples).
(1) (Left case) The triple TOX = (OX ,OX , cn) is the smooth left triple with

cn(1, 1) = 1. It satisfies (TOX)⇤ = TOX . The identity morphism Q = (Id, Id) :

TOX ! (TOX)⇤ is an Hermitian non-degenerate pre-polarization.
(2) (Right case) The triple T!X = (!X ,!X , cn) is the smooth right triple with

cn(!0,!00) = !0
^ !00. We have c⇤n = (�1)ncn, and the morphism Q = ((�1)n Id, Id) :

T!X ! (T!X)⇤ is a (�1)n-Hermitian non-degenerate pre-polarization.

Definition 10.2.15 (Side-changing for a pre-polarization). Let T be a left DX -triple
and let Q = (Q0,Q00) be a pre-polarization of weight w of it. We then set Qright :=

((�1)n Id⌦Q0, Id⌦Q00), which is a pre-polarization of Tright, with the natural mor-
phisms

Id⌦Q0, Id⌦Q00 : !X ⌦M0
�! !X ⌦M00.

This defines a pre-polarization of weight w+n of Tright. Moreover, Q is non-degenerate
if and only if Qright is so.

Note that, for a (�1)w-Hermitian left pair (M, c), the associated right pair is
(!X ⌦M, cright).

Remark 10.2.16 (Lefschetz triples). The notion of (graded) Lefschetz structure (T,N) in
the abelian category D-Triples(X) is obtained from Definition 3.1.2. Using adjunction
in D-Triples(X) (Definition 10.2.9), we obtain as in Definition 3.1.10 the notion of
adjunction and pre-polarization of weight w of a (graded) Lefschetz D-triple (T,N).
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Any Lefschetz D-triple (T,N) with a (�1)w-Hermitian non-degenerate pre-
polarization Q is isomorphic to one of the form ((M,M, c), (N,�N)), with c⇤ = (�1)wc,
and Q = ((�1)w Id, Id). It is thus determined by the data (M, c,N), such that c is
(�1)w-Hermitian and N is skew-adjoint with respect to c.

10.3. Pushforward in the category D-Triples(X)

10.3.a. Pushforward of currents. Let ⌘ be a C1 form of maximal degree on X.
If f : X ! Y is a proper holomorphic map which is smooth, then the integral of ⌘ in
the fibres of f is a C1 form of maximal degree on Y , that one denotes by

R

f
⌘.

If f is not smooth, then
R

f
⌘ is only defined as a current of degree 0 on Y ,

and the definition extends to the case where ⌘ is itself a current of degree 0 on X

(see Appendix A.4.d for the notion of current).

Exercise 10.3.1 (Pushforward of the sheaf of currents as a right DX,X -module)
Extend the notion and properties of direct image of a right (resp. left) DX,X -

module, by introducing the transfer module DX!Y,X!Y = DX!Y ⌦C DX!Y . One
denotes these direct images by D,Df⇤ or D,Df!. In particular,

D,Df! CX := Rf
!

(CX ⌦DX,X
SpX!Y,X!Y (DX,X)).

Definition 10.3.2 (Integration of currents of degree (p, q)). Let f : X ! Y be a proper
holomorphic map and let u be a current of degree (p, q) on X. The current

R

f
u of

degree (p, q) on Y is defined by
D

Z

f

u, ⌘
E

= hu, ⌘ � fi, 8 ⌘ 2 E p,q
c

(Y ).

This definition extends in a straightforward way if f is only assumed to be proper on
the support of u.

We continue to assume that f is proper. We will now show how the integration of
currents is used to defined a natural DY,Y morphism H 0

D,Df⇤ CX ! CY . Let us first
treat as an exercise the case of a closed embedding.

Exercise 10.3.3. Assume that X is a closed submanifold of Y and denote by ◆ : X ,! Y

the embedding (which is a proper map). Denote by 1 the canonical section of
DX!Y,X!Y . Show that the natural map

H 0

D,D◆⇤ CX = ◆⇤
�

CX ⌦DX,X
DX!Y,X!Y

�

�! CY , u⌦ 1 7�!

Z

◆

u

induces an isomorphism of the right DY,Y -module H 0

D,D◆⇤ CX with the submodule
of CY consisting of currents supported on X. [Hint : use a local computation.]

For example, consider the case ◆ : X = X ⇥ {0} ,! X ⇥C, with coordinate t on C
and identify H 0

D,D◆⇤ CX with ◆⇤ CX [@t, @t].
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The integration of currents is a morphism
Z

f

: f⇤ DbX,p,q �! DbY,p,q,

which is compatible with the d0 and d00 differentials of currents on X and Y . In other
words, taking the associated simple complex, it is a morphism of complexes

Z

f

: f⇤ Db
•
X [2n] �! Db

•
Y [2m].

Let us notice that the integration of currents is compatible with conjugation. Namely,
given a current up,q 2 �(X,Dbn�p,n�q

X ), its conjugate up,q 2 �(X,Dbn�q,n�p
X ) is

defined by the relation
hup,q, ⌘

q,p
i := hup,q, ⌘q,pi

for any test form ⌘q,p. Then we clearly have

(10.3.4)
Z

f

up,q =

Z

f

up,q.

Since CX = (DbX)right,right as a right DX,X -module, we can apply Exer-
cise A.8.24(4) to get, since f is proper,

(10.3.5) D,Df⇤ CX ' f⇤(Db
•
X [2n]⌦f�1OY,Y

f�1DY,Y ) = f⇤ Db
•
X [2n]⌦OY,Y

DY,Y .

The integration of currents
R

f
induces then a DY,Y -linear morphism of complexes

(10.3.6)
Z

f

: D,Df⇤ CX �! Db
•
Y [2m]⌦OY,Y

DY,Y ' CY ,

where we recall that the differential on the complex Db
•
Y [2m] ⌦OY,Y

DY,Y uses the
universal connection r

Y + r

Y on DY,Y , and the isomorphism with CY is given by
(10.2.2). If we star from distributions, we have a morphism

(10.3.7)
Z

f

: D,Df⇤ DbX = D,Df⇤ CX [2(m� n)] �! CY [2(m� n)].

Exercise 10.3.8. Extend the result of Exercise A.8.20 to the case of right DX,X -modules
and show that the composed map

f⇤ CX �! H 0

D,Df⇤ CX �! CY

is the integration of currents of Definition 10.3.2.

Exercise 10.3.9. Let f : X ! Y be a holomorphic map and let Z ⇢ X be a closed
subset on which f is proper.

(1) Define the sub-DX,X -module CX,Z of CX consisting of currents supported on Z.
(2) Show that the integration of currents

R

f
induces a DY,Y -linear morphism of

complexes
Z

f

: D,Df! CX,Z �! Db
•
Y [2m]⌦OY,Y

DY,Y ' CY .
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10.3.b. Pushforward of a sesquilinear pairing. In order to define the pushfor-
ward of a sesquilinear pairing in the case of right D-modules, it will be convenient to
start from left DX -modules as in Exercise A.8.24, and use side changing at the source
to get the right definition.

Let M0left,M00left be left DX -modules, let M0right,M00right be the associated
DX -modules and let f : X ! Y be a holomorphic map which is proper when
restricted to Z := SuppM0

[ SuppM00. Let cleft : M0left
⌦C M00left

! DbX,Z be a
sesquilinear pairing and let cright the corresponding right sesquilinear pairing.

Our aim is to define, for every k 2 Z, a sesquilinear pairing:

(10.3.10) D,Df
k
!

cright : H k(Df!M
0right)⌦C H �k(Df!M00right) �! CY .

In order to integrate differential forms (and not poly-vector fields) we will use the
formula of Exercise A.8.24(1) for computing the direct image as a complex of right
DY -modules, namely,

Df!M
right

⇠
�! Rf

!

⌦
•
X(Mleft

⌦f�1OY
f�1DY )[n],

where the isomorphism is induced termwise by the morphism in Lemma A.5.8. More-
over, it will be convenient to compute the direct image Rf

!

by using flabby sheaves
more adapted to the computation than the Godement sheaves. According to Remark
10.2.4, it is enough to define the C1extension of D,Df

k
!

c, so we will use the formula

Rf
!

⌦
•
X(Mleft

⌦f�1OY
f�1DY )⌦OY

C1
Y

⇠
�! f

!

E •
X(Mleft

⌦f�1OY
f�1DY ),

obtained from the Dolbeault resolution ⌦k
X

⇠
�! (E (k,•), d00) and by taking the associ-

ated simple complex. Lastly, we identify each term of this complex with

(10.3.11) f
!

(E •
X ⌦OX

Mleft)⌦OY
DY

and, with this identification, the differential is given by the formula
⇥

(d⌦ IdMleft)⌦ Id
⇤

+
⇥

(Id⌦r)⌦ Id
⇤

+
⇥

(Id⌦ Id)⌦ f
!

f⇤
r

Y
⇤

,

where r

Y is the universal connection on DY .
The C1 extension of cleft is denoted by cleft1 , and it induces a morphism

cleft1 : (E k
X ⌦OX

M0left)⌦C1
X

(E `
X ⌦OX

M00left) �! Dbk+`
X,Z(10.3.12)

(⌘0k ⌦m0)⌦ ⌘00` ⌦m00
7�! ⌘0k ^ ⌘00`cleft(m0,m00),

and by applying f
!

,

f
!

cleft1 : f
!

(E k
X ⌦OX

M0left)⌦f!C1
X

f
!

(E `
X ⌦OX

M00left) �! f
!

Dbk+`
X,Z ,

so, by right DY,Y -linearity, a morphism

(D,Df!c
left

1 )right :
⇥

f
!

(E k
X ⌦OX

M0left)⌦OY
DY

⇤

⌦C1
Y

f
!

(E `
X ⌦OX

M00left)⌦OY
DY

�! f
!

(Dbk+`
X,Z)⌦OY,Y

DY,Y .

The compatibility of cleft with the connections on M0left,M00left implies that this mor-
phism is compatible with the differentials, so that, with respect to the identifications
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above and according to (10.3.5), we get a morphism of complexes of right DY,Y -
modules

D,Df!c
right

1 : (Df!M
0right

⌦OY
C1
Y )⌦C1

Y
(Df!M00right

⌦OY
C1
Y ) �! D,Df! CX,Z .

Composing with the integration of currents (see Exercise 10.3.9)
Z

f

: D,Df! CX,Z �! CY

we finally get a morphism of complexes of right DY,Y -modules (where CY is regarded
as a complex having a single term in degree zero) that we denote by the same symbol:

D,Df!c
right

1 : (Df!M
0right

⌦OY
C1
Y )⌦C1

Y
(Df!M00right

⌦OY
C1
Y ) �! CY .

By restricting to the holomorphic/anti-holomorphic part (and side changing from
right to left in the left case), we obtain the pushforward morphism

D,Df!c
right : Df!M

0right
⌦C Df!M00right

�! CY .

Forgetting now the “right” exponent on c, we denote by D,Df
•
!

c the induced morphism

(10.3.13) D,Df
k
!

c : H k
Df!M

0right
⌦C H �k

Df!M00right
�! CY .

Remark 10.3.14 (Making explicit the pairing D,Df
k
!

c). We assume that f is proper on
SuppM0 and SuppM00, so that we will consider the ordinary pushforward f⇤. Let U

be an open set in Y , and let

m0n+k
1 2 �(U, f⇤(E

n+k
X ⌦OX

M0left)), m00n�k
1 2 �(U, f⇤(E

n�k
X ⌦OX

M00left)).

Then
R

f
f⇤cleft1 (m0n+k

1 ,m00n�k
1 ) belongs to �(U,CY ). If the section m0n+k

1 ⌦ 1 of
f⇤(E

n+k
X ⌦OX

M0left)⌦DY (resp. m00n�k
1 ⌦ 1) is closed with respect to the differential

of the complex (10.3.11), then, denoting by [•] the cohomology class, we get

D,Df
k
⇤ c([m

0n+k
1 ⌦ 1], [m00n�k

1 ⌦ 1]) =

Z

f

f⇤c
left

1 (m0n+k
1 ,m00n�k

1 ) 2 �(U,CY ).

Remark 10.3.15 (Pushforward and adjunction). Let us denote by ck,`1 the sesquilinear
form (10.3.12). Due to the relation ⌘0k ^ ⌘00` = (�1)k`⌘00` ^ ⌘0k, we have

(c⇤1)`,k(⌘00` ⌦m00, ⌘0k ⌦m0) = ⌘00` ^ ⌘0kc⇤(m00,m0)

= (�1)k,`ck,`1 (⌘0k ⌦m0, ⌘00` ⌦m00)

= (�1)k,`(ck,`1 )⇤(⌘00` ⌦m00, ⌘0k ⌦m0).

It follows that the behaviour with respect to adjunction of (D,Df
n�k
!

cleft)right (defined
in a way similar to the previous formulas) is given by the relation

(D,Df
n+k
!

cleft)right⇤ = (�1)n+k(D,Df
n�k
!

cleft⇤)right.

Since we have
D,Df

k
!

cright = (D,Df
n+k
!

cleft)right,
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the behaviour with respect to adjunction is given by the formula

(10.3.15 ⇤) D,Df
k
!

(c⇤) = (�1)k(D,Df
�k
!

c)⇤.

10.3.c. Pushforward of D-triples

Remark 10.3.16 (Rule of signs for the pushforward). Before defining the proper pushfor-
ward of an object of D-Triples(X)

coh

, we will modify the definition of the pushforward
D,Df

k
⇤ c of the sesquilinear pairing in order to eliminate various signs. For every k, we

set (recall that "(k) = (�1)k(k�1)/2):

(10.3.16 ⇤) Tf
k
⇤ c := "(n�m+ k) · D,Df

k
⇤ ,

so that, since "(n�m� k) = (�1)k"(n�m+ k), (10.3.15 ⇤) becomes

(10.3.16 ⇤⇤) Tf
k
!

(c⇤) = (Tf
�k
!

c)⇤.

(The choice of "(n � m + k) instead of "(k) will be justified by the side-changing
formula.)

Definition 10.3.17 (Proper pushforward). Let T be an object of D-Triples(X)
coh

sup-
ported on Z and let f : X ! X 0 be a holomorphic map which is proper on Z. Then
Tf

k
⇤ T is the object

(H k
Df⇤M

0,H �k
Df⇤M

00, Tf
k
⇤ c)

of D-Triples(X 0)
coh

. The total pushforward is the graded object
L

k Tf
k
⇤ T, with Tf

k
⇤ T

in degree k.

Example 10.3.18 (Kashiwara’s equivalence in D-Triples). Assume that ◆ : X ,! Y

is a closed immersion and let M = M0,M00 be right DX -modules. We then have
D◆⇤M = H 0

D◆⇤M = ◆⇤(M ⌦DX
DX!Y ). Let 1 denote the canonical section of

DX!Y = OX ⌦◆�1OY
◆�1DY . It is a generator of DX!Y as a right ◆�1DY -module.

Any sesquilinear pairing cY : H 0

D◆⇤M
0
⌦ H 0

D◆⇤M00
! CY takes values in CY,X

and is determined by its restriction cY |X to ◆⇤(M
0
⌦ 1) ⌦ ◆⇤(M00

⌦ 1). Hence it
takes the form D,D◆

0

⇤cX . For local sections m0,m00 of M0,M00, the current of degree 0

D,D◆
0

⇤cX(m0
⌦ 1,m00

⌦ 1) is the pushforward by ◆ of the current c(m0,m00). Together
with the rule of signs (10.3.16 ⇤), we conclude that

T◆
0

⇤ : D-Triples(X)
coh

7�! D-TriplesX(Y )
coh

is an equivalence of categories, compatible with adjunction.

Remark 10.3.19 (Pushforward of a (�1)w-Hermitian pair). The behaviour of a pre-
polarized triple of weight w by pushforward is determined by the behaviour of the
associated (�1)w-Hermitian pair (see Lemma 10.2.13).

If (M, c) is a (�1)w-Hermitian pair, then the pushforward (Df
•
⇤M, Tf

•
⇤c) graded

(�1)w-Hermitian pair.
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Remark 10.3.20 (The Lefschetz morphism). In the previous setting, let ⌘ be a closed
(1, 1)-form on X which is real, i.e., such that ⌘ = ⌘. This condition is satisfied if the
cohomology class of ⌘ is equal to c

1

(L ) for some line bundle L on X. The corre-
sponding Lefschetz morphism L⌘ : Df⇤M ! Df⇤M[2] with M = M0,M00 (see Definition
A.8.16 and Remark A.8.18) satisfies then

D,Df
k+2

⇤ c(L⌘m
0,m00) = D,Df

k
⇤ c(m

0,L⌘m00),

if m0 (resp. m00) is a local section of Df
k
⇤M

0 (resp. of Df
�k�2

⇤ M00), that is, because of
"(n�m+ k + 2) = �"(n�m+ k),

(10.3.20 ⇤) Tf
k+2

⇤ c(L⌘m
0,m00) = �Tf

k
⇤ c(m

0,L⌘m00).

We can thus define a Lefschetz morphism by anti-symmetrization

L⌘ = (L0
⌘,L

00
⌘) : Tf

k
⇤ T �! Tf

k+2

⇤ T,(10.3.20 ⇤⇤)
(

L0
⌘ := L⌘ on H k

Df⇤M
0,

L00
⌘ := �L⌘ on H �k�2

Df⇤M
00.

It is functorial with respect to T and satisfies L⇤
⌘ = �L⌘.

Let (M, c) be a (�1)w-Hermitian pair (corresponding to a pre-polarized triple of
weight w). Then (10.3.20 ⇤) implies that, for k > 0, the sesquilinear pairing

(Tf⇤c)
(�k) = Tf

�k
⇤ c(•,Lk

⌘•) : Tf
�k
⇤ M⌦ Tf

�k
⇤ M �! CY

is (�1)w+k-Hermitian.

10.3.d. Pushforward of left D-triples. In a way analogous to (10.3.10), we first
define a sesquilinear pairing

(10.3.21) D,Df
n�m+k
!

cleft : H n�m+k(Df!M
0left)⌦C H n�m�k(Df!M00left) �! DbY .

According to Exercise A.8.24(1), we have

(Df!M
left)right

⇠
�! Rf

!

⌦
•
X(Mleft

⌦f�1OY
f�1DY )[m]

By using (10.3.12) we obtain a morphism of complexes of right DY,Y -modules

(D,Df!c
left

1 )right : ((Df!M
0left)right ⌦OY

C1
Y )⌦C1

Y
((Df!M00left)right ⌦OY

C1
Y )

�! D,Df! CX,Z [2(m� n)]

and by composing with the integration of currents, we finally get a morphism of
complexes of right DY,Y -modules

(D,Df!c
left

1 )right : ((Df!M
0left)right ⌦OY

C1
Y )⌦C1

Y
((Df!M00left)right ⌦OY

C1
Y )

�! CY [2(m� n)],

which restrict to the pushforward morphism, after going from right to left in the
target Y :

D,Df!c
left : Df!M

0left
⌦C Df!M00left

�! DbY [2(m� n)].
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At the cohomology level, and omitting the “left” exponent on c, we denote by D,Df
•
!

c
the induced morphism

(10.3.22) D,Df
n�m+k
!

c : H n�m+k
Df!M

0left
⌦C H n�m�k

Df!M00left
�! DbY .

Remark 10.3.23 (Pushforward and side-changing). With respect to the side-changing
functor of Remark 10.2.5, the right pairing (10.3.13) is obtained by side changing
from (10.3.22), if cright is obtained by side-changing from cleft. This follows from the
definition of both sesquilinear pairings, since both are defined from (D,Df!cleft1 )right,
namely, (10.3.13) by applying the side-changing at the source, and (10.3.22) at the
target. In other words, for c = cleft,

(D,Df
n�m+k
!

c)right = D,Df
k
!

(cright).

If we define Tf
k
⇤ c in the left case by

(10.3.23 ⇤) Tf
k
⇤ c := "(k) · D,Df

k
⇤ ,

the side-changing formula become

(10.3.23 ⇤⇤) (Tf
n�m+k
!

c)right = Tf
k
!

(cright).

Remark 10.3.24 (Pushforward and adjunction). As in Remark 10.3.15, we use that

D,Df
n�m+k
!

cleft =
⇥

(D,Df
n+k
!

cleft)right
⇤

left

,

to obtain

(10.3.24 ⇤) D,Df
n�m+k
!

(c⇤) = (�1)n�m+k(D,Df
n�m�k
!

c)⇤.

Now (10.3.24 ⇤) becomes

(10.3.25) Tf
n�m+k
!

(c⇤) = (�1)n�m(Tf
n�m�k
!

c)⇤.

Then, if c is (�1)w-Hermitian, then Tf
•
⇤c is graded (�1)w+n�m-Hermitian. As a conse-

quence, the pushforward of a (�1)w-Hermitian pair (left case) is a graded (�1)w+n�m-
Hermitian pair.

The definition of the pushforward of a D-triple in the left case is similar to Defini-
tion 10.3.17. The only difference is the grading, which is shifted by n�m. We thus
set

Tf
n�m+k
⇤ Tleft = (H n�m+k

Df⇤M
0,H n�m�k

Df⇤M
00, Tf

n�m+k
⇤ c).

The total pushforward is the graded object Tf
n�m+

•
⇤ T =

L

k Tf
n�m+k
⇤ T, with

Tf
n�m+k
⇤ T in degree k.
Similarly, the pushforward of a left (�1)w-Hermitian pair (M, c) is the graded pair

(Tf
n�m+

•
⇤ M, Tf

n�m+

•
⇤ c), which is a graded (�1)w+n�m-Hermitian pair.

Lastly, for k > 0, the Lefschetz morphism L⌘ induces a sesquilinear pairing

(Tf⇤c)
(n�m�k) = Tf

n�m�k
⇤ c(•,Lk

⌘•) : Tf
n�m�k
⇤ M⌦ Tf

n�m�k
⇤ M �! DbY

which is (�1)w+n�m+k-Hermitian.
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Example 10.3.26 (Kashiwara’s equivalence in D-Triplesleft). In the setting of Example
10.3.18, we obtain that

T◆
n�m
⇤ : D-Triples(X)left

coh

7�! D-TriplesX(Y )left
coh

is an equivalence of categories.

10.4. Specialization in D-Triples

10.4.a. Specialization of a sesquilinear pairing. Let g : X ! C be a holomor-
phic function on X and let M0,M00 be DX -modules which are specializable along
g = 0. Assume that c is a sesquilinear pairing between M0 and M00 with values in CX

(right case) or DbX (left case). We wish to define sesquilinear pairings between the
DX -modules  g,�M

0 and  g,�M
0 with values in CX or DbX . We start with the case

where g is the projection X = X
0

⇥C ! C and M0,M00 are specializable DX -modules
along X

0

equipped with a sesquilinear pairing. We will denote by t the coordinate
on C. In order to define a sesquilinear pairing on nearby cycles, we will use a Mellin
transform device by considering the residue of c(m0,m00)|t|2s at various values of s. It
is important to notice that, while we need to restrict the category of coherent DX -
modules in order to define nearby and vanishing cycles (i.e., to consider R-specializable
coherent DX -modules only), the specialization of a sesquilinear pairing between them
does not need any new restriction: any sesquilinear pairing between such DX -modules
can be specialized.

We assume that M0,M00 are right DX -modules which are R-specializable along X
0

.
Let c : M0

⌦C M00
! CX be a sesquilinear pairing. Fix xo 2 X

0

. For local sections
m0,m00 of M0,M00 defined in some neighbourhood of xo in X, the current of degree 0

c(m0,m00) has some finite order p on some neighbourhood nbX(xo). For 2Re s > p,
the function t 7! |t|2s is Cp, so for every such s, c(m0,m00)|t|2s is a section of CX

on nbX(xo). Moreover, for any test function ⌘ with compact support in nbX(xo),
the function s 7!

⌦

c(m0,m00)|t|2s, ⌘
↵

:=
⌦

c(m0,m00), |t|2s⌘
↵

is holomorphic on the half-
plane {2Re s > p}. We say that c(m0,m00)|t|2s depends holomorphically on s on
nbX(xo)⇥ {2Re s > p}.

Let �(t) be a real C1 function with compact support, which is ⌘ 1 near t = 0.
In the following, we will consider test functions ⌘o · �(t), where ⌘o is a test function
on a neighbourhood nbX0(xo) of xo in X

0

.

Proposition 10.4.1. Let M0,M00, c be as above. Then, for every xo 2 X
0

, there exists
an integer L > 0 and a finite set of real numbers � satisfying  t,exp(2⇡i �)M

0
xo

6= 0

and  t,exp(2⇡i �)M
00
xo

6= 0, such that, for every element m0 of M0
xo

and m00 of M00
xo

, the
correspondence

(10.4.1 ⇤) ⌘o 7�!

Y

�

�(s� �)�L
·

⌦

c(m0,m00)|t|2s, ⌘o · �(t)
↵
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defines, for every s 2 C, a section of CX0
on nbX0

(xo) which is holomorphic with
respect to s 2 C.

The proposition asserts that the current of degree 0

⌘o 7�!

⌦

c(m0,m00)|t|2s, ⌘o · �(t)
↵

extends as a current of degree 0 on nbX0
(xo) depending meromorphically on s, with

poles at s = �k + � (k 2 N) at most, and with a bounded order. We note that
changing the function � will modify the previous meromorphic current of degree 0 by
a holomorphic one, as |t|2s is C1 for every s away from t = 0. The proposition is a
consequence of the following more precise lemma.

Lemma 10.4.2. Let xo 2 X
0

and let ↵0,↵00
2 R. There exist L > 0 and a finite set of

real numbers � satisfying

(10.4.2 ⇤)  t,exp(2⇡i �)M
0
xo
, t,exp(2⇡i �)M

00
xo

6= 0, and � 6 min(↵0,↵00),

such that, for any sections m0
2 V↵0M0

xo
and m00

2 V↵00M00
xo

, the correspondence

(10.4.2 ⇤⇤) ⌘o 7�!

Y

�

�(s� �)�L
·

⌦

c(m0,m00)|t|2s, ⌘o · �(t)
↵

defines, for every s 2 C, a section of CX0 on nbX0(xo) which is holomorphic with
respect to s 2 C.

Proof. Let bm0(S) =
Q

�2R(m0
)

(S��)⌫(�) be the Bernstein polynomial of m0 (see Def-
inition 7.3.10), with ⌫(�) bounded by the nilpotency index L of E��z. It is enough to
prove that the product

Q

�2R(m0
)

�(s� �)�⌫(�) of � factors can be used in (10.4.2 ⇤⇤)
(recall that the � function has no zeros and has simple poles at the non-positive
integers, and no other poles). Indeed, arguing similarly for m00 and using that the set
of roots R(m00) of bm00(S) is real, one obtains that the product of � factors indexed by
R(m0)\R(m00) can also be used in (10.4.2 ⇤⇤). It is then easy to check that Conditions
(10.4.2 ⇤) on � are satisfied by any � 2 R(m0) \R(m00).

We note first that, for every germ Q 2 V
0

DX,xo
and any test function ⌘ on nbX(xo),

the function Q · (|t|2s⌘) is Cp with compact support if 2Re s > p. Applying this to
the Bernstein operator Q = bm0(E)� P for m0 (see Definition 7.3.10), one gets

(10.4.3)

0 =
⌦

c(m0,m00) · [bm0(E)� P ], |t|2s⌘
↵

=
⌦

c(m0,m00), [bm0(E)� P ] · (|t|2s⌘)
↵

= bm0(s)
⌦

c(m0,m00), |t|2s⌘
↵

+
⌦

c(m0,m00), |t|2st⌘
1

↵

for some ⌘
1

, which is a polynomial in s with coefficients being C1 with compact
support contained in that of ⌘. As |t|2st is Cp for 2Re s + 1 > p, we can argue by
induction to show that, for every ⌘ and k 2 N,

(10.4.4) s 7�! bm0(s+ k � 1) · · · bm0(s)
⌦

c(m0,m00)|t|2s, ⌘
↵
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extends as a holomorphic function on {s | 2Re s > p� k}, and thus, letting k ! 1,

s 7�!
Y

�

�(s� �)�⌫(�)
·

⌦

c(m0,m00)|t|2s, ⌘
↵

extends as an entire function. We apply this result to ⌘ = ⌘o · �(t) to get the
lemma.

Remark 10.4.5. The previous proof also applies if we only assume that c is DX,X -linear
away from {t = 0}. Indeed, this implies that c(m0,m00) · [bm0(E) � P ] is supported
on {t = 0}, and (10.4.3) only holds for Re s big enough, maybe � p. Then, (10.4.4)
coincides with a holomorphic current of degree 0 defined on {s | 2Re s > p � k}

only for Re s � 0. But, by uniqueness of analytic extension, it coincides with it on
Re s > p.

A current of degree 0 on X
0

which is holomorphic with respect to s can be restricted
as a current of degree 0 by setting s = ↵. By a similar argument, the polar coefficients
at s = ↵ of the meromorphic current of degree 0

⌦

c(m0,m00)|t|2s, •
· �(t)

↵

exist as
currents of degree 0 on nbX0(xo).

Lemma 10.4.6. Let [m0] be a germ of section of  t,exp(2⇡i↵)M
0 near xo and [m00] a

germ of section of  t,exp(2⇡i↵)M
00 near xo. Then the polar coefficients of the current

of degree 0
⌦

c(m0,m00)|t|2s, •
· �(t)

↵

at s = ↵ do neither depend on the choice of the
local liftings m0,m00 of [m0], [m00] nor on the choice of �, and take value in CX0 .

Proof. Indeed, any other local lifting of m0 can be written as m0+µ0, where µ0 is a germ
of section of V<↵M

0. By the previous lemma,
⌦

c(µ0,m00)|t|2s, •
· �(t)

↵

is holomorphic
at s = ↵. We note also that a different choice of the function � does not modify the
polar coefficients.

According to the lemma, for ↵ 2 [�1, 0), we get a well-defined sesquilinear pairing

grV↵M
0
⌦C grV↵M

00 grV↵ (c)
������! CX0

([m0], [m00]) 7�!
i

2⇡
Ress=↵

⌦

c(m0,m00), •
· |t|2s�(t)

↵

,

(10.4.7)

where m0,m00 are local liftings of [m0], [m00]. The nilpotent operator N := 2⇡i(E� ↵)

is skew-adjoint with respect to this pairing, in the sense that

(10.4.8) grV↵ (c)(N[m0], [m00]) = �grV↵ (c)([m
0],N[m00]).

This is a consequence of the following properties:
• ↵ is real,
• t@t|t|

2s = t@t|t|
2s,

• t@t�(t) and t@t�(t) are zero in a neighbourhood of t = 0.
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Exercise 10.4.9 (see Remark 7.4.12). Show that grV↵ (c) induces pairings (` 2 Z):

grM` grV↵ (c) := grM` grV↵M
0
⌦C grM�`gr

V
↵M

00
�! CX0

and, for ` > 0,
P`gr

V
↵ (c) := P`gr

V
↵M

0
⌦C P`grV↵M

00
�! CX0

by composing with N` on the M00 side.

Exercise 10.4.10 (Adjunction and nearby cycles). Show that

grV↵ (c
⇤) = �(grV↵ c)

⇤.

[Hint : use that ↵ and � are real.]

Exercise 10.4.11. Show that, if M0 or M00 is supported on X
0

, the right-hand side of
(10.4.2 ⇤⇤) is always zero, and the residue formula (10.4.7) returns the value zero for
every ↵ 2 R.

Example 10.4.12 (The smooth case). We set M = M0 or M00. Assume that M0,M00 are
OX -locally free of finite rank, and let c : M0

⌦CM00
! CX be a sequilinear pairing. Let

m0,m00 be horizontal local sections of M0,M00 (i.e., local sections annihilated by @xi
).

Then the current c(m0,m00) satisfies c(m0,m00)@xi = c(m0,m00)@xi = 0 for every i,
hence is a locally constant function by the Poincaré lemma for distributions. Since
M = !X ⌦CMr, we conclude that c takes values in the sheaf of C1 forms of maximal
degree. For local sections !0

⌦ µ0 and !00
⌦ µ00, we thus have c(!0

⌦ µ0,!00
⌦ µ00) =

cr(µ0, µ00) · !0
^ !00, where cr : M0r

⌦M00r
! C is the induced sesquilinear pairing

on the underlying local systems.
Assume that X = H ⇥ �t. Then M = V�1

M, grV↵M = 0 for ↵ 62 �N⇤, and
grV�1

M = M/tM. For local sections as above, set !0 = !0
o ^ dt and !00 = !00

o ^ dt.
Then from Exercise 5.4.7 we obtain, by choosing �(t) = µ(|t|2),

grV�1

c(!0
o ⌦ µ0,!00

o ⌦ µ00) = (�1)n�1cr(µ0, µ00)|H · !0
o ^ !

00
o ,

since
i

2⇡
Ress=�1

⌦

c(!0
o ^ dt⌦ µ0,!00

o ^ dt⌦ µ00)|t|2s, ⌘o · �(t)
↵

=
i

2⇡
Ress=�1

cr(µ0, µ00)|H

Z

|t|2s⌘o�(t)!
0
o ^ dt ^ !00

o ^ dt

= (�1)n�1cr(µ0, µ00)|H

Z

⌘o !
0
o ^ !

00
o .

We now take up the setting of Exercise 7.3.31(4), namely we consider the local
embedding ◆ : X = H ⇥ �t ⇥ {0} ,! X

1

= H ⇥ �t ⇥ �x. Let M0,M00 be coherent
DX -modules which are R-specializable along H and let c : M0

⌦ M00
! CX be a

sesquilinear pairing between them. We deduce a sesquilinear pairing D,D◆
0

⇤c between
D◆

0

⇤M
0 and D◆

0

⇤M
00. Let us denote by ◆o : H ⇥ {0} ,! X the inclusion. We consider

the V -filtrations along (t) in X and X
1

.
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Lemma 10.4.13 (Independence of the embedding). With these assumptions, we have
for all ↵ 2 [�1, 0),

grV↵ (D,D◆
0

⇤c) = D,D◆
0

o⇤gr
V
↵ (c) and grV↵ (T◆

0

⇤c) = T◆
0

o⇤gr
V
↵ (c).

Proof. The second equality follows from the first one, since the codimension of H

in X and H ⇥ �x in X
1

is the same. Recall that if ⌘ is any test function on X
1

and m0,m00 are local sections of M0,M00, so that m0
⌦ 1,m00

⌦ 1 are local sections of
◆⇤M

0[@x], ◆⇤M
00[@x], then

hD,D◆
0

⇤c(m
0
⌦ 1,m00

⌦ 1), ⌘i := hc(m0,m00), ⌘|Xi.

For m0,m00 in V↵M
0, V↵M

00, ⌘ a test function on H ⇥�x and �(t) as above, we thus
have (arguing for Re s � 0 first and then using analytic continuation)

hgrV↵ (D,D◆
0

⇤c)([m
0
⌦ 1], [m00

⌦ 1]), ⌘i =
i

2⇡
Ress=↵hD,D◆

0

⇤c(m
0
⌦ 1,m00

⌦ 1)|t|2s, ⌘�(t)i

=
i

2⇡
Ress=↵hc(m

0,m00)|t|2s, ⌘|H�(t)i

= hgrV↵ c(m
0,m00), ⌘|Xi.

Exercise 10.4.14 (Non-characteristic restriction of a sesquilinear pairing)
Assume that X = H ⇥ �t and let M0,M00 be coherent DX -modules such that

the hypersurface H = {t = 0} is non-characteristic for them (see Section 7.5). Let
c : M0

⌦C M00
! CX be a sesquilinear pairing. Then grV�1

c, as defined by (10.4.7), is
a sesquilinear pairing between  t,1M

0 = M0/tM0 and  t,1M
00 = M0/tM00. We denote

it by D◆
⇤
Hc.

Check that D◆
⇤
Hc only depends on the embedding H ,! X and not on the product

decomposition X ' H ⇥ �t. Conclude that it is a well-defined sesquilinear pairing
D◆

⇤
Hc : D◆

⇤
HM0

⌦C D◆⇤HM00
! CH .

Proposition 10.4.15 (Uniqueness along a non-characteristic divisor)
Let M0,M00 be coherent DX-modules and let H be an hypersurface which is non-

characteristic for them. If two sesquilinear pairings c
1

, c
2

: M0
⌦C M00

! CX coincide
when restricted to the open set X rH, then they coincide.

Proof. The question is local, so we can assume that X = H⇥�t and we can shrink �t

if needed. Set c = c
1

� c
2

and let m0,m00 be local sections of M0,M00 defined on some
neighbourhood nb(xo) = nbH ⇥ �t of xo 2 H ⇥ {0}. Let ⌘ 2 C1

c

(nb(xo)), and
let p be the order of c(m0,m00) on the compact set Supp ⌘. We aim at proving that
hc(m0,m00), ⌘i = 0.

We consider the current on �t defined by

� 7�! c(m0,m00)⌘(�) := hc(m0,m00),� · ⌘i for � 2 C1
c (�t).

It is enough to prove that c(m0,m00)⌘ = 0 (by choosing � ⌘ 1 on the projection to �t

of Supp ⌘). This current has order 6 p and is supported at the origin, hence can be
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written in a unique way, by using the Dirac current �
0

at the origin, as

c(m0,m00)⌘ =
X

06a+b6p

ca,b(⌘)�0@
a
t @

b
t , ca,b(⌘) 2 C.

We will prove that all the coefficients ca,b(⌘) vanish. This is obvious if ⌘ = tqtr⌘q,r
with q + r > p and if ⌘q,r is C1, so that we can reduce to the case where ⌘ does not
depend on t, t.

We claim that there exists N large enough such that m0 satisfies an equation of
the form

m0
· b(t@t) := m0

·

N
Y

k=1

(t@t + k) = m0
· tp+1

X

j

Pj(t, x, @x)(t@t)
j ,

where x are local coordinates on H. Indeed, H is also non-characteristic for the
coherent sub-module m0

· DX , and the filtration m0
· VkDX is comparable with the

V -filtration V•(m
0
·DX), so there exists N such that V�N�1

(m0
·DX) ⇢ m0

·V�(p+1)

DX .
Since m0@Nt 2 (m0

·DX) = V�1

(m0
·DX), we have m0@Nt tN 2 V�N�1

(m0
·DX), hence

the assertion.
We thus have c(m0,m00)⌘ · b(t@t) = 0. Since �

0

@at @
b
t
· (t@t + k) = (a+ k)�

0

@at @
b
t
, we

conclude that for every a, b, ca,b(⌘) ·
QN

k=1

(a+ k) = 0, so ca,b(⌘) = 0.

We also have an analogue of Corollary 7.7.13 for sesquilinear pairings.

Proposition 10.4.16. Let M0,M00 be two holonomic DX-modules which are S-decompo-
sable and let (Zi)i2I be the family of their strict components. Then any sesquilinear
pairing c : M0

Zi
⌦C M00

Zj
! CX vanishes identically if Zi 6= Zj.

We will first prove a similar result related to the S-decomposition along a function.

Lemma 10.4.17. Let g : X ! C be a holomorphic function and let M0,M00 be two
coherent DX-modules which are R-specializable along (g). Assume that one of them,
say M0, is a minimal extension along (g), and the other one, say M00, is supported on
g�1(0). Then any sesquilinear pairing c : M0

⌦M00
! CX vanishes indentically.

Proof. By Kashiwara’s equivalence 10.3.18, we can assume that g is the projection
X

0

⇥C ! C, and we choose a coordinate t on C. We work locally near xo 2 X
0

. Con-
sider c as a morphism M0

! HomDX
(M00,CX). Fix local DX -generators m00

1

, . . . ,m00
`

of M00
xo

. By Kashiwara’s equivalence 7.6.1, there exists q > 0 such that m00
kt

q = 0 for
all k = 1, . . . , `. Let m0

2 M0
xo

and let p be the maximum of the orders of c(m0)(m00
k)

on some neighbourhood of xo. As tp+1+q/t
q is Cp, we have, for every k = 1, . . . , `,

c(m0)(m00
k)t

p+1+q = c(m0)(m00
k)t

q
·

tp+1+q

t
q = c(m0)(m00

kt
q) ·

tp+1+q

t
q = 0,

hence c(m0)tp+1+q
⌘ 0. Applying this to generators of M0

xo
shows that all local

sections of c(M0
xo
) are killed by some power of t.
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As M0 is a minimal extension along (t), we know from Proposition 7.7.2(2) that
V<0

M0
xo

generates M0
xo

over DX . It is therefore enough to show that c(V<0

M0
xo
) = 0.

On the one hand, we have c(V↵M
0
xo
) = 0 for ↵ ⌧ 0: indeed, t : c(V↵M

0
xo
) !

c(V↵�1

M0
xo
) is an isomorphism for ↵ < 0, hence acts injectively on c(V↵M

0
xo
), therefore

the conclusion follows, as t is also nilpotent by the argument above.
Let now ↵ < 0 be such that c(V<↵M

0
xo
) = 0, and let m0 be a section of V↵M

0
xo

;
there exists ⌫↵ > 0 such that, setting b(s) = (t@t � ↵)⌫↵ , we have m0b(s) 2 V<↵M

0
xo

,
hence c(m0)b(t@t) = 0; on the other hand, we have seen that there exists N such that
c(m0)tN = 0, hence, putting B(s) =

QN�1

`=0

(s � `), it also satisfies c(m0)B(t@t) = 0;
notice now that b(s) and B(s) have no common root, so c(m0) = 0.

Proof of Proposition 10.4.16. The assertion is local on X, so we fix xo 2 X and we
work with germs at xo. Assume for example that Zi is not contained in Zj and
consider a germ g of analytic function, such that g ⌘ 0 on Zj and g 6⌘ 0 on Zi. Then
we can apply Lemma 10.4.17 to M0

Zi
and M00

Zj
.

Definition 10.4.18 (Sesquilinear pairing on nearby cycles). Let g : X ! C be a holo-
morphic function. Assume that M0,M00 are R-specializable along (g). For a sesquilin-
ear pairing c : M0

⌦ M00
! CX and for every � 2 S1 and ↵ 2 [�1, 0) such that

� = exp(2⇡i↵), we define (note that T◆
0

g⇤c = "(�1)D,D◆
0

g⇤c = �D,D◆
0

g⇤c)

(10.4.18 ⇤)  g,�c := (�1)n�1grV↵ (T◆
0

g⇤c) :  g,�M
0
⌦  g,�M00

! CX .

Remark 10.4.19 (The basic example). The sign (�1)n�1 is justified by the calcu-
lation in Example 10.4.12. Namely, if X = X

0

⇥ C, and if M0 = M00 = !X ,
with cn being the natural pairing 10.2.14(2) in dimension n, then grV�1

!X ' !X0

and (�1)n�1grV�1

cn = cn�1

. Setting now g = t and denoting by ◆ : X
0

,! X the
inclusion, we have grV�1

(T◆
0

g⇤cn) = T◆
0

⇤gr
V
�1

cn, according to Lemma 10.4.13, so with
our definition,  g,1cn = T◆

0

⇤cn�1

.

Remark 10.4.20 (Properties of  g,�c). The following properties are obviously obtained
from similar properties for grV↵ T◆

0

⇤c.
(1)  g,�c(Nm0,m00) = � g,�c(m0,Nm00) (m0

2  g,�M
0
xo

, m00
2  g,�M

00
xo

).
(2) We have induced pairings grM`  g,�c : grM`  g,�M

0
⌦ grM�` g,�M00

! CX and, for
every ` > 0, P` g,�c : P` g,�M

0
⌦ P` g,�M00

! CX is induced by grM`  g,�c(•,N`•).
(3)  g,�(c⇤) = �( g,�c)⇤.

Remark 10.4.21 (Sesquilinear pairing on vanishing cycles). It is possible to give the
definition of a sesquilinear pairing �t,1c : �t,1M

0
⌦ �t,1M00

! CX for every M0,M00

which are coherent and R-specializable along t = 0. However, such a general definition
is not needed for our further purpose, since we will mainly have to work with S-decom-
posable DX -modules. We now focus on this case.

Assume first that M = M0,M00 is a minimal extension along X
0

(see 7.7.3). Then
�t,1M = Im[N :  t,1M !  t,1M]. Then, for [µ0] 2 �t,1M

0 and [µ00] 2 �t,1M
00, and
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[µ0] = N[m0], [µ00] = N[m00], we set

�t,1c([µ
0], [µ00]) :=  t,1c([m

0],N[m00]) =  t,1c(N[m0], [m00]),

where the latter equality is due to 10.4.20(1), as well as the well-definedness, since
 t,1c([m0],N[m00]) = 0 for [m0] 2 KerN. Then all properties of Remark 10.4.20 also
holds for �t,1c instead of  t,�c.

Assume now that M0,M00 are S-decomposable. Then c only pairs components with
the same pure support (see Proposition 10.4.16). If the pure support is not contained
in X

0

, we apply the previous construction. If the pure support is contained in X
0

,
then �t,1M = M for M = M0,M00. Then we obviously set �t,1c := c.

10.4.b. Specialization of objects of D-Triples(X). We say that an object T =

(M0,M00, c) of D-Triples(X) is R-specializable along (g) if M0,M00 are so. We then
define, for � 2 S1,

(10.4.22)  g,�T := ( g,�M
0, g,�M

00, g,�c).

Then  g,� is a functor from the full subcategory of R-specializable objects of
D-Triples(X) to the category of objects supported on g�1(0).

Example 10.4.23. In the setting of Remark 10.4.19, and using Definition 10.2.14(2) for
T!X , we thus have  t,�(T!X) = T◆

0

⇤(T!X0), if ◆ : X
0

⇥ {0} ,! X = X
0

⇥ C denotes
the inclusion.

Remark 10.4.24 (Rule of signs for the nilpotent endomorphism)
We did not define the nilpotent operator on  g,�T since we wish to emphasize the

rule of signs in its definition. This rule is motivated by two properties we want to
realize.

• As for the Lefschetz operator LL (2.3.10), we wish that the nilpotent comes from
geometry, i.e., is defined from the monodromy. Definition 7.4.11 is the “raison d’être”
of the definition of N as 2⇡i(E� ↵).

• Let N = (N0,N00) be the nilpotent operator to be defined on  g,�T. Due to the
skew-adjointness of N with respect to  g,�c, we need to anti-symmetrize the action
of N on  g,�M

0 and  g,�M
00. We are thus led to define the nilpotent operator N on

 g,�T as

(10.4.24 ⇤) N := (N0,N00), N0 = �N on  g,�M
0, N00 = N on  g,�M

00.

With this definition, N is indeed a morphism  g,�T !  g,�T.

Remark 10.4.25 (The graded Lefschetz object attached to ( g,�T,N))
The monodromy filtration of N exists in the abelian category D-Triples(X), and

we have, according to Remark 10.4.20(2),

grM`  g,�T = (grM`  g,�M
0, grM�` g,�M

00, grM`  g,�c),

P` g,�T = (P` g,�M
0,P` g,�M

00,P` g,�c) (` > 0).
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Remark 10.4.26 (Specialization of a pre-polarization of weight w)
Let Q = ((�1)wQ,Q) : T ! T⇤ be a pre-polarization of weight w of T. Then

((�1)w�1 g,�Q, g,�Q) is a pre-polarization of weight w � 1 of  g,�T.

Remark 10.4.27 (Specialization of a (�1)w-Hermitian pair). Let (M, c) be a (�1)w-
Hermitian pair. Assume that M is R-specializable along (g). Then ( g,�M, g,�c) is
a (�1)w�1-Hermitian pair and N is skew-adjoint with respect to  g,�c and, for ` > 0,
(P` g,�M,P` g,�c) is a (�1)w�1+`-Hermitian pair.

Example 10.4.28. Let us take up Example 10.2.14(2) with X = �t, the (�1)-Hermitian
pair (!X , c). With respect to the coordinate t, we have grV�1

!X = C and, for m0 =

a0dt, m00 = a00dt with a0, a00 2 C (so that [m0] = a0, [m00] = a00 in grV�1

!X),

grV�1

c([m0], [m00]) := a0a00
i

2⇡
Ress=�1

Z

|t|2s�(t) dt ^ dt = a0a00.

Definition 10.4.29 (Middle extension quiver of a R-specializable D-triple)
Assume that T is R-specializable along (g).

(1) We say that it is a minimal extension along (g) if M0,M00 are so (see 7.7.3).
(2) If T is a minimal extension along (g), we define

�g,1T := (�g,1M
0,�g,1M

00,�g,1c)

�g,1M
0 := ImN0,with

�g,1M
00 := CoimN00 := M00/KerN00,

�g,1c :=  g,1c| ImN

0⌦CoimN

00 .

In other words, �g,1T = ImN in the category D-Triples(X).

Let us make this definition more explicit. Since  g,1c(N0m0,m00) =  g,1c(m0,N00m00),
we have  g,1c(N0m0,m00) = 0 for m00

2 KerN00, and �g,1c is well-defined.
We define the middle extension diagram when T is a minimal extension along (g):

(10.4.29 ⇤)  g,1T

can
**

�g,1T,

var

jj

where the epimorphism can :  g,1T ! �g,1T is given by

can0 = N0 : M0
�! ImN0, can00 = N00 : M00/KerN00 ,�! M00,

and the monomorphism var : �g,1T !  g,1T is given by

var0 = incl. : ImN0 ,�! M0, var00 = proj. : M00
�! M00/KerN00.

Remark 10.4.30 (Middle extension quiver of a R-specializable (�1)w-Hermitian pair)
Let (M, c) be a (�1)w-Hermitian pair which is R-specializable along (g) and such

that M is a minimal extension along (g). We thus have

�g,1M = Im[N :  g,1M �!  g,1M].
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For local sections m0,m00 of M, we set

�g,1c(Nm
0,Nm00) :=  g,1c(m

0,Nm00).

Then �g,1c is (�1)w�1-Hermitian.

Definition 10.4.31 (S-decomposable D-triples). We say that a coherent D-triple T

is S-decomposable if its components M0,M00 are so. It then has a decomposition
T =

L

i TZi
with TZi

having pure support the irreducible closed analytic subset
Zi ⇢ X (see Proposition 10.4.16).

10.4.c. Specialization of left D-triples. While the question of signs is better
behaved for the pushforward functor in the case of right DX -modules, the situation
is reversed for the specialization functors.

Let us start with the case of a projection X = X
0

⇥ C ! C and R-specializable
left DX -modules M0,M00 equipped with a sesquilinear pairing c : M0

⌦ M00
! DbX

between them. For every � 2 (�1, 0] and each test form ⌘o of maximal degree on X
0

,
the formula

(10.4.32)
⌦

gr�V c([m
0], [m00]), ⌘o

↵

:= Ress=���1

⌦

|t|2scleft(m0,m00), ⌘o ^�(t)
i

2⇡ dt^dt
↵

defines sesquilinear pairing gr�V c : gr�V M
0
⌦ gr�V M

00
! DbX0

. This is proved as for
(10.4.7). Since � and � are real, and since the form i

2⇡ dt ^ dt is real, we have

(10.4.33) gr�V (c
⇤) = (gr�V c)

⇤.

On the other hand, N is skew-adjoint with respect to c (same proof as for (10.4.8) in
the right case).

Definition 10.4.34 (Sesquilinear pairing on nearby cycles, left case)
Let g : X ! C be a holomorphic function. Assume that M0,M00 are R-speciali-

zable along (g). For a sesquilinear pairing c : M0
⌦M00

! DbX and for every � 2 S1

and � 2 (�1, 0] such that � = exp(� 2⇡i�), we define

(10.4.34 ⇤)  g,�c := gr�V (D,D◆
�1

g⇤ c) = �gr�V (T◆
�1

g⇤ c) :  g,�M
0
⌦  g,�M00

�! DbX .

Given a left D-triple T = (M0,M00, c) which is R-specializable along (g), we set

(10.4.34 ⇤⇤)  g,�T := ( g,�M
0, g,�M

00, g,�c).

Remark 10.4.35 (Side-changing for  g,�c). If X = H ⇥ �t and T = (M0,M00, c) is a
left D-triple which is R-specializable along H, then, for holomorphic forms !0

o,!
00
o of

maximal degree on X
0

, for a C1 function ⌘o on X
0

and for Re s � 0, we have

hcright((!0
o ^ dt)⌦m0, (!00

o ^ dt)⌦m00), ⌘o�(t)|t|
2s
i

= (�1)n�1

hc(m0,m00), ⌘o!
0
o ^ !

00
o · �(t)|t|2sdt ^ dti.

We deduce that, for � = �↵� 1,

(gr�V c)
right = (�1)n�1grV↵ (c

right).
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As a consequence, for every � 2 S1, we have

(10.4.35 ⇤)  g,�(c
right) = ( g,�c)

right.

Indeed, we have

 g,�(c
right) = (�1)n�1grV↵ (T◆

0

⇤c
right) (Definition 10.4.18)

= (�1)n�1grV↵ ((T◆
�1

⇤ c)right) (see (10.3.23 ⇤⇤))

= �gr�V (T◆
�1

⇤ c)right (see above for X ,�! X ⇥ C)

= ( g,�c)
right.

Example 10.4.36. Let ◆ : X
0

⇥ {0} ,! X
0

⇥ C denote the inclusion. Using Defini-
tion 10.2.14(1) for TOX⇥C, we thus have  t,�(TOX⇥C) = T◆

�1

⇤ (TOX). Indeed, this
follows from Example 10.4.23, and from the side changing formulas (10.3.23 ⇤⇤) and
(10.4.35 ⇤), since T!X = (TOX)right.

Example 10.4.37 (The smooth case). Let us take up the notation of Example 10.4.12 in
the left case. We have M = OX ⌦C Mr and c takes values in C1 functions. For local
horizontal sections µ0, µ00, we have c(1⌦µ0, 1⌦ µ00) = cr(µ0, µ00). If X = H⇥�t, then
gr�V M = 0 for ↵ /2 N and gr0V M = M/tM. For local holomorphic functions f 0, f 00 and
local horizontal sections µ0, µ00, indicating by an index o the restriction to t = 0, and
for a C1 test form ⌘o on H of maximal degree, we obtain

hgr0V c(f
0
o ⌦ µ0

o, f
00
o ⌦ µ00

o ), ⌘oi = cr(µ0, µ00)o

Z

f 0
of

00
o ⌘o,

according to Exercise 5.4.7.

10.5. Localization and dual localization of a sesquilinear pairing

10.5.a. Moderate distributions. We refer to [Mal66, Chap. VII] for the results
in this subsection.

Let D be a reduced divisor in X and let OX(⇤D) be the sheaf of meromorphic
functions on X with poles along D. The subsheaf DbX,D of DbX consists of distri-
butions supported on D (i.e., vanishing when applied to any test form with compact
support in X rD).

On the other hand, let j : X rD ,! X denote the open inclusion. By definition,
there is an exact sequence of left DX,X -modules

0 �! DbX,D �! DbX �! j⇤ DbXrD .

The image of the latter morphism is the sheaf on X of distributions on X rD which
are extendable as distributions on X. It can be characterized as the subsheaf of
j⇤ DbXrD consisting of distributions which can be tested along C1 forms of maximal
degree on X rD having rapid decay along D. It is denoted by DbmodD

X (sheaf on X
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of distributions having moderate growth along D). It can be characterized more
algebraically. Indeed, we have

DbmodD
X = OX(⇤D)⌦OX

DbX = OX(⇤D)⌦OX
DbX .

In other words, DbX,D is equal to the subsheaf of DbX consisting of local sections
annihilated some power of g (or f), and we have a short exact sequence

0 �! DbX,D �! DbX �! DbmodD
X �! 0.

The previous results apply to currents of degree 0 as well, and we keep similar notation.

Example 10.5.1 (The case where D is smooth). If D is smooth, the sheaf DbX,D is
identified with the push-forward, in the sense of DX,X -modules, of DbD. If for example
X = D ⇥ C, then, according to Exercise 10.3.3, we find exact sequences

0 �! ◆⇤ DbD[@t, @t] �! DbX �! DbX [1/t] �! 0,

0 �! ◆⇤ CD[@t, @t] �! CX �! CX [1/t] �! 0.

10.5.b. Localization of a sesquilinear pairing. Let c : M0
⌦C M00

! CX be a
sesquilinear pairing between right DX -modules. Recall that localization and dual
localization are defined for DX -modules which are R-specializable along D and that
we have natural morphisms (see Corollaries 9.3.6(3) and 9.4.9(3))

M(!D)
◆

��! M
◆_

���! M(⇤D).

According to the results recalled above, it defines a moderate sesquilinear pairing by
localization:

cmodD : M0(⇤D)⌦C M00(⇤D) �! CmodD
X .

Our aim is to refine it as a pairing taking values in CX .

Proposition 10.5.2. Assume that M0,M00 are R-specializable along D. Then cmodD

naturally induces sesquilinear pairings

c(⇤D) : M0(⇤D)⌦C M00(!D) �! CX ,

c(!D) : M0(!D)⌦C M00(⇤D) �! CX .

Moreover, the second one is obtained by adjunction of the first one, that is,

c(⇤D) =
⇥

c⇤(!D)

⇤⇤
.
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Lastly, c(⇤D) and c(!D) are compatible with c, in the sense that the following diagram
commutes:

M0(⇤D)⌦C M00(!D)
c(⇤D)

//

◆
✏✏

CX

M0
⌦C M00 c //

◆_
OO

◆_
✏✏

CX

M0(!D)⌦C M00(⇤D)
c(!D)

//

◆

OO

CX

Proof. The question is local, and we can reduce to the case where X = D⇥C, with D

smooth. The V -filtration is then well-defined for an R-specializable DX -module. Since
the morphisms M(!D) ! M and M ! M(⇤D) have kernels and cokernels supported
in D, they induce isomorphisms between the V<0

of these modules. In particular, the
restriction of c (hence of cmodD) to V<0

M0
⌦C V<0

M00 takes values in CX . We will
construct c(⇤D), the case of c(!D) being similar.

For every ` > 1, we first extend c as a sesquilinear pairing

c` : V<0

M0
⌦C V<0

M00
· t�`

�! CX .

We argue exactly as in the proof of Lemma 10.4.2 by extending, for every test func-
tion ⌘ on nb(xo) and each local section m0 of V<0

M0 and m00 of V<0

M00, the holomor-
phic function (for Re s � 0)

s 7�!
⌦

c(m0,m00)|t|2(s�`)t`, ⌘
↵

as a meromorphic function on C, and by checking that it has no pole at s = 0 since
m00

2 V<0

M00
xo

. Taking the value of this function at s = 0 gives the desired extension
of c, since |t|2(s�`)t` = |t|2st�`. Moreover, one checks that c` restricts to c`�1

on
(V<0

M0
· t�`+1)⌦C V<0

M00, and thus defines a sesquilinear pairing

c(⇤D) : M0(⇤D)⌦C V<0

M00
�! CX .

This pairing can be extended in at most one way as a pairing

c(⇤D) : M0(⇤D)⌦C M00(!D) �! CX ,

due to the DX -linearity and the equality M00(!D) = V<0

M00
⌦V0DX

DX . However,
since DX is not locally free as a V

0

DX -module, the existence of such an extension is not
a priori obvious. Such an extension will exist near xo if, for any finite family (m00

j ) of el-
ements of V<0

M00
xo

, any finite family (Pj)j of germs of differential operators at xo, and
any m0

2 M(⇤D)xo
, the condition

P

j m
00
j ⌦Pj = 0 implies

P

j c
(⇤D)(m0,m00

j ) · P j = 0.
This holds by definition if all Pj belong to V

0

DX,xo
. Therefore, one can reduce to the

case where j = 0, . . . , N and Pj = @jt .
We argue by induction on N , the case where N = 0 being clear. We first claim that

m00
N ⌦ @t 2 V<0

M00(!D). Indeed, M00(!D) has the property that @t : grV↵M
00(!D) !

grV↵+1

M00(!D) is an isomorphism if ↵ = �1, and on the other hand it is an isomorphism
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for any other ↵ (this holds for any R-specializable coherent DX -module). This implies
that

@Nt : V<0

M00(!D)/V<�1

M00(!D) �! V<NM00(!D)/V<N�1

M00(!D)

is an isomorphism. Since

m00
N ⌦ @Nt = �

N�1

X

j=0

m00
j ⌦ @jt 2 V<N�1

M00(!D)xo ,

we conclude that m00
N ⌦ 1 2 V<�1

M00(!D)xo , hence the assertion.
By induction, we thus have

N�1

X

j=0

c(⇤D)(m0,m00
j ) · @

j

t + c(⇤D)(m0,m00
N ⌦ @t) · @

N�1

t = 0 2 CX .

It is therefore enough to check that, for m0
2 M0(⇤D)xo and m00

2 V<�1

M00
xo

, we have

c(⇤D)(m0,m00
⌦ @t) = c(⇤D)(m0,m00) · @t.

Notice now that t : V<0

M00
xo

! V<�1

M00
xo

is an isomorphism, hence m00 = n00t for
some n00

2 V<0

M00
xo

. We thus have

c(⇤D)(m0,m00
⌦ @t) = c(⇤D)(m0, n00t⌦ @t) = c(⇤D)(m0, n00

⌦ t@t)

= c(⇤D)(m0, n00t@t ⌦ 1) = c(⇤D)(m0, n00
⌦ 1) · t@t

= c(⇤D)(m0, n00t⌦ 1) · @t = c(⇤D)(m0,m00
⌦ 1) · @t.

The remaining assertions are straightforward, since (c⇤)modD = (cmodD)⇤.

Definition 10.5.3 (Localization and dual localization of D-triples)
Let D be an effective divisor in X and let T = (M0,M00, c) be an object of

D-Triples(X) which is R-specializable along D (i.e., its components M0,M00 are so).
If D = (g), we then set

T(⇤D) := (M0(⇤D),M00(!D), c(⇤D)),

T(!D) := (M0(!D),M00(⇤D), c(!D)).

These functors satisfy obvious identities with respect to Adjunction 10.2.9.

10.6. Pushforward, specialization and localization of sesquilinear pairings

Let f : X ! Y be an holomorphic map between complex manifolds and let g0 :

Y ! C be an holomorphic function. Set g = g0 � f . Let M0,M00 be right DX -modules
which are R-specializable along (g). Let c : M0

⌦M00
! CX be a sesquilinear pairing.

Assume that f is proper on the support of M0,M00.
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10.6.a. Pushforward and specialization of sesquilinear pairings. Recall that
Theorem 7.8.5 implies:

• for every k 2 Z, H k
Df⇤M is R-specializable along (g0),

• for every ↵ 2 R, the natural morphism H k
Df⇤V↵M ! H k

Df⇤M is injective and
its image is equal to V↵H k

Df⇤M.

Theorem 10.6.1. With respect to the previous natural morphism, we have

Tf
k
⇤ g,�c = (�1)n�m g0,�(Tf

k
⇤ c).

Proof. It is enough to argue with D,Df
k
⇤ . We start with the case of a map f ⇥ Id :

X ⇥ C ! Y ⇥ C and we take for the function g0 : Y ⇥ C ! C the second projection.
We assume that M0,M00 are right DX⇥C-modules.

Lemma 10.6.2. With these assumptions, for every ↵ 2 R and k 2 Z,

D,Df
k
⇤ (gr

V
↵ c) = grV↵

�

D,D(f ⇥ Id)k⇤c
�

.

Proof. Set � = �↵� 1 and let

m0n+1+k
1 2 �(U, f⇤(E

n+1+k
X⇥C ⌦OX⇥C V

�M0left)),

m00n+1�k
1 2 �(U, f⇤(E

n+1�k
X⇥C ⌦OX⇥C V

�M00left)).

The cohomology classes [m0n+k
1 ] and [m00n+1�k

1 ] can be regarded as sections of
V↵(Df

k
⇤M

0)⌦OY
C1
Y and V↵(Df

�k
⇤ M00)⌦OY

C1
Y respectively, according to the result

recalled above. We can then compute with these classes. Let us also denote by •↵

the class of •
2 V↵ modulo V<↵. We have, for ⌘ 2 C1

Y (U),

D

grV↵
�

D,D(f⇥ Id)k⇤c
�

([m0n+1+k
1 ]↵, [m

00n+1�k
1 ]↵), ⌘(y)

E

=
i

2⇡
Ress=↵

D

�

D,D(f ⇥ Id)k⇤c
�

([m0n+1+k
1 ], [m00n+1�k

1 ]), ⌘(y)|t|2s�(t)
E

=
i

2⇡
Ress=↵

D

c(m0n+1+k
1 ,m00n+1�k

1 ), ⌘ � f(x)|t|2s�(t)
E

=
D

grV↵ c((m
0n+1+k
1 )↵, (m

00n+1�k
1 )↵), ⌘ � f(x)

E

=
D

D,Df
k
⇤ gr

V
↵ c

�

[(m0n+1+k
1 )↵], [(m

00n+1�k
1 )↵]

�

, ⌘(y)
E

,

and we obtain the desired equality since, as recalled, [mn+1+k
1 ]↵ = [(mn+1+k

1 )↵] in
�(U, grV↵ D,D(f ⇥ Id)k⇤M) = �(U, D,Df

k
⇤ gr

V
↵M).
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We can now end the proof of Theorem 10.6.1. We have

Tf
k
⇤ g,�c = "(n�m� k)(�1)nD,Df

k
⇤ gr

V
↵ (D,D◆

0

g⇤c)

= "(n�m� k)(�1)ngrV↵ (D,D(f ⇥ Id)k⇤ D,D◆
0

g⇤c)

= "(n�m� k)(�1)ngrV↵ (D,D◆
0

g0⇤ D,Df
k
⇤ c)

= (�1)n�1grV↵ (T◆
0

g0⇤ Tf
k
⇤ c)

= (�1)n�m g0,�(Tf
k
⇤ c).

Corollary 10.6.3 (Pushforward and specialization of D-triples)
Let T be an object of D-Triples(X) which is R-specializable along (g) = (g0 � f),

where f : X ! Y is proper. Then we have an isomorphism

((�1)n�m Id, Id) : Tf
k
⇤ g,�T

⇠
�!  g0,�(Tf

k
⇤ T).

Remark 10.6.4 (The case of left D-triples). Due to (10.3.23 ⇤⇤) and (10.4.35 ⇤), the same
isomorphism holds in the case of left D-triples.

10.6.b. Pushforward and localization of sesquilinear pairings. Similarly, let
D0 be an effective divisor in X 0 and set D = f⇤D0. Assume that M is R-specializa-
ble along D. Then we have natural morphisms H k

Df⇤M[!D0] ! H k(Df⇤M[!D]) and
H k

Df⇤(M[⇤D]) ! H k
Df⇤M[⇤D0].

Theorem 10.6.5. With respect to the previous natural morphism, the sesquilinear pair-
ings D,Df

k
⇤ (c

(?D)) and (D,Df
k
⇤ c)

(?D0
) coincide (? =!, ⇤).

10.7. Beilinson’s construction for sesquilinear pairings

Let D = (g) be a principal divisor on X and let M be a coherent DX -module
which is R-specializable along D. Beilinson’s construction (see Section 9.6) produces
two exact sequences (9.6.2 !) and (9.6.2 ⇤) (recall that, for DX -modules, R-specializa-
bility ensures maximalizability, due to the validity of Kashiwara’s equivalence). We
can also start from a DX(⇤D)-coherent module M⇤ which is R-specializable along D.
Given a sesquilinear pairing cmodD between M0

⇤ and M00
⇤ with values in DbmodD

X , our
aim is to extend it as a sesquilinear pairing ⌅gc : ⌅gM

0
⌦C ⌅gM00

! DbX in such a
way that

(1) ⌅gc(a0•, b00_•) = 0 and the pairing induced by means of a00_ on M0(!D) ⌦C
M00(⇤D) is equal to c(!D),

(2) a similar property to recover the pairing c(⇤D),
(3) a similar property to recover  t,1c.

10.8. Comments

Here come the references to the existing work which has been the source of inspi-
ration for this chapter.


