
APPENDIX A

TRAINING ON D-MODULES

Summary. In this chapter, we introduce the fundamental functors on D-mod-
ules that we will use in order to define supplementary structures, and we also
introduce various operations: pushforward and pullback by a holomorphic map
between complex manifolds or a morphism between smooth algebraic varieties,
and specialization along a divisor. Most results are presented as exercises. They
only rely on Leibniz rule.

Although it would be natural to develop the theory of coherent DX -modules
in a way similar to that of OX -modules, some points of the theory are not known
to extend to DX -modules (the lemma on holomorphic matrices). The approach
which is therefore classically used consists in using the OX -theory, and the main
tools for that purpose are the coherent filtrations. The main references for this
chapter are [Bjö93], [Kas03] and [GM93].

A.1. The sheaf of holomorphic differential operators

Let (X,OX) be a complex manifold endowed with its sheaf of holomorphic func-
tions. We also denote by C1X the sheaf of complex-valued C1 functions on the
underlying C1 manifold XR. This sheaf is a fine sheaf, hence is soft.

We will denote by ⇥X the sheaf of holomorphic vector fields on X. This is the
OX -locally free sheaf generated in local coordinates by @x1

, . . . , @xn
. It is a sheaf of

OX -Lie algebras which is locally free as an OX -module, and vector fields act (on the
left) on functions by derivation, in a way compatible with the Lie algebra structure:
given a local vector field ⇠ acting on functions as a derivation g 7! ⇠(g), and a local
holomorphic function f , f⇠ is the vector field acting as f · ⇠(g), and given two vector
fields ⇠, ⌘, their bracket as derivations [⇠, ⌘](g) := ⇠(⌘(g))�⌘(⇠(g)) is still a derivation,
hence defines a vector field.

Dually, we denote by ⌦1

X the sheaf of holomorphic 1-forms on X. We will set
⌦k

X = ^k⌦1

X . We denote by d : ⌦k
X ! ⌦k+1

X the differential.

Exercise A.1. Let E be a locally free OX -module of rank d and let E_ be its dual.
Show that, given any local basis e = (e

1

, . . . , ed) of E with dual basis e_, the section
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Pd
i=1

ei⌦e
_
i of E⌦OX

E_ does not depend on the choice of the local basis e and extends
as a global section of E⌦OX

E_. Show that it defines, up to a constant, an OX -linear
section OX ! E ⌦OX

E_ of the natural duality pairing E ⌦OX
E_
! OX . Conclude

that we have a natural global section of ⌦1

X ⌦OX
⇥X given, in local coordinates, by

P

i dxi ⌦ @xi .

Recall that the contraction by a vector field ⇠ is the OX -linear morphism ⇠ : ⌦k
X !

⌦k�1
X defined by ⌘ 7! ⌘(⇠, •), where • is an ordered (k � 1)-tuple of vector fields. Set

n = dimX and !X = ⌦n
X : this is the sheaf of forms of maximal degree. In local

coordinates (x
1

, . . . , xn), set dx := dx
1

^ · · · dxn and dxbi := dx
1

^ · · ·^dxi^ · · ·^dxn.
Then we have @xi

dx = (�1)i�1dxbi, and for f 2 OX , we have d(f@xi
dx) =

@f/@xi · dx. Setting L⇠(dx) := ⇠ dx, and using that L@xi
(dx) = 0, this relation

can be written as

[@xi , f ]dx = �
h

fL@xi
(dx)�Lf@xi

(dx)
i

.

We conclude that there is a natural right action (in a compatible way with the Lie
algebra structure) of ⇥X on !X : the action is given by ! · ⇠ = �L⇠! := �d(⇠ !)
(L⇠ is called the Lie derivative of ⇠). The action is on the right due to the sign above
which makes this definition compatible with bracket.

Definition A.1.1 (The sheaf of holomorphic differential operators)
For any open set U of X, the ring DX(U) of holomorphic differential operators

on U is the subring of HomC(OU ,OU ) generated by
• multiplication by holomorphic functions on U ,
• derivation by holomorphic vector fields on U .

The sheaf DX is defined by �(U,DX) = DX(U) for every open set U of X.

By construction, the sheaf DX acts on the left on OX , i.e., OX is a left DX -module.

Definition A.1.2 (The filtration of DX by the order). The increasing family of subsheaves
FkDX ⇢ DX is defined inductively:

• FkDX = 0 if k 6 �1,
• F

0

DX = OX (via the canonical injection OX ,!HomC(OX ,OX)),
• the local sections P of Fk+1

DX are characterized by the fact that [P, f ] is a local
section of FkDX for any holomorphic function g.

Exercise A.2. Show that a differential operator P of order 6 1 satisfying P (1) = 0 is
a derivation of OX , i.e., a section of ⇥X .

Exercise A.3 (Local computations). Let U be an open set of Cn with coordinates
x
1

, . . . , xn. Denote by @x1
, . . . , @xn

the corresponding vector fields.
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(1) Show that the following relations are satisfied in D(U):

[@xi
, f ] =

@f

@xi
, 8 f 2 O(U), 8 i 2 {1, . . . , n},

[@xi , @xj ] = 0 8 i, j 2 {1, . . . , n}.

with standard notation concerning multi-indices ↵,�.
(2) Show that any element P 2 D(U) can be written in a unique way as

P

↵ a↵@
↵
x

or
P

↵ @
↵
x b↵with a↵, b↵ 2 O(U). Conclude that DX is a locally free module over OX

with respect to the action on the left and that on the right.
(3) Show that max{|↵| ; a↵ 6= 0} = max{|↵| ; b↵ 6= 0}. It is denoted by ordxP .
(4) Show that ordxP does not depend on the coordinate system chosen on U .
(5) Show that PQ = 0 in D(U) ) P = 0 or Q = 0.
(6) Identify FkDX with the subsheaf of local sections of DX having order 6 k

(in some or any local coordinate system). Show that it is a locally free OX -module of
finite rank.

(7) Show that the filtration F•DX is exhaustive (i.e., DX =
S

k FkDX) and that it
satisfies

FkDX · F`DX = Fk+`DX .

(The left-hand term consists by definition of all sums of products of a section of FkDX

and a section of F`DX .)
(8) Show that the bracket [P,Q] := PQ � QP induces for every k, ` a C-bilinear

morphism FkDX ⌦C F`DX ! Fk+`�1DX .
(9) Conclude that the graded ring grFDX is commutative.

Exercise A.4 (The graded sheaf grFDX ). The goal of this exercise is to show that the
sheaf of graded rings grFDX may be canonically identified with the sheaf of graded
rings Sym⇥X . If one identifies ⇥X with the sheaf of functions on the cotangent space
T ⇤X which are linear in the fibres, then Sym⇥X is the sheaf of functions on T ⇤X

which are polynomial in the fibres. In particular, grFDX is a sheaf of commutative
rings.

(1) Identify the OX -module Symk ⇥X with the sheaf of symmetric C-linear forms
⇠ : OX ⌦C · · ·⌦C OX ! OX on the k-fold tensor product, which behave like a deriva-
tion with respect to each factor.

(2) Show that Sym⇥X :=
L

k Sym
k ⇥X is a sheaf of graded OX -algebras on X

and identify it with the sheaf of functions on T ⇤X which are polynomial in the fibres.
(3) Show that the map FkDX ! HomC

�

⌦

k
COX ,OX

�

which sends any section P

of FkDX to
f
1

⌦ · · ·⌦ fk 7�! [· · · [[P, f
1

]f
2

] · · · fk]

induces an isomorphism of OX -modules grFk DX ! Symk ⇥X .
(4) Show that the induced morphism

grFDX :=
L

k

grFk DX �! Sym⇥X
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is an isomorphism of sheaves of graded OX -algebras.

Exercise A.5 (The universal connection).
(1) Show that the natural left multiplication of ⇥X on DX can be written as a

connection
r : DX �! ⌦1

X ⌦OX
DX ,

i.e., as a C-linear morphism satisfying the Leibniz rule r(fP ) = df ⌦ P + frP ,
where g is any local section of OX and P any local section of DX . [Hint : r(1) is the
global section of ⌦1

X ⌦OX
⇥X considered in Exercise A.1.]

(2) Extend this connection for every k > 1 as a C-linear morphism
(k)
r : ⌦k

X ⌦OX
DX �! ⌦k+1

X ⌦OX
DX

satisfying the Leibniz rule written as
(k)
r(! ⌦ P ) = d! ⌦ P + (�1)k! ^rP.

(3) Show that (k+1)

r �

(k)
r = 0 for every k > 0 (i.e., r is integrable or flat).

(4) Show that the morphisms (k)
r are right DX -linear (but not left OX -linear).

Exercise A.6. More generally, show that a left DX -module M is nothing but an OX -
module with an integrable connection r : M ! ⌦1

X ⌦OX
M. [Hint : to get the

connection, tensor the left DX -action DX⌦OX
M!M by ⌦1

X on the left and compose
with the universal connection to get DX ⌦M! ⌦1

X ⌦M; compose it on the left with
M ! DX ⌦ M given by m 7! 1 ⌦ m.] Define similarly the iterated connections
(k)
r : ⌦k

X ⌦OX
M! ⌦k+1

X ⌦OX
M. Show that (k+1)

r �

(k)
r = 0.

In conclusion:

Proposition A.1.3. Giving a left DX-module M is equivalent to giving an OX-module M

together with an integrable connection r.

Proof. Exercises A.1, A.5 and A.6.

A.2. Filtered objects and the graded Rees ring RFDX

A.2.a. Filtered rings and modules

Definition A.2.1. Let (A , F•) be a filtered C-algebra. A filtered A -module (M, F•M)
is an A -module M together with an increasing filtration indexed by Z satisfying (for
left modules for instance)

FkA · F`M ⇢ Fk+`M 8 k, ` 2 Z.

We always assume that the filtration is exhaustive, i.e.,
S

` F`M = M. We also say
that F•M is an F•A -filtration, or simply an F -filtration.

A filtered morphism between filtered A -modules is a morphism of A -modules
which is compatible with the filtrations.
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It is possible to apply the techniques of the previous sections to filtered objects.
A simple way to do that is to introduce the Rees object associated to any filtered ob-
ject. Introduce a new variable z. We will replace the base field C with the polynomial
ring C[z].

Caveat A.2.2. Since it is standard, when considering Hodge filtrations, to work with
decreasing filtrations, and since the variable z is adapted to increasing ones, we set
the degree of z to �1.

Definition A.2.3 (Rees ring and Rees module). If (A , F•) is a filtered C-algebra, we
denote by fA (or RFA if we want to insist on the dependence with respect to the
filtration) the graded subring

L

p FpA · zp of A ⌦C C[z, z�1] (the term FpA · zp is in
degree �p). For example, if FpA = 0 for p 6 �1 and FpA = A for p > 0, we have
fA = A ⌦C C[z]. Any filtered module (M, F•) on the filtered ring (A , F•) gives rise

similarly to a graded fA -module RFM =
L

p FpM ·zp ⇢M⌦CC[z, z�1], and a filtered
morphism gives rise to a graded morphism (of degree zero) between the associated
Rees modules.

The category Modgr( fA ) is the category whose objects are graded fA -modules and
whose morphisms are graded morphisms of degree zero. It is an abelian category. It
comes equipped with an automorphism �: given an object M =

L

p M p of Modgr( fA )
(where M p is in degree p), we set

(A.2.3 ⇤) �(M ) = M (1) with M (1)p = M p+1.

Remark A.2.4 (Shift of the filtration and twist of the Rees module)
(1) The shift F [k] of an increasing filtration is defined by

(A.2.4 ⇤) F [k]•M = F•�kM.

(2) If M = RFM, with FpMzp in degree �p, then M (�k) has Fp+kMzp+k in
degree �p, so that, for k > 0, zk is a graded morphism of degree zero M !M (�k).
On the other hand, for every k 2 Z, the isomorphism zk : M [z�1] ! M [z�1](�k)
induces an isomorphism

(A.2.4 ⇤⇤) RF [k]M
⇠
�!M (�k).

Notice also that, as RFM is contained in M ⌦C C[z, z�1], the multiplication by z

is injective on RFM.

Exercise A.7.
(1) If M is a graded fA -module, show that its C[z]-torsion is also graded and each

torsion element is annihilated by some power of z.
(2) Conclude that (z�a) : M !M is injective for every a 2 Cr{0}, equivalently

that M [z�1] := C[z, z�1] ⌦C[z] M is C[z, z�1]-flat, and that a graded fA -module is
C[z]-flat if and only if it has no z-torsion.
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(3) Let ' : M ! N be a morphism in Modgr( fA ). Assume that ' is injective.
Show that the induced morphism 'a : M /(z � a)M ! N /(z � a)N is injective if
a 6= 0. [Hint : use (2) for Coker'.]

(4) Let M • be a complex in Modgr( fA ). Show that, for every i and each a 6= 0,
we have

H i(M •
/(z � a)M •) 'H iM •

/(z � a)H iM •
.

[Hint : Consider the long exact sequence

· · ·H iM • z � a
�����!H iM •

�!H i(M •
/(z � a)M •) �! · · ·

attached to the exact sequence of complexes (according to (3))

0 �!M • z � a
�����!M •

�!M •
/(z � a)M •

�! 0

and apply (3).]
(5) Show that the Rees construction gives an equivalence between the category of

filtered (A , F•)-modules and the subcategory of the category of graded fA -modules
(the morphisms are graded of degree zero) whose objects have no z-torsion (equiv-
alently, are C[z]-flat). [Hint : If M =

L

M p is a graded fA -module, the property
that z : M ! M (�1) is injective is equivalent to M p

⇢ M p�1 for all p; set then
M = lim

�!

k
M�k.]

(6) Recover M as RFM/(z � 1)RFM, and grFM as RFM/zRFM (as a graded
grFA -module).

Exercise A.8. If (M, F•M) is a filtered object of Mod(A ), then a subobject M0 of M
carries the induced filtration (FpM \M0)p2Z, while a quotient object M/M00 carries
the induced filtration ((FpM+M00)/M00)p2Z. Show the following properties.

(1) RFM
0=RFM \M0[z, z�1] and RF (M/M00)=RFM \M00[z, z�1]/M00[z, z�1].

(2) The two possible induced filtrations on a subquotient M0\M00/M00 of M agree.
(3) For every filtered complex (M•, F ), the i-th cohomology of the complex is a

subquotient of Mi, hence it carries an induced filtration. Then there is a canonical
morphism H i(FpM

•)!H i(M•), whose image is denoted by FpH i(M•).

A.2.b. Strictness. Strictness is a property which enables one to faithfully pass prop-
erties from a filtered object to the associated graded object.

Definition A.2.5 (Strictness in Mod( fA ) and Modgr( fA )).
(1) An object of Mod( fA ) is said to be strict if it has no C[z]-torsion.
(2) A morphism in Mod( fA ) is said to be strict if its kernel and cokernel are strict

(note that the composition of two strict morphisms need not be strict).
(3) A complex M • of Mod( fA ) is said to be strict if each of its cohomology modules

is a strict object of Modgr( fA ).
An object, resp. morphism, resp. complex in Modgr( fA ) is strict if it is so when con-
sidered in Mod( fA ).
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Exercise A.7 shows that an object of Modgr( fA ) is strict if and only if it comes
from a filtered A -module by the Rees construction.

Exercise A.9. Show the following properties in Mod( fA ) or in Modgr( fA ).
(1) A subobject of a strict object is strict.
(2) An extension in of two strict objects is strict.
(3) A morphism between two strict objects is strict if and only if its cokernel is

strict.
(4) A complex which consists of strict objects and which is bounded from above is

a strict complex if and only if each differential is a strict morphism.

A.2.c. Some basic results on filtrations in abelian categories

Let A be an abelian category. The category WA consisting of objects of A equipped
with a finite exhaustive (1) increasing filtration indexed by Z, and morphisms com-
patible with filtrations, is an additive category which has kernels and cokernels,
but which is not abelian in general. For a filtered object (H,W•H) and for every
k 6 `, the object (W`H,W•H)•6` is a subobject of (H,W•H) (i.e., the kernel of
(W`H,W•H)•6` ! (H,W•H) is zero) and the object (W`H/WkH,W•H/WkH)k6•6`

is a quotient object of (W`H,W•H)•6` (i.e., the cokernel of (W`H,W•H)•6` !

(W`H/WkH,W•H/WkH)k6•6` is zero).

Lemma A.2.6. We set A = Modgr( fA ).
(1) Let M be a an object of WA. If each grWk M is strict, then M is strict.
(2) Let ' : M

1

! M
2

be a morphism in WA. If grWk M
1

, grWk M
2

are strict for
all k, and if ' is strictly compatible with W , i.e., satisfies '(WkM ) = WkN \'(M )
for all k, then ' is strict.

Proof. The first point is treated in Exercise A.9(2). Let us prove (2). Let W• Ker'
and W• Coker' be the induced filtrations. By strict compatibility, the sequence

0 �! grWk Ker' �! grWk M
grWk '
������! grWk N �! grWk Coker' �! 0

is exact. By strictness of grWk ', and applying (1) to Ker' and Coker', one gets that
Ker' and Coker' are strict, i.e., ' is strict.

Let Aj (j 2 Z) be full abelian subcategories which are stable by Ker and Coker
in A an such that, for every j > k, Hom

A

(Aj ,Ak) = 0. We will denote by A• the data
(A, (Aj)j2Z). Let WA• be the full subcategory of WA consisting of objects such that
for every j, grWj 2 Aj .

Proposition A.2.7. The category WA• is abelian, and morphisms are strictly compatible
with W•.

1. Exhaustivity means that, for a given object H in A, we have W`H = 0 for ` ⌧ 0 and W`H = H

for ` � 0.
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Proof. It suffices to show the second assertion. Let ' : (H,W•H)! (H 0,W•H
0) be a

morphism. It is proved by induction on the length of W•. Consider the diagram of
exact sequences in A:

(A.2.8)

0 // Wj�1H //

'j�1
✏✏

WjH //

'j

✏✏

grWj H //

grWj '
✏✏

0

0 // Wj�1H
0 // WjH

0 // grWj H 0 // 0

Due to the inductive assumption, the assertion reduces to proving in A:

Im'j�1 = Im'j \Wj�1H
0,

equivalently, Coker'j�1 ! Coker'j is a monomorphism. This follows from the
assumption on the categories Aj and the snake lemma, which imply that the short
sequences of Ker’s and that of Coker’s are exact.

A.2.d. The filtered ring (DX , F•DX). Applying these constructions to the filtered
ring (DX , F•DX) and its (left or right) modules, we obtain the following properties:

• eOX := RFOX = OX [z].
• in local coordinates, we have

(A.2.9) eDX := RFDX = OX [z]hgx1
, . . . , gxn

i,

i.e., any germ of section of eDX may be written in a unique way as
X

↵

a↵(x, z)g↵x =
X

↵

g�xb↵(x, z),

where a↵, b↵ 2 eOX , and where we set

(A.2.10) gxi
:= zgxi

.

• The sheaf e⇥X is the locally free graded eOX -module locally generated by
gx1 , . . . , gxn (having degree �1, due to our convention A.2.2) and we have
[gxi

, f ] = zgf/gxi for any local section g of eOX ;
• e⌦1

X is the locally free graded eOX -module z�1C[z]⌦C ⌦1

X , and e⌦k
X = ^ke⌦1

X ; the

differential eed is induced by 1 ⌦ ed on z�kC[z] ⌦C e⌦k
X ; we regard the differential as a

graded morphism of degree zero
e

ed : e⌦k
X �!

e⌦k+1

X ;

the local basis (
e

edxi = z�1edxi)i (having degree 1) is dual to the basis (gxi)i of e⇥X .
• We also set eC1X := C1X [z]. This is a fine sheaf on the underlying C1 manifold XR,

hence a soft sheaf.

Example A.2.11 (Filtered flat local systems). Let (L,r) be a flat bundle on X and let
F •L be a decreasing filtration of L by OX -locally free sheaves. Then the flat connec-
tion r endows L with the structure of a left DX -module. The Griffiths transversality
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property rF pL ⇢ ⌦1

X ⌦F p�1L for every p 2 Z is equivalent to the property that the
corresponding increasing filtration F•L is an FDX -filtration of the DX -module L.

Exercise A.10.
(1) Show that RFDX is naturally filtered by locally free graded OX [z]-modules of

finite rank by setting (locally)

Fk(RFDX) =
X

|↵|6k

OX [z]g↵x .

(2) Show that grF(RFDX) = C[z]⌦C grFDX with the tensor product grading.
(3) For a filtered DX -module (M, F•M), show that, if one defines the filtration

Fk(RFM) =
X

j6k

FjM⌦C zjC[z],

then F•(RFM) is an F•(RFDX)-filtration and grF(RFM) can be identified with
C[z]⌦C grFM, equipped with the tensor product grading.

Definition A.2.12 (Connection). Let M be a graded eOX -module. A connection on M
is a graded eC-linear morphism e

r : M !

e⌦1

X ⌦M (of degree zero) which satisfies the
Leibniz rule

8 f 2 eOX , e

r(fm) = f e

rm+
e

ed f ⌦m.

Exercise A.11.
(1) Show that eDX has a universal connection e

r for which e

r(1) =
P

i
e

edxi⌦gxi .
(2) Show the equivalence between graded left eDX -modules and graded eOX -modules

equipped with an integrable connection.
(3) Extend the properties shown in Exercise A.5 to the present case.

Example A.2.13. The fundamental examples of filtered left and right DX -modules are:
• (OX , F•OX) with grFp OX = 0 for p 6= 0, so RFOX = OX [z],
• (!X , F•!X) with grFp !X = 0 for p 6= �n, so RF!X = e!X = e⌦n

X = z�n!X [z].

Convention A.2.14. We will use the following convention.
(i) eOX (resp. eC1X ) denotes either the sheaf rings OX (resp. C1X ) or the sheaf of

graded rings OX [z] = RFOX (resp. C1X [z]), and Mod( eOX) denotes the category of
OX -modules or that of graded OX [z]-modules.

(ii) The notation e⇥X , e⌦k
X , ^k e⇥X has a similar double meaning.

(iii) Similarly, eDX denotes either the sheaf rings DX or the sheaf of graded rings
RFDX , and Mod( eDX) denotes the category of DX -modules or that of graded RFDX -
modules.

(iv) It will also be convenient to denote by eC either the field C or the graded
ring C[z].

(v) In each of the second cases above, we will usually omit the word “graded”,
although it is always understood.
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(vi) One recovers standard results for DX -modules by setting z = 1 and g = @.
(vii) The strictness condition that we may consider only refers to the second cases

above, it is empty in the first cases.

A.3. Left and right

Considering left or right eDX -modules is not completely symmetric. The main
reason is that the left eDX -module eOX is a sheaf of rings, while its right analogue
e!X := e⌦n

X , is not a sheaf of rings. So for example the behaviour with respect to
tensor products over eOX is not the same for left and right eD-modules. Also, the side
changing functor defined below sends eD left

X to e!X ⌦ eOX

eDX , and not to eDX regarded
as a right eDX -module over itself.

The categories of left (resp. right) eDX -modules are denoted by Modleft( eDX)

(resp. Modright( eDX) (recall that we consider graded modules and morphisms of
degree zero in the case of eD = RFD). We analyze the relations between both
categories in this section. Let us first recall the basic lemmas for generating left or
right eD-modules.

Exercise A.12 (Generating left eDX -modules). Let M left be an eOX -module and let 'left :
e⇥X ⌦eCX

M left

!M left be a eC-linear morphism such that, for any local sections g of
eOX , ⇠, ⌘ of e⇥X and m of M left, one has

(1) 'left(f⇠ ⌦m) = f'left(⇠ ⌦m),
(2) 'left(⇠ ⌦ fm) = f'left(⇠ ⌦m) + ⇠(g)m,
(3) 'left([⇠, ⌘]⌦m) = 'left(⇠ ⌦ 'left(⌘ ⌦m))� 'left(⌘ ⌦ 'left(⇠ ⌦m)).

Show that there exists a unique structure of left eDX -module on M left such that
⇠m = 'left(⇠ ⌦m) for every ⇠,m.

Exercise A.13 (Generating right eDX -modules). Let M right be an eOX -module and let
'right : M right

⌦eCX

e⇥X ! M right be a eC-linear morphism such that, for any local
sections g of eOX , ⇠, ⌘ of e⇥X and m of M right, one has

(1) 'right(mf ⌦ ⇠) = 'right(m⌦ f⇠) ('right is in fact defined on M right

⌦ eOX

e⇥X),
(2) 'right(m⌦ f⇠) = 'right(m⌦ ⇠)f �m⇠(g),
(3) 'right(m⌦ [⇠, ⌘]) = 'right('right(m⌦ ⇠)⌦ ⌘)� 'right('right(m⌦ ⌘)⌦ ⇠).

Show that there exists a unique structure of right eDX -module on M right such that
m⇠ = 'right(m⌦ ⇠) for every ⇠,m.

Example A.3.1 (Most basic examples).
(1) eDX is a left and a right eDX -module.
(2) eOX is a left eDX -module (Exercise A.14), with grading

eOX,p =

(

OX if p > 0,

0 if p < 0.
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(3) e!X := e⌦dimX
X is a right eDX -module (Exercise A.15), with grading

e!X,p =

(

!X if p > �n,
0 if p < �n.

Exercise A.14 (OX is a simple left DX -module). We consider here the setting of Sec-
tion A.1.

(1) Use the left action of ⇥X on OX to define on OX the structure of a left DX -mod-
ule.

(2) Let g be a nonzero holomorphic function on Cn. Show that there exists a
multi-index ↵ 2 Nn such that (@↵f)(0) 6= 0.

(3) Conclude that OX is a simple left DX -module, i.e., does not contain any proper
non trivial DX -submodule. Is it simple as a left OX -module?

(4) Show that RFOX is not a simple graded RFDX -module. [Hint : consider
zRFOX ⇢ RFOX .]

Exercise A.15 (!X is a simple right DX -module). Same setting as in Exercise A.14.
(1) Use the right action of ⇥X on !X to define on !X the structure of a right

DX -module.
(2) Show that it is simple as a right DX -module.
(3) Show that RF!X is not a simple graded right RFDX -module.

Exercise A.16 (Tensor products over eOX ).
(1) Let M left and N left be two left eDX -modules.

(a) Show that the eOX -module M left

⌦ eOX
N left has the structure of a left

eDX -module when setting, by analogy with the Leibniz rule,

⇠ · (m⌦ n) = ⇠m⌦ n+m⌦ ⇠n.

(b) If M left and N left are regarded as eOX -modules with connection (Propo-
sition A.1.3 and Exercise A.11), show that the connection on M left

⌦ eOX
N left

coming from the left eDX -module structure above is equal to e

r⌦IdN +IdM ⌦
e

r.
(c) Notice that, in general, m⌦ n 7! (⇠m)⌦ n (or m⌦ n 7! m⌦ (⇠n)) does

not define a left eDX -action on the eOX -module M ⌦ eOX
N .

(d) Let ' : M !M 0 and  : N ! N 0 be eDX -linear morphisms. Show that
'⌦  is eDX -linear.

(e) Show the associativity

(M left

⌦ eOX
N left)⌦ eOX

P left = M left

⌦ eOX
(N left

⌦ eOX
P left).

(2) Let M left be a left eDX -module and N right be a right eDX -module.
(a) Show that N right

⌦ eOX
M left has the structure of a right eDX -module by

setting
(n⌦m) · ⇠ = n⇠ ⌦m� n⌦ ⇠m.
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Remark: one can define a right eDX -module structure on M left

⌦ eOX
N right by

using the natural involution M left

⌦ eOX
N right

⇠
�! N right

⌦ eOX
M left, so this

brings no new structure.
(b) Show the associativity

(N right

⌦ eOX
M left)⌦ eOX

P left = N right

⌦ eOX
(M left

⌦ eOX
P left).

(3) Assume that M right and N right are right eDX -modules. Does there exist a
(left or right) eDX -module structure on M right

⌦ eOX
N right defined with analogous

formulas?

Exercise A.17 (Hom over eOX ).
(1) Let M ,N be left eDX -modules. Show that Hom eOX

(M ,N ) has a natural
structure of left eDX -module defined by

(⇠ · ')(m) = ⇠ · ('(m)) + '(⇠ ·m),

for any local sections ⇠ of e⇥X , m of M and ' of Hom eOX
(M ,N ).

(2) Similarly, if M ,N are right eDX -modules, then Hom eOX
(M ,N ) has a natural

structure of left eDX -module defined by

(⇠ · ')(m) = '(m · ⇠)� '(m) · ⇠.

Exercise A.18 (Tensor product of a left eDX -module with eDX )
Let M left be a left eDX -module. Notice that M left

⌦ eOX

eDX has two commuting
structures of eOX -module. Similarly eDX ⌦ eOX

M left has two such structures. The goal
of this exercise is to extend them as eDX -structures and examine their relations.

(1) Show that M left

⌦ eOX

eDX has the structure of a left and of a right eDX -module
which commute, given by the formulas:

⇢

f · (m⌦ P ) = (fm)⌦ P = m⌦ (fP ),
⇠ · (m⌦ P ) = (⇠m)⌦ P +m⌦ ⇠P,

(left)

⇢

(m⌦ P ) · f = m⌦ (Pf),
(m⌦ P ) · ⇠ = m⌦ (P ⇠),

(right)

for any local vector field ⇠ and any local holomorphic function g. Show that a left
eDX -linear morphism ' : M left

1

!M left

2

extends as a bi- eDX -linear morphism ' ⌦ 1 :

M left

1

⌦ eOX

eDX !M left

2

⌦ eOX

eDX .
(2) Similarly, show that eDX ⌦ eOX

M left also has such structures which commute
and are functorial, given by formulas:

⇢

f · (P ⌦m) = (fP )⌦m,

⇠ · (P ⌦m) = (⇠P )⌦m,
(left)

⇢

(P ⌦m) · f = P ⌦ (fm) = (Pf)⌦m,

(P ⌦m) · ⇠ = P ⇠ ⌦m� P ⌦ ⇠m.
(right)
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(3) Show that both morphisms

M left

⌦ eOX

eDX �!
eDX ⌦ eOX

M left

eDX ⌦ eOX
M left

�!M left

⌦ eOX

eDX

m⌦ P 7�! (1⌦m) · P P ⌦m 7�! P · (m⌦ 1)

are left and right eDX -linear, induce the identity M left

⌦ 1 = 1 ⌦M left, and their
composition is the identity of M left

⌦ eOX

eDX or eDX ⌦ eOX
M left, hence both are re-

ciprocal isomorphisms. Show that this correspondence is functorial (i.e., compatible
with morphisms).

(4) Let M be a left eDX -module and let L be an eOX -module. Justify the following
isomorphisms of left eDX -modules and eOX -modules for the action on the right:

M ⌦ eOX
( eDX ⌦ eOX

L ) ' (M ⌦ eOX

eDX)⌦ eOX
L

' ( eDX ⌦ eOX
M )⌦ eOX

L '

eDX ⌦ eOX
(M ⌦ eOX

L ).

Assume moreover that M and L are eOX -locally free. Show that M⌦ eOX
( eDX⌦ eOX

L )

is eDX -locally free.

Exercise A.19 (Tensor product of a right eDX -module with eDX )
Let M right be a right eDX -module.

(1) Show that M right

⌦ eOX

eDX has two structures of right eDX -module denoted triv

and tens (tensor; the latter defined by using the left structure on eDX and Exercise
A.16(2)), given by:

⇢

(m⌦ P ) ·
triv

f = m⌦ (Pf),
(m⌦ P ) ·

triv

⇠ = m⌦ (P ⇠),
(right)

triv

⇢

(m⌦ P ) ·
tens

f = mf ⌦ P = m⌦ fP,

(m⌦ P ) ·
tens

⇠ = m⇠ ⌦ P �m⌦ (⇠P ).
(right)

tens

(2) Show that there is a unique involution ◆ : M right

⌦ eOX

eDX
⇠
�!M right

⌦ eOX

eDX

which exchanges both structures and is the identity on M right

⌦ 1, given by
(m ⌦ P )

triv

7! (m ⌦ 1) ·
tens

P . [Hint : show first the properties of ◆ by using local
coordinates, and glue the local constructions by uniqueness of ◆.]

(3) Let L be an eOX -module and equip eDX ⌦ eOX
L with its natural structure of

left eDX -module and that of eOX -module where eOX acts on L . Extend the previous
involution as an involution of eOX -modules, where the eOX -action is on L :

◆ : M right

⌦ eOX
( eDX ⌦ eOX

L )
⇠
�! (M right

⌦ eOX

eDX)
triv

⌦ eOX
L .

(4) For every p > 0, consider the pth term Fp
eDX of the filtration of eDX by the

order (see Exercise A.1.2) with both structures of eOX -module (one on the left, one
on the right) and equip similarly M right

⌦ eOX
Fp

eDX with two structures tens and triv

of eOX -modules. Show that, for every p, ◆ induces an isomorphism of eOX -modules
(M right

⌦ eOX
Fp

eDX)
tens

⇠
�! (M right

⌦ eOX
Fp

eDX)
triv

.
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Definition A.3.2 (Side-changing of eDX -modules). Any left eDX -module M left gives rise
to a right one M right by setting M right = e!X ⌦ eOX

M left and, for any vector field ⇠

and any function g,

(! ⌦m) · f = f! ⌦m = ! ⌦ fm, (! ⌦m) · ⇠ = !⇠ ⌦m� ! ⌦ ⇠m.

Conversely, set M left = Hom eOX
(e!X ,M right), which also has in a natural way the

structure of a left eDX -module (see Exercise A.17(2)). The grading behaves as follows:

M right = z�n!X ⌦OX
M left(n).

Exercise A.20 (Compatibility of side-changing functors). Show that the natural mor-
phisms

M left

�!Hom eOX
(e!X , e!X⌦ eOX

M left), e!X⌦ eOX
Hom eOX

(e!X ,M right) �!M right

are isomorphisms of graded eDX -modules.

Caveat A.3.3. Let e!_
X = Hom eOX

(e!X , eOX) as an eOX -module. One often finds in the
literature the formula M left = e!_

X ⌦ eOX
M right, which give the eOX -module structure

of M left. However, the left eDX -module structure is not obtained with a “tensor prod-
uct formula” as in Exercise A.16, but uses the interpretation as Hom eOX

(e!X ,M right).

Exercise A.21 (Side-changing on morphisms). To any left eDX -linear morphism 'left :
M left

1

!M left

2

is associated the eOX -linear morphism 'right = Ide!X
⌦'left : M right

1

!

M right

2

.

(1) Show that 'right is right eDX -linear.
(2) Define the reverse correspondence 'right

7! 'left.
(3) Conclude that the left-right correspondence Modleft( eDX) 7! Modright( eDX) is a

functor, as well as the right-left correspondence Modright( eDX) 7! Modleft( eDX).

The following is now obvious.

Proposition A.3.4. The side-changing functors left-to-right and right-to-left are iso-
morphisms of between the categories of left and right graded eDX-modules, which are
inverse one to the other.

Remark A.3.5. The ring eDX considered as a right eDX -module over itself is not equal
to the right eDX -module associated with eDX regarded as a left eDX -module over itself
by the side-changing functor.

Exercise A.22 (Compatibility of side-changing functors with tensor product)
Let M left and N left be two left eDX -modules and denote by M right,N right the

corresponding right eDX -modules (see Definition A.3.2). Show that there is a natu-
ral isomorphism of graded right eDX -modules (by using the right structure given in
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Exercise A.16(2)):

N right

⌦ eOX
M left

⇠
�!M right

⌦ eOX
N left

(! ⌦ n)⌦m 7�! (! ⌦m)⌦ n

and that this isomorphism is functorial in M left and N left.

Exercise A.23 (Local expression of the side-changing functors)
Let U be an open set of Cn.

(1) Show that there exists a unique eC-linear involution P 7! tP from eD(U) to itself
such that

•
8 f 2 eO(U), tf = f ,

•
8 i 2 {1, . . . , n}, tgxi = �gxi ,

•
8P,Q 2 eD(U), t(PQ) = tQ ·

tP .
(2) Let M be a left eDX -module and let tM be M equipped with the right eDX -mod-

ule structure
m · P := tPm.

Show that z�n tM
⇠
�! M right, that is, tM (n)

⇠
�! M right. [Hint : use that

Fp
tOX = Fp�n!X , hence RF

tOX = RF [n]!X , so t
eOX = e!X(�n), according to

Remark A.2.4(2).] Argue similarly starting with a right eDX -module.

A.4. Examples of eD-modules

We list here some classical examples of eD-modules. One can get many other
examples by applying various operations on eD-modules.

A.4.1. Let L be an eOX -module. There is a very simple way to get a right eDX -module
from L : consider L ⌦ eOX

eDX equipped with the natural right action of eDX . This
is called an induced eDX -module. Although this construction is very simple, it is also
very useful to get cohomological properties of eDX -modules. One can also consider
the left eDX -module eDX ⌦ eOX

L (however, this is not the left eDX -module attached to
the right one L ⌦ eOX

eDX by the left-right transformation of Definition A.3.2).

A.4.2. One of the main geometrical examples of DX -modules are the vector bundles
on X equipped with an integrable connection. Recall that left DX -modules are OX -
modules with an integrable connection. Among them, the coherent DX -modules are
of particular interest. One can show that such modules are OX -locally free, i.e.,
correspond to holomorphic vector bundles of finite rank on X.

It may happen that, for some X, such a category does not give any interesting
geometric object. Indeed, if for instance X has a trivial fundamental group (e.g. X =
P1(C)), then any vector bundle with integrable connection is isomorphic to the trivial
bundle OX with the connection d. However, on non simply connected Zariski open
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sets of X, there exist interesting vector bundles with connections. This leads to the
notion of meromorphic vector bundle with connection.

Let D be a divisor in X and denote by OX(⇤D) the sheaf of meromorphic functions
on X with poles along D at most. This is a sheaf of left DX -modules, being an
OX -module equipped with the natural connection d : OX(⇤D)! ⌦1

X(⇤D).
By definition, a meromorphic bundle is a locally free OX(⇤D) module of finite rank.

When it is equipped with an integrable connection, it becomes a left DX -module.

A.4.3. One can twist the previous examples. Assume that ! is a closed holomorphic
form on X. Define r : OX ! ⌦1

X by the formula r = d+ !. As ! is closed, r is an
integrable connection on the trivial bundle OX .

Usually, the nonzero closed form on X are meromorphic, with poles on some divi-
sor D. Then r is an integrable connection on OX(⇤D).

If ! is exact, ! = df for some meromorphic function g on X, then r can be written
as e�f � d � ef .

More generally, if M is any meromorphic bundle with an integrable connection r,
then, for any such !, r+ ! Id defines a new DX -module structure on M.

A.4.4. Denote by DbX the sheaf of distributions on the complex manifold X of di-
mension n: given any open set U of X, DbX(U) is the space of distributions on U ,
which is by definition the weak dual of the space of C1 forms with compact support
on U , of type (n, n). By Exercise A.15, there is a right action of DX on such forms.
The left action of DX on distributions is defined by adjunction: denote by h⌘, ui the
natural pairing between a compactly supported C1-form ⌘ and a distribution u on U ;
let P be a holomorphic differential operator on U ; define then P · u such that, for
every ⌘, on has

h⌘, P · ui = h⌘ · P, ui.

Given any distribution u on X, the subsheaf DX · u ⇢ DbX is the DX -module gener-
ated by this distribution. Saying that a distribution is a solution of a family P

1

, . . . , Pk

of differential equation is equivalent to saying that the morphism DX ! DX · u send-
ing 1 to u induces a surjective morphism DX/(P

1

, . . . , Pk)! DX · u.
Similarly, the sheaf CX of currents of degree 0 on X is defined in such a way that,

for any open set U ⇢ X, CX(U) is dual to C1
c

(U) with a suitable topology. It is a
right DX -module.

In local coordinates x
1

, . . . , xn, a current of degree 0 is nothing but a distribution
times the volume form dx

1

^ · · · ^ dxn ^ dx
1

^ · · · ^ dxn.
As we are now working with C1 forms or with currents, it is natural not to

forget the anti-holomorphic part of these objects. Denote by OX the sheaf of anti-
holomorphic functions on X and by DX the sheaf of anti-holomorphic differential op-
erators. Then DbX (resp. CX) are similarly left (resp. right) DX -modules. Of course,
the DX and DX actions do commute, and they coincide when considering multiplica-
tion by constants.
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The conjugation exchanges both structures. For example, if u is a distribution
on U , its conjugate u is defined by the formula

(A.4.1) h⌘, ui := h⌘, ui (⌘ 2 E n,n
c

(U)).

This is of course compatible with the usual conjugation of L1

loc

functions.
It is therefore natural to introduce the following sheaves of rings:

OX,X := OX ⌦C OX , DX,X := DX ⌦C DX ,

and consider DbX (resp. CX) as left (resp. right) DX,X -modules.

A.4.5. One can construct new examples from old ones by using various operations.
• Let M be a left eDX -module. Then Hom eDX

(M , eDX) has a natural structure
of right eDX -module. Using a resolution N • of M by left eDX -modules which are
acyclic for Hom eDX

(•, eDX), one gets a right eDX -module structure on ExtkeDX
(M , eDX)

for k > 0.
• Given two left (resp. a left and a right) eDX -modules M and N , the same argu-

ment enables one to put on the various Tor i, eOX
(N ,M ) a left (resp. a right) eDX -mod-

ule structure.

A.5. The de Rham functor

Definition A.5.1 (de Rham). For a left eDX -module M , the de Rham complex DRM
is the bounded complex (with • in degree zero and all nonzero terms in nonnegative
degrees)

DRM := {0!M
•

e

r

���!

e⌦1

X ⌦M
e

r

���! · · ·

e

r

���!

e⌦n
X ⌦M ! 0}.

The terms are the eOX -modules e⌦•
X ⌦ eOX

M left and the differentials the eC-linear mor-
phisms e

r defined in Exercise A.6 or A.11.

The previous definition produces a complex since e

r �

e

r = 0, according to the
integrability condition on e

r, as remarked in Exercise A.6 or A.11.

Definition A.5.2 (Spencer). The Spencer complex Sp(M ) of a right eDX -module M
is the bounded complex (with • in degree zero and all nonzero terms in nonpositive
degrees)

Sp(M ) := {0!M ⌦ eOX
^

n
e⇥X

e�
��! · · ·

e�
��!M ⌦ eOX

e⇥X

e�
��!M

•
! 0},

where the differential e� is the eC-linear map given by

m⌦ ⇠
1

^ · · · ^ ⇠k 7
e�
��!

k
X

i=1

(�1)i�1m⇠i ⌦ ⇠1 ^ · · · ^

b⇠i ^ · · · ^ ⇠k

+
X

i<j

(�1)i+jm⌦ [⇠i, ⇠j ] ^ ⇠1 ^ · · · ^

b⇠i ^ · · · ^

b⇠j ^ · · · ^ ⇠k.
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Exercise A.24. Check that Sp(M ) is indeed a complex, i.e., that e� � e� = 0.

Of special interest will be, of course, the de Rham or Spencer complex of the
ring eDX , considered as a left or right eDX -module. Notice that in DR( eDX) the differ-
entials are right eDX -linear, and in Sp( eDX) they are left eDX -linear.

Exercise A.25 (Sp( eDX) is a resolution of eOX as a left eDX -module)
The natural surjective morphism eDX !

eOX of left eDX -modules has kernel the
image of eDX ⌦

e⇥X !
eDX . In other words, we have a morphism of complexes of left

eDX -modules
Sp( eDX) �! eOX

(where eOX is regarded as a complex with a nonzero term in degree zero only), which
induces an isomorphism

H 0 Sp( eDX)
⇠
�!

eOX .

In this exercise, one proves that H k(Sp( eDX)) = 0 for k 6= 0, so that the morphism
above is a quasi-isomorphism.

Let F•
eDX be the filtration of eDX by the order of differential operators. Filter the

Spencer complex Sp( eDX) by the subcomplexes Fp(Sp( eDX)) defined as

· · ·

e�
��! Fp�k eDX ⌦ ^

k
e⇥X

e�
��! Fp�k+1

eDX ⌦ ^
k�1

e⇥X

e�
��! · · ·

(1) Show that, locally on X, using coordinates x
1

, . . . , xn, the graded com-
plex grFSp( eDX) :=

L

p gr
F
p Sp( eDX) is equal to the Koszul complex of the ring

eOX [⇠
1

, . . . , ⇠n] with respect to the regular sequence ⇠
1

, . . . , ⇠n.
(2) Conclude that grFSp( eDX) is a resolution of eOX .
(3) Check that Fp Sp( eDX) = 0 for p < 0, F

0

Sp( eDX) = grF
0

Sp( eDX) is isomorphic
to eOX and deduce that the complex

grFp Sp( eDX) := {· · ·

e�
��! grFp�k eDX ⌦ ^

k
e⇥X

e�
��! grFp�k+1

eDX ⌦ ^
k�1

e⇥X

e�
��! · · · }

is acyclic (i.e., quasi-isomorphic to 0) for p > 0.
(4) Show that the inclusion F

0

Sp( eDX) ,! Fp Sp( eDX) is a quasi-isomorphism for
every p > 0 and deduce, by passing to the inductive limit, that the Spencer complex
Sp( eDX) is a resolution of eOX as a left eDX -module by locally free left eDX -modules.

Exercise A.26 (DR( eDX)[n] is a resolution of e!X as a right eDX -module)
(1) Similarly, the natural morphism of right eDX -modules

e!X ⌦ eOX

eDX �! e!X

extends as a morphism of complexes of right eDX -modules

DR( eDX)[n] �! e!X .

Show that H k(DR eDX) = 0 for k 6= n, so that the shifted complex DR( eDX)[n] is a
resolution of e!X as a right eDX -module by locally free right eDX -modules.
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(2) Let M be a left eDX -module. Show that the complex

DR( eDX ⌦ eOX
M )[n]

is a resolution of M right = e!X ⌦ eOX
M by right eDX -modules, where the left and right

structures of eDX ⌦ eOX
M are those of Exercise A.18(2), and the left one is used to

compute the deRham complex.

Exercise A.27. Let M right be a right eDX -module

(1) Show that the natural morphism

M right

⌦ eDX
( eDX ⌦ eOX

^

k
e⇥X) �!M right

⌦ eOX
^

k
e⇥X

defined by m⌦ P ⌦ ⇠ 7! mP ⌦ ⇠ induces an isomorphism of complexes

M right

⌦ eDX
Sp( eDX)

⇠
�! Sp(M right).

(2) Similar question for DR( eDX)⌦ eDX
M left

! DR(M left).

Let M be a left eDX -module and let M right the associated right module. We will
now compare DRX(M ) and Sp(M right). Given any k > 0, the contraction is the
morphism

e!X ⌦ eOX
^

k
e⇥X ��!

e⌦n�k
X

! ⌦ ⇠ 7�! (⇠ !)(•) = !(⇠ ^ •).
(A.5.3)

Lemma A.5.4. There exists a unique isomorphism of complexes of right eDX-modules
(i.e., is compatible with the differentials of these complexes)

◆ : e!X ⌦ eOX
Sp( eDX)

⇠
�! DR( eDX)[n]

which induces the identity

e!X ⌦ eOX
Sp0( eDX) = e!X ⌦ eOX

eDX = DRn
eDX .

It is induced by the isomorphisms of right eDX-modules (see Notation 2.3.7 for the
notation "(•))

e!X ⌦ eOX

�

eDX ⌦ eOX
^

k
e⇥X

� ◆
���!

⇠

e⌦n�k
X ⌦ eOX

eDX

⇥

! ⌦ (1⌦ ⇠)
⇤

· P 7�!
�

"(k + 1)!(⇠ ^ •)
�

⌦ P

(where the right structure of the right-hand term is the natural one and that of the
left-hand term is nothing but that induced by the left structure after going from left to
right).
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Proof. From the properties of the function " (see Notation 2.3.7) and the value ◆0 = Id,
it is enough to prove that the diagram

e!X ⌦ eOX

�

eDX ⌦ eOX
^

k
e⇥X

�

//

e�
✏✏

e⌦n�k
X ⌦ eOX

eDX

e

r

✏✏

e!X ⌦ eOX

�

eDX ⌦ eOX
^

k�1
e⇥X

�

// e⌦n�k+1

X ⌦ eOX

eDX

commutes up to the sign (�1)k. It is also enough to check this locally, and, in local
coordinates (x

1

, . . . , xn), we are reduced to checking this on sections of the form
(edx⌦ P )⌦ (gx1

^ · · · ^ gxk
). For i = 1, . . . , k, let us set cgxi

:= gx1
^ · · ·^

cgxi
^ · · ·^gxk

for simplicity.
On the one hand, since edx·gxi

= 0 and cgxi
edx = (�1)k�iedxi ^

edxk+1

^ · · · ^

edxn,
we have

e�
⇥

(edx⌦ P )⌦ (gx1
^ · · · ^ gxk

)
⇤

=
k

X

i=1

(�1)i�1(edx⌦ P )gxi
⌦ (cgxi

)

=
k

X

i=1

(�1)i(edx⌦ gxiP )⌦ (cgxi)

��! (�1)k
k

X

i=1

(edxi ^
edxk+1

^ · · · ^

edxn)⌦ gxi
P.

On the other hand,
e

r

⇥

(gx1
^ · · · ^ gxk

) (edx⌦ P )
⇤

= e

r

⇥

(edxk+1

^ · · · ^

edxn)⌦ P
⇤

=
k

X

i=1

(edxi ^
edxk+1

^ · · · ^

edxn)⌦ gxi
P.

Exercise A.28.
(1) If M is any left eDX -module and M right = e!X ⌦ eOX

M is the associated right
eDX -module, show that ◆ induces an isomorphism

M right

⌦ eDX
Sp( eDX)

⇠
�! DR( eDX)[n]⌦ eDX

M

which is termwise eOX -linear.
(2) Use Exercise A.27 and the involution of Exercises A.18(4) and A.19(3) to show

that the eOX -linear isomorphism

e!X ⌦ eOX
M ⌦ eOX

^

k
e⇥X

⇠
�!

e⌦n�k
X ⌦ eOX

M

given on e!X ⌦ eOX
M ⌦ eOX

^

k
e⇥X by

! ⌦m⌦ ⇠ 7�! "(k + 1)!(⇠ ^ •)⌦m

induces a functorial isomorphism Sp(M right)
⇠
�! DR(M )[n] for any left eDX -mod-

ule M , which is termwise eOX -linear. (Other solution: direct computation between e�

and e

r through this isomorphism.)
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Notation A.5.5 (pDR). We will denote by p
DR(M right) the Spencer complex Sp(M right)

and we keep the notation DR(M left) for the de Rham complex of a left eDX -module.
The previous exercise gives an isomorphism

(A.5.5 ⇤) p
DR(M right)

⇠
�! DR(M left)[n].

We will use this notation below. Exercise A.27 clearly shows that p
DR is a functor

from the category of right (resp. left) eDX -modules to the category of complexes of
sheaves of eC-modules. It can be extended to a functor between the corresponding
derived categories.

Definition A.5.6 (Contraction by a one-form). The contraction morphism

e⌦1

X ⌦ ^
k
e⇥X ��! ^

k�1
e⇥X

is the unique morphism such that the following diagram commutes:

e!X ⌦ (e⌦1

X ⌦ ^
k
e⇥X)

✏✏

Id⌦
//
e!X ⌦ ^

k�1
e⇥X

✏✏

e⌦1

X ⌦
e⌦n�k
X

^ // e⌦n�k+1

X

where the vertical morphisms are induced by (A.5.3).

Notice that if k = 1 and ⇠ (resp. ⌘) are local sections of e⇥X (resp. e⌦1

X), then
⌘ ⇠ = ⇠ ⌘.

Remark A.5.7 (Action of a closed one-form on the de Rham complex)
Let ⌘ be a closed holomorphic one-form on X. Then the exterior product by ⌘

induces a morphism

⌘ ^ • : DR(M left) �! DR(M left)[1].

Indeed, for a local section m of M and a k-form !, we have
e

r(⌘ ^ ! ⌦m) = ed⌘ ^ ! ⌦m+ ⌘ ^ e

r(! ⌦m) = ⌘ ^ e

r(! ⌦m),

so that the morphism ⌘ ^ commutes with e

r.
It follows then from Lemma A.5.4 and Exercise A.28 that the contraction by a

closed one-form ⌘ induces a morphism of complexes

⌘ • : DR(M right) �! DR(M right)[1].

Note that, if ⌘ = edf is exact, then the induced morphism

⌘ ^ : H i DR(M left) �!H i+1 DR(M left)

is zero. Indeed, if a local section µ of e⌦k
X⌦M left satisfies e

rµ = 0, then edf^µ = e

r(fµ).
In other words, the morphism ⌘ ^ on the cohomology only depends on the class of ⌘
in H1�(X, (e⌦•

X , ed)). The same result holds when we make ⌘ acting on the complex
�(X,DR(M left)), and a similar result holds for the action ⌘ • on DR(M right).
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Remark A.5.8 (C1 de Rham and Spencer complexes). Denote by ( eE (

•,0)
X , ed0) the com-

plex C1X ⌦ eOX

e⌦•
X with the differential induced by ed (here, we assume • > 0). More

generally, set
eE (p,q)
X = e⌦p

X ^
eE (0,q)
X = eE (p,0)

X ^

eE (0,q)
X

and let d00 be the (usual) anti-holomorphic differential. For every p, the complex
( eE (p,•)

X , d00) is a resolution of e⌦p
X . We therefore have a complex ( eE •

X , ed), which is the
single complex associated to the double complex ( eE (

•,•)
X , ed0, d00).

In particular, we have a natural quasi-isomorphism of complexes of right eDX -mod-
ules:

(e⌦•
X ⌦ eOX

eDX , er)
⇠
�! ( eE •

X ⌦ eOX

eDX , er)

by sending holomorphic k-forms to (k, 0)-forms. Remark that the terms of these
complexes are flat over eOX and are fine sheaves.

A.6. Induced eD-modules

A subcategory of Mod( eDX) proves very useful in many places, namely that of
induced right eDX-modules.

Exercise A.29. Let L be an eOX -module.
(1) Show that, for every k, we have a (termwise) exact sequence of complexes

0! L ⌦ eOX
Fk�1(Sp( eDX))! L ⌦ eOX

Fk(Sp( eDX))! L ⌦ eOX
grFk (Sp( eDX))! 0.

[Hint : use that the terms of the complexes Fj(Sp( eDX)) and grFk (Sp(
eDX)) are eOX -

locally free.]
(2) Show that L ⌦ eOX

grFSp( eDX) is a resolution of L as an eOX -module.
(3) Show that L ⌦ eOX

Sp( eDX) is a resolution of L as an eOX -module.

Remark A.6.1. Let L be an eOX -module. It induces a right eDX -module L ⌦ eOX

eDX .
We note that L⌦ eOX

eDX has two structures of eOX -module, one coming from the action
on L and the other one from the right eDX -structure, and they do not coincide. We
will mainly use the right one. The “left” eOX -module structure on L ⌦ eOX

eDX will
only be used when noticing that some naturally defined sheaves of eC-vector spaces
are in fact sheaves of eOX -modules. On the other hand, L ⌦ eOX

eDX has a canonical
structure of right eDX -module.

The category Mod
i

( eDX) of right induced differential modules is the full subcategory
of Mod( eDX) consisting of induced eDX -modules (i.e., we consider as morphisms all
eDX -linear morphisms). It is an additive category (but not an abelian category).

Let M be a right eDX -module and let L be an eOX -module. Considering the
natural eOX -module structure on M ⌦ eOX

L , we define an induced right eDX -module
(M ⌦ eOX

L )⌦ eOX

eDX . Here, the eDX -module structure on M is not used.
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On the other hand, considering the canonical left eDX -module structure on
eDX ⌦ eOX

L and using Exercise A.16(2), we obtain a right eDX -module structure on
M ⌦ eOX

( eDX ⌦ eOX
L ). Here, the eDX -module structure on M is used in an essential

way.

Exercise A.30. Prove that the canonical eOX -linear morphism

M ⌦ eOX
L �!M ⌦ eOX

( eDX ⌦ eOX
L )

m⌦ ` 7�! m⌦ 1⌦ `

induces in a unique way a eDX -linear morphism

(M ⌦ eOX
L )⌦ eOX

eDX �!M ⌦ eOX
( eDX ⌦ eOX

L )

which is an isomorphism. [Hint : argue as in Exercise A.19.]

Proposition A.6.2 (The canonical resolution by induced eDX -modules)
Let M be a right eDX-module. Then the complex M ⌦ eOX

Sp( eDX) is isomorphic
to a complex of right induced eDX-modules which is a resolution of M as such.

One should not confuse M ⌦ eOX
Sp( eDX) with M ⌦ eDX

Sp( eDX) ' Sp(M ) as in
Exercise A.27(1), where a tensor product over eDX is considered.

Proof. That the terms of the complex are induced eDX -modules follows from Exercise
A.30 applied to L = ^k e⇥X . Since Sp( eDX) is a resolution of eOX as a eDX -mod-
ule, hence as an eOX -module, and since the terms of Sp( eDX) are eOX -locally free, we
conclude that M ⌦ eOX

Sp( eDX) is a resolution of M .

Let C?
i

( eDX) the category of ?-bounded complexes of the additive category
Mod

i

( eDX) and let K?
i

( eDX) be the corresponding homotopy category. Since Sp eDX is
a complex of locally free eOX -modules, the functor M •

!M •
⌦ eOX

Sp eDX is a functor
of triangulated categories, and sends acyclic complexes to acyclic complexes according
to the previous proposition. It induces therefore a functor D?( eDX)! D?

i

( eDX).

Corollary A.6.3 (Equivalence of D?( eDX) with D?
i

( eDX)). The natural functor D?
i

( eDX)!

D?( eDX) is an equivalence of categories, and the functor D?( eDX)! D?
i

( eDX) induced
by M •

7!M •
⌦ eOX

Sp eDX is a quasi-inverse functor.

A.7. Pullback of left eD-modules

Let us begin with some relative complements to Section A.3. Let f : X ! Y be
a holomorphic map between analytic manifolds. For any local section ⇠ of the sheaf
e⇥X of z-vector fields on X, Tf(⇠) is a local section of eOX ⌦f�1 eOY

f�1e⇥Y . We hence
have an eOX -linear map

Tf : e⇥X �!
eOX ⌦f�1 eOY

f�1e⇥Y ,
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and dually
T ⇤f : eOX ⌦f�1 eOY

e⌦1

Y �!
e⌦1

X .

Therefore, if N is any left eDY -module, the connection e

r

Y on N can be lifted as a
connection

e

r

X : f⇤N := eOX ⌦f�1 eOY
f�1N �!

e⌦1

X ⌦f�1 eOY
f�1N = e⌦1

X ⌦ eOX
f⇤N

by setting

(A.7.1) e

r

X = ed⌦ Id+(T ⇤f ⌦ IdN ) � (1⌦ e

r

Y ).

Exercise A.31 (Definition of the pullback of a left eDX -module)
(1) Show that the connection e

r

X on f⇤N := eOX ⌦f�1 eOY
f�1N is integrable and

defines the structure of a left eDX -module on f⇤N . The corresponding eDX -module
is denoted by Df

⇤N .
(2) Show that, if N also has a right eDY -module structure commuting with the

left one, then e

r

X is right f�1 eDY -linear, and Df
⇤N is a right f�1 eDY -module.

Exercise A.32.
(1) Express the previous connection in local coordinates on X and Y .
(2) Show that, if M left is any left eDX -module and N any left f�1 eDY -module,

then M left

⌦f�1 eOY
f�1N may be equipped with a left eDX -module structure: if ⇠ is

a local z-vector field on X, i.e., a local section of e⇥X , set

⇠ · (m⌦ n) = (⇠m)⌦ n+ Tf(⇠)(m⌦ n).

[Hint : identify M left

⌦f�1 eOY
f�1N with M left

⌦ eOX
Df
⇤N and use Exercise A.31.]

Definition A.7.2 (Transfer modules).
(1) The sheaf eDX!Y = eOX ⌦f�1 eOY

f�1 eDY = Df
⇤
eDY is a left-right ( eDX , f�1 eDY )-

bimodule when using the natural right f�1 eDY -module structure and the left eDX -mod-
ule introduced above.

(2) The sheaf eDY X is obtained from eDX!Y by using the usual left-right trans-
formation on both sides:

eDY X = Homf�1 eOY

�

e!Y , e!X ⌦ eOX

eDX!Y

�

.

Exercise A.33 (Local computation of eDX!Y ).
(1) Show that Df

⇤
eDY is a locally free eOX -module. [Hint : Use that eDY is a locally

free eOY -module.]
(2) Choose local coordinates x

1

, . . . , xn on X and y
1

, . . . , ym on Y . Show that
eDX!Y = eOX [gy1

, . . . , gym
] and, with this identification, the left eDX -structure is

given by

gxi
·

X

↵

a↵(x)g↵y =
X

↵

⇣

z
@a↵
@xi

+
m
X

j=1

a↵(x)
@fj
@xi

gyj

⌘

g↵y .
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Exercise A.34 ( eDX!Y for a closed embedding). Assume that X is a complex submani-
fold of Y of codimension d, defined by g

1

= · · · = gd = 0, where the gi are holomorphic
functions on Y . Show that

eDX!Y = eDY

�

Pd
i=1

gi eDY

with its natural right eDY structure. In local coordinates (x
1

, . . . , xn, y1, . . . , yd) such
that gi = yi, show that eDX!Y = eDX [gy1

, . . . , gyd
].

Conclude that, if f is an embedding, the sheaves eDX!Y and eDY X are locally
free over eDX .

Exercise A.35 (The chain rule). Consider holomorphic maps f : X!Y and f 0 : Y !Z.
(1) Give an canonical isomorphism eDX!Y ⌦f�1 eDY

f�1 eDY!Z
⇠
�!

eDX!Z as right
(f 0 � f)�1 eDZ-modules.

(2) Use the chain rule to show that this isomorphism is left eDX -linear.

We can now give a better definition of the pullback of a left eDY -module N , better
in the sense that it is defined inside of the category of eD-modules. It also enables one
to give a definition of a derived inverse image.

Definition A.7.3 (of the pullback of a left eDY -module). Let N be a left eDY -module.
The pullback Df

⇤N is the left eDX -module eDX!Y ⌦f�1 eDY
N .

Exercise A.36 (Restriction to z = 1). Show that

(Df
⇤N )/(z � 1)Df

⇤N = Df
⇤(N /(z � 1)N ).

Exercise A.37.
(1) Show that the provious definition coincides with that of Exercise A.31(1).
(2) Let f : X ! Y , f 0 : Y ! Z be holomorphic maps and let N be a left

eDZ-module. Show that D(f 0 � f)⇤N ' Df
⇤(Df 0⇤N ).

The derived pullback L Df
⇤N is now defined by the usual method, i.e., by taking

a flat resolution of N as a left eDY -module, or by taking a right f�1 eDY -flat resolu-
tion of eDX!Y by ( eDX , f�1 eDY )-bimodules. The cohomology modules Lj

Df
⇤N :=

Tor

f�1 eDY

j ( eDX!Y , f
�1N ) are left eDX -modules.

Remark A.7.4 (Side-changing and pullback). The pullback for a right eDY -module
N right is obtained by applying the side-changing functor at the source and the target.
Let N left be the left eDY -module associated with N right, so that N right = e!Y ⌦N left.
Then we set

Df
⇤N right := e!X ⌦ Df

⇤N left,

and similarly with L Df
⇤. Notice the change of grading by dimY �dimX, due to the

grading of e!X ⌦ f�1e!�1Y .
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A.8. Pushforward of eD-modules

Let f : X ! Y be a holomorphic map between complex manifolds. The pullback
of a C1 function on Y is easy to define and, by adjunction, the pushforward of a
current of degree 0 is easily defined provided that f is proper. On the other hand, the
pullback of a form of maximal degree on Y is usually not of maximal degree on X,
so the pushforward of a distribution is not defined in an easy way. This example is
an instance of the fact that the pushforward of eDX -modules by a proper holomorphic
map should be defined in a simple way for right eDX -modules, while for left eDX -mod-
ules one should use the side-changing functors. Let us start with two simple and
natural examples of pushforward of eDX -modules.

Example A.8.1 (Pushforward of a right eD-module by a closed embedding)
If f is a closed embedding, it is proper, so the ordinary pushforward and the

pushforward with proper support will be the same. After Exercise A.34, it is natural
to set

Df!M = Df⇤M = f⇤(M ⌦ eDX

eDX!Y ),

so that Df⇤, Df! are functors Mod( eDX) 7! Mod( eDY ).

Example A.8.2 (Pushforward of a left eD-module by a projection)
If X = Y ⇥T and f is the projection Y ⇥T ! Y , let us denote by e⌦1

X/Y the sheaf
of relative differential forms, i.e., which do not contain edyj in their local expression
in coordinates adapted to the product Y ⇥ T . If M is a left eDX -module, we can
form the relative deRham complex p

DRX/Y M by mimicking Definition A.5.1 and
by using the relative connection e

rX/Y . On the other hand, there remains an action
of e

rY on M . Due to the integrability property of e

r on M , both connections e

rX/Y

and e

rY commute, so that the relative deRham complex p
DRX/Y M is naturally

equipped with a f�1 eOY -connection e

rY . We can then set, for ? = ⇤ or ? =!,

Df?M = (Rf?
p
DRX/Y M , erY ).

To make this definition more precise, we can replace the holomorphic relative de Rham
complex (e⌦•

X/Y ,
edX/Y ) with the C1 relative de Rham complex ( eE •

X/Y ,
edX/Y ) defined

as in Remark A.5.8. In such a way, we obtain

Df?M '

�

f?( eE
•
X/Y ⌦M ), erY

�

(? = ⇤, !).

Each term of the complex, hence each cohomology sheaf H kf?( eE
•
X/Y ⌦M ), is thus

endowed with a flat connection e

rY , that is, with a left eDY -module structure.

Since any morphism can be decomposed as a closed embedding followed be a pro-
jection, through the graph embedding, we could simply say that the pushforward by
a closed embedding (resp. a projection) of a left (resp. right) morphism is obtained
by side-changing at the source and the target from the definitions above, and define
the pushforward by any holomorphic map f by composing the pushforward functors
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in these simple cases. Nevertheless, in order to check various other properties, it is
useful to have an intrinsic definition for any holomorphic mapping f . The case of
right eDX -modules is simpler to define first, as explained above.

A.8.a. Pushforward of right eD-modules

Definition A.8.3 (Pushforward of a right eD-module). Setting ? = ⇤ or ? =!, the direct
image Df? is the functor from Mod( eDX) to D+( eDY ) defined (2) by

Df?M := Rf?
�

M ⌦

L
eDX

eDX!Y

�

.

Remarks A.8.4.
(1) If f is proper, or proper on the support of M , we have an isomorphism in the

category D+( eDY ):
Df!M

⇠
�! Df⇤M .

(2) If f is a closed embedding, we recover Example A.8.1.
(3) If F is any sheaf on X, we have Rjf⇤F = 0 and Rjf

!

F = 0 for j 62 [0, 2 dimX].
Therefore, taking into account the length dimX of the relative Spencer complex, we
find that H j

Df⇤M and H j
Df!M are zero for j 62 [� dimX, 2 dimX]: we say that

Df⇤M , Df!M have bounded amplitude.

We will now give an explicit representative of the pushforward. Recall that the
Spencer complex Sp( eDX), which was defined in A.5.2, is a complex of locally free left
eDX -modules (hence locally free eOX -modules). Denote by SpX!Y ( eDX) the complex
Sp( eDX) ⌦ eOX

eDX!Y (the left eOX -structure on each factor is used for the tensor
product). It is a complex of ( eDX , f�1 eDY )-bimodules: the right f�1 eDY structure
is the trivial one; the left eDX -structure is that defined by Exercise A.16(1).

Exercise A.38 (The relative Spencer complex).
(1) Show that SpX!Y ( eDX) is a resolution of eDX!Y as a bimodule.
(2) Show that the terms of the complex SpX!Y ( eDX) are locally free left eDX -mod-

ules. [Hint : use Exercise A.18(4).]
(3) Show that grFDX!Y = RFDX!Y /zRFDX!Y is identified with ⇡⇤ Sym⇥Y

as a graded (Sym⇥X)-module (see Exercise A.4). For example, if Y = pt, so that
DX!Y = OX , grFOX = OX is regarded as a (Sym⇥X)-module: in local coordinates,
we have Sym⇥X = C{x

1

, . . . , xn}[⇠1, . . . , ⇠n] and

C{x
1

, . . . , xn} = C{x
1

, . . . , xn}[⇠1, . . . , ⇠n]/(⇠1, . . . , ⇠n).

(4) For f = Id : X ! X, the complex SpX!X(DX) = Sp(DX)⌦OX
DX is a reso-

lution of DX!X = DX as a left and right DX -module (notice that the left structure
of DX is used for the tensor product).

(5) For f : X ! pt, the complex SpX!pt

(DX) = SpX(DX) is a resolution of
DX!pt

= OX .

2. Recall that, if eDX = RF DX , then Mod( eDX) := Modgr(RF DX).
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Corollary A.8.5. We have

Df⇤M = Rf⇤
�

M ⌦ eDX
SpX!Y ( eDX)

�

, Df!M = Rf
!

�

M ⌦ eDX
SpX!Y ( eDX)

�

.

Example A.8.6 (Pushforward by a constant map). For Y = pt, and M a right eDX -mod-
ule, we have

Df⇤M = R�(X,DRM ), Df!M = R�c(X,DRM ).

Example A.8.7 (Pushforward by a projection). If X = Y ⇥ T and f is the projection
Y ⇥T ! Y , denote by e⇥X/Y the sheaf of relative tangent vector fields, i.e., which do
not contain gyj in their local expression in coordinates adapted to the product Y ⇥T .

The relative Spencer complex eDX/Y ⌦ eOX
^

�•
e⇥X/Y is defined in the same way

as its absolute analogue, and is a resolution of eOX as a left eDX/Y -module. As a
consequence, eDX/Y ⌦ eOX

^

�•
e⇥X/Y ⌦f�1 eOY

f�1 eDY is also a resolution of eOX ⌦f�1 eOY

f�1 eDY = eDX!Y as a bimodule by locally free left eDX -modules. By identifying eDX

with eDX/Y ⌦f�1 eOY
f�1 eDY , we can also write this resolution as eDX ⌦ eOX

^

�•
e⇥X/Y .

We moreover have a canonical quasi-isomorphism as bimodules

SpX!Y ( eDX) =
�

eDX ⌦ eOX
^

�•
e⇥X/Y

�

⌦f�1 eOY
f�1

�

^

�•
e⇥Y ⌦ eOY

eDY

�

=
�

eDX ⌦ eOX
^

�•
e⇥X/Y

�

⌦f�1 eDY
f�1

�

SpY ( eDY )⌦ eOY

eDY

�

⇠
�!

�

eDX ⌦ eOX
^

�•
e⇥X/Y

�

⌦f�1 eDY
f�1 eDY!Y

= eDX ⌦ eOX
^

�•
e⇥X/Y .

Corollary A.8.5 now reads

(A.8.7 ⇤) Df⇤M = Rf⇤
�

M ⌦ eOX
^

�•
e⇥X/Y

�

, Df!M = Rf
!

�

M ⌦ eOX
^

�•
e⇥X/Y

�

,

where the right eDY structure is naturally induced from that of f�1 eDY on M .

Example A.8.8 (Pushforward by a graph inclusion). Let g : X ! C be a holomorphic
function and let ◆g : X ,! X ⇥C denotes the graph embedding of g, with coordinate
t on the factor C. Let M be a right eDX -module. Then D◆g⇤M ' ◆g⇤M [gt] with the
right eDX⇥C-action defined locally be the following formulas (recall that for a holo-
morphic function h(x, t, z), the bracket [gkt , h] can be written as

P

j<k ah,j(x, t, z)g
j
t ):

(m⌦ gkt ) · gxi
= mgxi

⌦ gkt �m
@g

@xi
⌦ gk+1

t ,

(m⌦ gkt ) · gt = m⌦ gk+1

t ,

(m⌦ gkt ) · h(x, t, z) =
X

j<k

mah,j(x, g, z)⌦ gjt .
(A.8.8 ⇤)

Exercise A.39. Extend Df⇤ and Df! as functors from D+( eDX) (or Db( eDX)) to D+( eDY ).
[Hint : replace first M •

⌦ eDX
SpX!Y ( eDX) with the associated single complex.]

As in Remark A.8.4(3), show that if M • has bounded amplitude, then so has
Df!M

•.
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Recall that the flabby sheaves are injective with respect to the functor f⇤ (direct
image) in the category of sheaves (of modules over a ring) and, being c-soft, are
injective with respect to the functor f

!

(direct image with proper support). The
Godement canonical resolution is an explicit functorial flabby resolution for any sheaf.

Definition A.8.9 (Godement resolution).
(1) The Godement functor C0 (see [God64, p. 167]) associates to any sheaf L the

flabby sheaf C0(L ) of its discontinuous sections and to any morphism the correspond-
ing family of germs of morphisms. Then there is a canonical injection L ,! C0(L ).

(2) Set inductively (see [God64, p. 168]) Z0(L ) = L , Zk+1(L ) = Ck(L )/Zk(L ),
Ck+1(L ) = C0(Zk+1(L )) and define � : Ck(L ) ! Ck+1(L ) as the composition
Ck(L )! Zk+1(L )! C0(Zk+1(L )). This defines a complex (C•(L ), �), that we will
denote as (God

•
L , �).

(3) Given any sheaf L , (God
•
L , �) is a resolution of L by flabby sheaves. For

a complex (L •, d), we regard God
•
L • as a double complex ordered as written, i.e.,

with differential (�i, (�1)idj) on Godi L j , and therefore also as the associated simple
complex.

Corollary A.8.10. We have, by taking the single complex associated to the double com-
plex, and for ? = ⇤ or ? =!,

Df?M = f? God
•�

M ⌦ eDX
SpX!Y ( eDX)

�

.

Exercise A.40 (Compatibility with the Godement functor). (1) Show by induction
on k that, for every k > 0, the functor Godk is exact (see [God64, p. 168]). Given
an exact sequence 0! L 0 ! L ! L 00 ! 0 of sheaves, show that we have an exact
sequence of complexes

0 �! God
•
L 0 �! God

•
L �! God

•
L 00 �! 0.

Similarly, show that the functors f? Godk are exact (with ? = ⇤ or ? =!) and deduce
an exact sequence of complexes

0 �! f? God
•
L 0 �! f? God

•
L �! f? God

•
L 00 �! 0.

Deduce also that, for every k > 0 and a complex L •, we have

H i(f? Godk L •) ' f? Godk H iL •
.

(2) Show that, if L and F are eOX -modules and if F is locally free, then we
have a natural inclusion C0(L )⌦ eOX

F ,! C0(L ⌦ eOX
F ), which is an equality if F

has finite rank. More generally, show by induction that we have a natural morphism
Ck(L )⌦ eOX

F ! Ck(L ⌦ eOX
F ), which is an equality if F has finite rank.

(3) With the same assumptions, show that both complexes God
•
(L )⌦ eOX

F and
God

•
(L ⌦ eOX

F ) are resolutions of L ⌦ eOX
F . Conclude that the natural morphism

of complexes God
•
(L ) ⌦ eOX

F ! God
•
(L ⌦ eOX

F ) is a quasi-isomorphism, and an
equality if F has finite rank.
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(4) Let M be a right eDX -module. Show that the natural morphism of complex

(God
•
M )⌦ eOX

Sp eDX �! God
•
(M ⌦ eOX

Sp eDX)

is a quasi-isomorphism.
(5) Let M be a right eDX -module. Show that

Sp(God
•
M ) = God

•
SpM .

(6) If f : X = Y ⇥ T ! Y is the projection, show that, for ? = ⇤, !,

Df?M = f? God
•�

M ⌦ eOX
^

�•
e⇥X/Y

�

.

[Hint : use Example A.8.7.]

Exercise A.41 (Restriction to z = 1).
(1) Show that the Godement functor applied to sheaves of eC-modules restricts, for

z = 1, to the Godement functor applied to sheaves of C-vector spaces.
(2) Show that SpX!Y (DX) = SpX!Y ( eDX)/(z � 1) SpX!Y ( eDX).
(3) Conclude that Df?M /(z � 1)Df?M = Df?(M /(z � 1)M ) and, for every i,

H i
Df?M /(z � 1)H i

Df?M = H i
Df?(M /(z � 1)M ) (? = ⇤, !).

Exercise A.42 (Computation of the pushforward with differential forms)
Let f : X ! Y be a holomorphic map, let M be a right eDX -module and let M left

be the associated left eDX -module. As eDX!Y is a left eDX -module,

M left

⌦ eOX

eDX!Y = M ⌦f�1 eOY
f�1 eDY

has a natural structure of left eDX -module (by setting ⇠(µ⌦ 1Y )=⇠µ⌦1Y +µ⌦Tf(⇠),
see Exercise A.16(2)) and of course a compatible structure of right f�1 eDY -module. It
is often convenient to compute the pushforward Df?M with a complex of differential
forms (de Rham) and not a complex with poly-vector fields (Spencer). This exercise
gives such a formula.

(1) Show that the de Rham complex

e⌦•
X(M left

⌦ eOX

eDX!Y ) = e⌦•
X(M left

⌦ eOX
f⇤ eDY ) = e⌦•

X(M left

⌦f�1 eOY
f�1 eDY )

is isomorphic to M ⌦ eDX
SpX!Y ( eDX)[�n], as a complex of right f�1 eDY -modules, by

using the isomorphism (see Lemma A.5.4)

! ⌦ µ⌦ ⇠ ⌦ 1Y 7�! "(k + 1)!(⇠ ^ •)⌦ µ⌦ 1Y (⇠ 2 ^n�k e⇥X).

[Hint : see Exercise A.28.]
(2) Check that the connection induced by the left eDX -module structure on

M left

⌦ eOX
f⇤ eDY is e

r⌦ Id+ IdM left ⌦
e

r

X , where e

r

X is obtained from the universal
connection e

r

Y on eDY by the formula A.7.1.
(3) Conclude that, for ? = ⇤, !,

Df?M = Rf?e⌦
•
X(M left

⌦f�1 eOY
f�1 eDY )[n].
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This is the complex of left eDY -modules associated to the double complex

f? God
•
e⌦•
X(M left

⌦f�1 eOY
f�1 eDY )[n].

Show that this complex is quasi-isomorphic to the complex

f?e⌦
•
X(God

•
M left

⌦f�1 eOY
f�1 eDY )[n].

[Hint : use Exercise A.40.]
(4) Show that the latter complex is the single complex associated with the

double complex having terms f?(e⌦
n+i
X ⌦ Godj M left) ⌦ eOY

eDY and first differential
f?(er ⌦ Id+ IdM left ⌦

e

r

X) (the second differential is induced by the Godement
differential).

Remark A.8.11 (C1 computation of the pushforward). In the setting of the previous
exercise, it is often more convenient to replace the Godement resolution by a Dolbeault
resolution. We then have

Df?M = f? eE
•
X(M left

⌦f�1 eOY
f�1 eDY )[n],

where the differential in the latter complex is obtained in the usual way from the
holomorphic differential of Exercise A.42(2) and the anti-holomorphic differential d00.

Example A.8.12 (C1 computation of the pushforward by a projection)
As in Example A.8.7, let f : X = Y ⇥T ! Y be the projection. Setting p = dimT ,

the relative version of Exercise A.28(2) gives an isomorphism, for M = M right,

M ⌦ ^

k
e⇥X/Y ' f�1e!Y ⌦ (e!X/Y ⌦M left

⌦ ^

k
e⇥X/Y )

⇠
�! f�1e!Y ⌦

e⌦p�k
X/Y ⌦M left,

an denoting by eE •
X/Y the complex of relative C1 differential forms (with relative

differentials ed0 and d00), (A.8.7 ⇤) reads

(A.8.12 ⇤) Df?M = e!Y ⌦ eOY
f?( eE

•
X/Y ⌦ eOX

M left)[p] ? = ⇤ or !.

The Lefschetz morphism. As a consequence of Remark A.8.11, given a (1, 1)-form e⌘ 2

�(X, eE (1,1)
X ) which ed-closed (equivalently, ed0 and d00-closed), there is a well-defined

morphism (? = ⇤ or ? =!)

e⌘ ^ : Df?M �! Df?M [2],

induced by e⌘ ^ : f? eE
•
X ! f? eE

•
X [2]. It is clearly functorial with respect to M , that is,

given any morphism ' : M
1

! M
2

, the following diagram commutes (where ? is
either for ⇤ or for !):

Df?M1

e⌘ ^
//

Df?'
✏✏

Df?M1

[2]

Df?'
✏✏

Df?M2

e⌘ ^
//
Df?M2

[2]
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Definition A.8.13 (The Lefschetz morphism attached to a closed (1, 1)-form)
The Lefschetz morphism associated to a (usual) closed (1, 1)-form ⌘ on X is the

morphism

L⌘ :=
1

z
⌘ ^ : Df?M �! Df?M [2](1).

It is functorial with respect to M

Remark A.8.14 (The Lefschetz morphism attached to a line bundle)
Let f : X ! Y be any morphism between complex manifolds and let L be a

line bundle on X, with Chern class c
1

(L ) 2 H2(X,Z). We will define a Lefschetz
morphism

LL : Df?M �! Df?M [2](1).

We can choose a closed (1, 1)-form ⌘ on X whose class in H2(X,C) is equal to the
complexified class c

1

(L )C. We regard ⌘ as a closed relative (1, 1)-form with respect
to the projection. As noticed in Remark A.5.7, namely by using a similar argument,
the action of L⌘ given in Definition A.8.13 only depends on the class of ⌘ in H2(X,C).
Notice also that, since ⌘ has degree two, wedging (or contracting) with ⌘ on the left
or on the right gives the same result.

We thus define LL as L⌘. This operator only depends on c
1

(L )C. It is functorial
with respect to M .

Remark A.8.15 (Restriction to z = 1 of the Lefschetz morphism)
It is obvious that the restriction to z = 1 of the morphism LL is the morphism

LL : Df?M �! Df?M[2].

Other properties of the pushforward functor
Exercise A.43 (Pushforward of induced eD-modules). Let L be an eOX -module and let
M = L ⌦ eOX

eDX be the associated induced right eDX -module. Let f : X ! Y be a
holomorphic map.

(1) Show that L ⌦ eOX
SpX!Y ( eDX) ! L ⌦ eOX

eDX!Y is a quasi-isomorphism.
[Hint : use that eDX is eOX -locally free.]

(2) Deduce that

M ⌦ eDX
SpX!Y ( eDX) = M ⌦ eDX

eDX!Y = L ⌦f�1 eOY
f�1 eDY .

(3) Show that Df!(L ⌦ eOX

eDX) is quasi-isomorphic to (Rf
!

L )⌦ eOY

eDY . [Hint : use
the projection formula.]

Exercise A.44 (Pushforward of eD-modules and pushforward of eO-modules)
Let f : X ! Y be a holomorphic map and let M be a right eDX -module. It is also

an eOX -module. The goal of this exercise is to exhibit natural eOY -linear morphisms
(? = ⇤, !)

Rif?M �!H i
Df?M .

(1) Show that eDX ⌦f�1 eOY
f�1 eDY has a natural global section 1.
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(2) Show that there is a natural f�1 eOY -linear morphism of complexes

M �!M ⌦ eDX
SpX!Y ( eDX), m 7�! m⌦ 1,

where M is considered as a complex with M in degree 0 and all other terms equal
to 0, so the differential are all equal to 0. [Hint : use Exercise A.18(3) to iden-
tify Sp0X!Y ( eDX) = eDX ⌦ eOX

eDX!Y with its twisted left eDX -structure (denoted by
eDX!Y ⌦ eOX

eDX in loc. cit.) with eDX ⌦ eOX

eDX!Y , where the tensor product uses the
right eOX -structure on eDX and the left eDX structure is the trivial one, and then with
eDX ⌦f�1 eOY

f�1 eOY with trivial left eDX -structure and tensor product using the right
eOX -structure of eDX . Identify then M⌦ eDX

( eDX⌦ eOX

eDX!Y ) with M⌦f�1 eOY
f�1 eDY .]

(3) Conclude with the existence of the desired morphisms.

Exercise A.45 (Grading and pushforward, right case). Let (M, F•M) be a filtered right
DX -module. Set M = RFM , so that grFM = M /zM .

(1) Show that

(M ⌦RF DX
SpRFDX!Y )⌦C[z] C[z]/zC[z] ' grFM⌦L

Sym⇥X
f⇤ Sym⇥Y .

[Hint : Use the associativity of ⌦ and Exercise A.38(3).]
(2) Assume that Df?M is strict (i.e., the complex of Corollary A.8.10 is strict in

the sense of Definition A.2.5 or 8.2.2). Show that, for every i, we have, as graded
modules

grFH i
Df?M 'H iRf?

�

grFM⌦L
Sym⇥X

f⇤ Sym⇥Y

�

.

A.8.b. Composition of direct images and the Leray spectral sequence for
right eD-modules

We compare the result of the pushforward functor by the composition of two maps
with the pushforward by the second map of the pushforward by the first map. We find
an isomorphism at the level of derived categories, that we will translate as a spectral
sequence, which is the eD-module analogue of the Leray spectral sequence (see Section
A.11.c).

Theorem A.8.16 (Composition of direct images). Let

f : X �! Y and f 0 : Y �! Z

be two holomorphic maps. There is a functorial canonical isomorphism of functors

D(f
0
� f)

!

= Df
0
!

Df!.

If f is proper, we also have
D(f
0
� f)⇤ = Df

0
⇤Df⇤.

Proof. We have a natural morphism of complexes

SpX!Y ( eDX)⌦f�1 eDY
f�1 SpY!Z( eDY ) �! SpX!Y ( eDX)⌦f�1 eDY

f�1 eDY!Z ,
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lifting the identity morphism of eDX!Y ⌦f�1 eDY
f�1 eDY!Z , obtained by using the

augmentation morphism SpY!Z( eDY )! eDY!Z .
On the one hand, the left-hand term is a resolution (in the category of

( eDX , (f 0 �f)�1 eDZ)-bimodules) of eDX!Z by locally free eDX -modules. Indeed, remark
that, as SpY!Z( eDY ) is eDY locally free, one has

SpX!Y ( eDX)⌦f�1 eDY
f�1 SpY!Z( eDY )

⇠
�!

eDX!Y ⌦f�1 eDY
f�1 SpY!Z( eDY )

= eOX ⌦f�1 eOY
f�1 SpY!Z( eDY )

= eOX ⌦
L
f�1 eOY

f�1 eDY!Z

= eOX ⌦f 0�1f�1 eOZ
f 0�1f�1 eDZ ( eDY!Z is eOY locally free)

= eDX!Z .

On the other hand, there is a natural morphism

SpX!Y ( eDX)⌦f�1 eDY
f�1 eDY!Z �! SpX!Z( eDX).

Indeed, we have a natural morphism
h

Sp
•
( eDX)⌦ eOX

eDX!Y

i

⌦f�1 eDY
f�1 eDY!Z

⇠
�! Sp

•
( eDX)⌦ eOX

eDX!Z ,

which is an isomorphism of ( eDX , (f 0 �f)�1 eDZ)-bimodules, according to the chain rule
(Exercise A.35).

We have found a morphism, lifting the identity,

SpX!Y ( eDX)⌦f�1 eDY
f�1 SpY!Z( eDY ) �! SpX!Z( eDX),

between two resolutions (in the category of ( eDX , (f 0 � f)�1 eDZ)-bimodules) of eDX!Z

by locally free eDX -modules. This morphism is therefore a quasi-isomorphism. We now
have, for an object M of Mod( eDX) or of D+( eDX) (see Remark A.8.17 for details):

D(f
0
� f)

!

M = R(f 0 � f)
!

�

M ⌦ eDX
SpX!Z( eDX)

�

' R(f 0 � f)
!

�

M ⌦ eDX
SpX!Y ( eDX)⌦f�1 eDY

f�1 SpY!Z( eDY )
�

' Rf 0
!

Rf
!

�

M ⌦ eDX
SpX!Y ( eDX)⌦f�1 eDY

f�1 SpY!Z( eDY )
�

' Rf 0
!

h

Rf
!

�

M ⌦ eDX
SpX!Y ( eDX)

�

⌦ eDY
SpY!Z( eDY )

i

= Df
0
!

Df!M .

Remark that the analogous result holds with Df⇤ if f is proper on the support of M .

This theorem reduces the computation of the direct image by any morphism
f : X ! Y by decomposing it as f = p � ◆f , where ◆f : X ,! X ⇥ Y denotes the
graph inclusion x 7! (x, f(x)). As ◆f is an embedding, it is proper, so we have
Df⇤ = Dp⇤D◆f⇤.
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Remark A.8.17. We can make explicit the isomorphism of Theorem A.8.16(6) by using
the Godement resolution as follows. We have, for an object M of Mod( eDX) or
of D+( eDX):

D(f
0
� f)

!

M = (f 0 � f)
!

God
•�

M ⌦ eDX
SpX!Z( eDX)

�

' (f 0 � f)
!

God
•�

M ⌦ eDX
SpX!Y ( eDX)⌦f�1 eDY

f�1 SpY!Z( eDY )
�

' f 0
!

God
•
f
!

God
•�

M ⌦ eDX
SpX!Y ( eDX)⌦f�1 eDY

f�1 SpY!Z( eDY )
�

(A.8.17.a)

' f 0
!

God
•
f
!

h

God
•�

M ⌦ eDX
SpX!Y ( eDX)

�

⌦f�1 eDY
f�1 SpY!Z( eDY )

i

(A.8.17.b)

' f 0
!

God
•
h

f
!

God
•�

M ⌦ eDX
SpX!Y ( eDX)

�

⌦ eDY
SpY!Z( eDY )

i

(A.8.17.c)

= Df
0
!

Df!M .

Indeed, (A.8.17.a), as f
!

God
• is c-soft, it is acyclic for f 0

!

, hence the natural mor-
phism f 0

!

f
!

God
•
!f 0

!

God
•
f
!

God
• is an isomorphism. Next, (A.8.17.b) follows from

Exercise A.40, as the terms of SpY!Z( eDY ) are eDY -locally free (see A.38(2)). Lastly,
(A.8.17.c) follows from the projection formula for f

!

(e.g. [KS90, Prop. 2.5.13]).
If f is proper, then f

!

= f⇤ and f
!

God
• is flabby, so (A.8.17.a) still holds with f 0⇤,

and the same reasoning gives D(f 0 � f)⇤ = Df
0
⇤Df⇤.

If f is not proper, we cannot assert in general that D(f 0 � f)⇤ = Df
0
⇤Df⇤. However,

such an identity still holds when applied to suitable subcategories of D+( eDX), the
main examples being:

• the restriction of f to the support of M is proper,
• M has eDX -coherent cohomology.

In such cases, the natural morphism coming in the projection formula for f⇤ is a
quasi-isomorphism (see [MN93, §II.5.4] for the coherent case).

Remark A.8.18 (Behaviour of the Spencer complex by pushforward)
In the proof of Theorem A.8.16, let us set Z = pt, so that SpY!Z( eDY ) =

SpY ( eDY ). By the same argument, but not applying the functor Rf 0
!

, we obtain

SpY (Df!M ) ' Rf
!

SpX(M ).

Remark A.8.19 (The Leray spectral sequence). Let us consider the expression
(A.8.17.c). Firstly, f

!

God
•�

M ⌦ eDX
SpX!Y ( eDX)

�

is a bi-complex, that we replace
with its associated single complex (K 0•, �0), having cohomology Df

i
!

M . Similarly,
f 0
!

God
• ⇥

K 0•⌦ eDY
SpY!Z( eDY )

⇤

is a triple complex, from which we consider the asso-
ciated double complex (K•,•, �0, �00) by grouping the terms corresponding to f 0

!

God
•

and SpY!Z( eDY ). The single complex attached to (K•,•, �0, �00) has cohomology
D(f 0 � f)k

!

M , according to our previous computation.
Since the terms of the complex SpY!Z are eDY -locally free (see Exercise A.38(2)),

we have
H i

�0(K
0•
⌦ eDY

SpY!Z( eDY )) = Df
i
!

M ⌦ eDY
SpY!Z( eDY ).
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Similarly, according to Exercise A.40(1), we have

H i
�0(f

0
!

Godj(K 0• ⌦ eDY
SpY!Z( eDY ))) = f 0

!

Godj(Df
i
!

M ⌦ eDY
SpY!Z( eDY )).

We deduce that, with respect to the spectral sequence attached to the double complex
(K•,•, �0, �00), we have

Ei,j
2

= Hj
�00(H

i
�0(K

•,•)) = Df
0
!

j(Df
i
!

M ).

We call this spectral sequence the Leray spectral sequence for the composition f 0 � f .
Since the functors f

!

and f 0
!

have finite cohomological dimension, we can truncate
the complexes above at a finite order and the spectral sequence degenerates at a
finite step. In such a way, the abutment D(f 0 � f)k

!

M comes equipped with a natural
filtration, that we call the Leray filtration, such that

Ei,j
1 = gri

Ler

D(f
0
� f)i+j

!

M .

We have a similar result for D(f 0 � f)k⇤M if f is proper.
By using Exercise A.41, we note that the restriction to z = 1 of the Leray spectral

sequence is the Leray spectral sequence for DX -modules.

A.8.c. Pushforward of left eD-modules. We make explicit the effect of side-
changing with respect to the pushforward functor. Our definition is intended to
be similar to the standard convention for the constant map X ! pt (see Caveat
A.8.21). It will also be shown to coincide, after taking cohomology, with the notion
of Gauss-Manin connection, in the case of a proper smooth morphism, see Theorem
A.11.23.

Definition A.8.20 (Pushforward of a left eDX -module). If M is a left eDX -module (recall
that n = dimX, m = dimY ), one defines the pushforward functor by side-changing:

Df?M = (Df?M
right)left[m� n] (? = ⇤, !),

= e!_
Y ⌦

�

Df?(e!X ⌦M )
�

[m� n] (see Caveat A.3.3).

Caveat A.8.21. The standard definition of the pushforward of a left eD-module does not
introduce the shift [m�n]. We introduce it here in order that, when f is the constant
map to a point, we get H k

Df⇤M left = Hk(X,DRM left) according to (A.5.5 ⇤), a
convention which is commonly used for vector bundles with flat connection. Similarly,
according to Remark A.8.18, we have

DR(Df!M ) ' Rf
!

DRM .

Indeed,

DR(Df!M ) ' SpY
�

(Df!M )right[�m]
�

(due to (A.5.5 ⇤))

' SpY
�

Df!(M
right)[�n]

�

(Definition A.8.20)

' Rf
!

SpX(M right)[�n] (Remark A.8.18)
' Rf

!

DRM (due to (A.5.5 ⇤)).
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Exercise A.46 (Computation of the pushforward of a left eDX -module)
(1) We consider the setting of Exercise A.42 with a left eDX -module M . By using

the results of this exercise, show

(Df?M )right = Rf?e⌦
•
X(M ⌦f�1 eOY

f�1 eDY )[m].

(2) We now compute the pushforward by the graph inclusion ◆f : X ,! X ⇥ Y

in local coordinates y
1

, . . . , ym on Y . Set fj = yj � f . Show that H j
D◆f⇤M = 0

for j 6= �m, and H �m
D◆f⇤M ' ◆f⇤M [gy1 , . . . , gym ](�m) with left eDX⇥Y structure

given locally by

gyj
· µg↵y = µg↵+1j

y ,

gxi
· µg↵y = (gxi

µ)g↵y �
m
X

j=1

@fj
@xi

µg↵+1j
y .

[Hint : for the shift (�m) of the grading, use Exercise A.23(2).]
(3) Show that, when f : X ! Y is a projection, we recover the definition of

Example A.8.2.
(4) Let ⌘ be a closed (1, 1)-form on X. Show that the Lefschetz morphism

L⌘ :
1

z
⌘ ^ : Df?M �! Df?M [2](1)

is functorial in M and compatible with the side-changing functor.
(5) As in Remark A.8.14, define the Lefschetz morphism

LL : Df?M �! Df?M [2](1)

attached to a line bundle on X, for any morphism f : X ! Y .

Exercise A.47 (Grading and pushforward, left case). With the assumptions as in Ex-
ercise A.45(2), but assuming that M is a left DX -module, show that

grFH i
Df?M 'H i+n�mRf?

�

!X/Y ⌦OX
grF•+n�mM⌦L

Sym⇥X
f⇤ Sym⇥Y

�

,

where !X/Y := !X ⌦OX
f⇤!⌦�1Y , and we have set n = dimX, m = dimY . For

example, if Y = pt, deduce that

grFHi(X,DRM) 'Hi+n
�

X,!X ⌦ (grF•+nM⌦
L
Sym⇥X

OX)
�

.

A.8.d. A morphism of adjunction. There are various adjunction morphisms for
eD-modules in the literature (see [Kas03, HTT08]). We will give here a simple one,
in the case where the source and target of the proper holomorphic map f : X ! Y

have the same dimension. In such a case, the cotangent map T ⇤f induces a morphism

f�1e⌦k
Y �!

e⌦k
X

for every k, which is compatible with the differential ed, and similarly for C1 forms.

Proposition A.8.22. Under this assumption, if M is a left eDY -module, there is a func-
torial morphism

M �! Df
0

⇤ Df
⇤M .
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Proof. Set n = dimX = dimY . By Exercise A.42 we have

(Df⇤Df
⇤M )right ' f⇤

⇣

eE •
X ⌦ (Df

⇤M ⌦f�1 eOY
f�1 eDY )[n]

⌘

' f⇤

⇣

eE •
X ⌦f�1 eOY

f�1(M ⌦ eOY

eDY )[n]
⌘

' f⇤ eE
•
X ⌦ eOY

(M ⌦ eOY

eDY )[n],

where the last isomorphism is the sheaf-theoretic projection formula for a proper map.
By using the isomorphism of Exercise A.18(3), we finally obtain

(Df⇤Df
⇤M )right ' f⇤ eE

•
X ⌦ eOY

( eDY ⌦ eOY
M )[n].

The cotangent map f�1 eE k
Y !

eE k
X induces, by using the sheaf-theoretic adjunction

f⇤f
�1
! Id, a morphism eE k

Y ! f⇤ eE k
X compatible with differentials, hence a morphism

eE •
Y ⌦ ( eDY ⌦ eOY

M )[n] �! (Df⇤Df
⇤M )right.

Lastly, by using Exercise A.26(2), we find
eE •
Y ⌦ ( eDY ⌦ eOY

M )[n]
⇠
 �

e⌦•
Y ⌦ ( eDY ⌦ eOY

M )[n]
⇠
�!M right.

A.9. Coherence of eDX

Let us begin by recalling the definition of coherence. Let A be a sheaf of rings on
a space X.

Definition A.9.1.
(1) A sheaf of A -modules F is said to be A -coherent if it is locally of finite type:

8x 2 X, 9Ux, 9 q, 9A q
|Ux
!�! F|Ux

,

and if, for any open set U of X and any A -linear morphism ' : A r
|U ! F|U , the

kernel of ' is locally of finite type.
(2) The sheaf A is a coherent sheaf of rings if it is coherent as a (left and right)

module over itself.

Lemma A.9.2. Assume A coherent. Let F be a sheaf of A -module. Then F is A -
coherent if and only if F is locally of finite presentation: 8x 2 X, 9Ux, 9 p, q and
an exact sequence

A p
|Ux
�! A q

|Ux
�! F|Ux

�! 0.

Classical theorems of Cartan and Oka claim the coherence of eOX , and a theorem
of Frisch asserts that, if K is a compact polycylinder, eOX(K) is a Noetherian ring.
It follows that grF eDX(K) is a Noetherian ring, and one deduces that eDX(K) is left
and right Noetherian. From this one concludes that the sheaf of rings eDX is coherent
(see [GM93, Kas03] for details).

Exercise A.48.
(1) Prove similarly the coherence of the sheaf of rings grF eDX .
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(2) Let D ⇢ X be a hypersurface and let eOX(⇤D) be the sheaf of meromorphic
functions on X with poles on D at most (with arbitrary order). Prove similarly that
eOX(⇤D) is a coherent sheaf of rings.

(3) Prove that eDX(⇤D) := eOX(⇤D)⌦ eOX

eDX is a coherent sheaf of rings.
(4) Let ◆ : Y ,! X denote the inclusion of a smooth submanifold. Show that

i⇤ eDX := eOY ⌦ eOX

eDX is a coherent sheaf of rings on Y .
(5) Let Y ⇢ X be a smooth hypersurface of X. Show that V

0

eDX (see Section 7.2)
is a coherent sheaf of rings.

A.10. Coherent eDX-modules and coherent filtrations

Let M be a eDX -module. From the preliminary reminder on coherence, we know
that M is eDX-coherent if it is locally finitely presented, i.e., if for any x 2 X there
exists an open neighbourhood Ux of x an an exact sequence eDq

X|Ux
!

eDp
X|Ux

!M|Ux
.

Exercise A.49.
(1) Let M ⇢ N be a eDX -submodule of a coherent eDX -module N . Show that,

if M is locally finitely generated, then it is coherent.
(2) Let � : M ! N be a morphism between coherent eDX -modules. Show that

Ker� and Coker� are coherent.

A.10.a. Coherent filtrations

Definition A.10.1 (Coherent filtrations). Let F•M be a filtration of M (see Section A.2).
We say that the filtration is coherent if the Rees module RFM is coherent over the
coherent sheaf RF

eDX (i.e., locally finitely presented).

It is useful to have various criteria for a filtration to be coherent.

Exercise A.50 (Characterization of coherent filtrations).
(1) Show that the following properties are equivalent:

(a) F•M is a coherent filtration;
(b) for every k 2 Z, FkM is eOX -coherent, and, for every x 2 X, there exists a

neighbourhood U of x and k
0

2 Z such that, for every k > 0, Fk
eDX|U ·Fk0M|U =

Fk+k0M|U ;
(c) the graded module grFM is grF eDX -coherent.

(2) Conclude that, if F•M , G•M are two coherent filtrations of M , then, locally
on X, there exists k

0

such that, for every k, we have

Fk�k0
M ⇢ GkM ⇢ Fk+k0

M .

Proposition A.10.2 (Local existence of coherent filtrations). If M is eDX-coherent, then
it admits locally on X a coherent filtration.

Proof. Exercise A.51.
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Exercise A.51 (Local existence of coherent filtrations).
(1) Write RFM =

L

k FkM ⇣k and show that, if M has a coherent filtration, then
it is eDX -coherent. [Hint : use that the tensor product C[⇣]/(⇣ � 1) ⌦C[z] • is right
exact.]

(2) Conversely, show that any coherent eDX -module admits locally a coherent fil-
tration. [Hint : choose a local presentation eDq

X |U
'
�!

eDp
X |U ! M|U ! 0, and show

that the filtration induced on M|U by F•
eDp
X |U is coherent by using Exercise A.50:

Set K = Im' and reduce the assertion to showing that Fj
eDX \K is eOX -coherent;

prove that, up to shrinking U , there exists ko 2 N such that '(Fk
eDq
X |U ) ⇢ Fk+ko

eDp
X |U

for every k; deduce that '(Fk
eDq
X |U ), being locally of finite type and contained in a

coherent eOX -module, is eOX -coherent for every k; conclude by using the fact that
an increasing sequence of coherent eOX -modules in a coherent eOX -module is locally
stationary.]

(3) Show that a coherent filtration F•M satisfies FpM = 0 for p⌧ 0 locally [Hint :
use that this holds for the filtration constructed in (2) and apply Exercise A.50(2).]

(4) Show that, locally, any coherent eDX -module is generated over eDX by a coherent
eOX -submodule.

(5) Let M be a coherent eDX -module and let F be an eOX -submodule which is
locally finitely generated. Show that F is eOX -coherent. [Hint : choose a coherent
filtration F•M and show that, locally, F ⇢ FkM for some k; apply then the analogue
of Exercise A.49(1) for eOX -modules.]

The notion of a coherent filtration is the main tool to obtain results on coherent
eDX -modules from theorems on coherent eOX -modules, and the main results concern-
ing coherent eDX -modules are obtained from the theorems of Cartan and Oka for
eOX -modules.

Theorem A.10.3 (Theorems of Cartan-Oka for eDX -modules)
Let M be a left eDX-module and let K be a compact polycylinder contained in an

open subset U of X, such that M has a coherent filtration on U . Then,

(1) �(K,M ) generates M|K as an eOK-module,
(2) For every i > 1, Hi(K,M ) = 0.

Proof. This is easily obtained from the theorems A and B for eOX -modules, by using
inductive limits (for A it is obvious and, for B, see [God64, Th. 4.12.1]).

Theorem A.10.4 (Characterization of coherence for eDX -modules, see [GM93])
(1) Let M be a left eDX-module. Then, for any small enough compact polycylin-

der K, we have the following properties:
(a) M (K) is a finite type eD(K)-module,
(b) For every x 2 K, eOx ⌦ eO(K)

M (K)!Mx is an isomorphism.
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(2) Conversely, if there exists a covering {K↵} by polycylinders K↵ such that X

is the union of the interiors of the K↵ and that on any K↵ the properties (1a) and
(1b) are fulfilled, then M is eDX-coherent.

Exercise A.52.
(1) Show similar statements for RF

eDX -modules, grF eDX -modules, eOX(⇤D)-
modules, eDX(⇤D)-modules and i⇤ eDX -modules (see Exercise A.48).

(2) Let M be a coherent eDX -module. Show that eDX(⇤D) ⌦ eDX
M is eDX(⇤D)-

coherent and that i⇤M is i⇤ eDX -coherent.

Exercise A.53 (External product).
(1) Let A,B be two Noetherian eC-algebras. Show that A⌦eC B is Noetherian.
(2) Let X,Y be two complex manifolds and let pX , pY be the projections from

X ⇥ Y to X and Y respectively. For any pair of sheaves of eC-vector spaces FX ,FY

on X and Y respectively, set FX ⇥eC FY := p�1X FX⌦eC p
�1
Y FY . Show that eOX ⇥eC

eOY

is a coherent sheaf of rings on X ⇥Y . [Hint : Use an analogue of Theorem A.10.4(2).]
(3) Prove similar properties for eDX ⇥eC

eDY .
(4) Show that eOX⇥Y is faithfully flat over eOX ⇥eC

eOY . [Hint : Use [Ser56,
Prop. 28].]

(5) Show that

eDX⇥Y = eOX⇥Y ⌦
(

eOX⇥eC
eOY )

( eDX ⇥eC
eDY ) = ( eDX ⇥eC

eDY )⌦
(

eOX⇥eC
eOY )

eOX⇥Y .

(6) For an eOX -module LX (resp. a eDX -module MX) and an eOY -module LY

(resp. a eDY -module MY ), set

LX ⇥ eO LY = (LX ⇥eC LY )⌦ eOX⇥eC
eOY

eOX⇥Y

MX ⇥ eD MY = (MX ⇥eC MY )⌦ eOX⇥eC
eOY

eOX⇥Yresp.

= (MX ⇥eC MY )⌦ eDX⇥eC
eDY

eDX⇥Y .

Show that if LX ,LY are eO-coherent (resp. MX ,MY are eD-coherent), then
LX ⇥ eO LY is eOX⇥Y -coherent (resp. MX ⇥ eD MY is eDX⇥Y -coherent).

(7) Show that, if F•MX , F•MY are coherent filtrations, then Fj(MX ⇥ eD MY ) :=
P

k+`=j FkMX ⇥ eO F`MY is a coherent filtration of MX ⇥ eD MY for which

grF(MX ⇥ eD MY ) = grFMX ⇥
gr

F eD grFMY .

[Hint : See [Kas03, §4.3].]

A first application of Theorem A.10.4 is a variant of the classical Artin-Rees lemma:

Corollary A.10.5. Let M be a eDX-module with a coherent filtration F•M and let N be
a coherent eDX-submodule of M . Then the filtration F•N := N \ F•M is coherent.
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Proof. Let K be a small compact polycylinder for RFM . Then �(K,RFM ) is finitely
generated, hence so is �(K,RFN ), as �(K,RF

eDX) is Noetherian. It remains to be
proved that, for any x 2 K and any k, the natural morphism

eOx ⌦ eO(K)

(FkM (K) \N (K)) �! FkMx \Nx

is an isomorphism. This follows from the flatness of eOx over eO(K) (see [Fri67]).

Exercise A.54. Similarly, prove that if ' : M ! N is a surjective morphism of
coherent eDX -modules and if F•M is coherent, then F•N := '(F•M ) is coherent as
well.

A.10.b. Support and characteristic variety. Let M be a coherent eDX -module.
Being a sheaf on X, M has a support SuppM , which is the closed subset complement
to the set of x 2 X in the neighbourhood of which M is zero.

Lemma A.10.6. The support of a coherent eOX-module is a closed analytic subset of X.

Proof. This is standard if eOX = OX . On the other hand, if eOX = RFOX , let fI be
a graded ideal of eOX , locally generated by functions fjz

j with fj 2 OX . Then the
support of eOX/ fI is that of OX/(fj)j .

Such a property extends to coherent eDX -modules:

Proposition A.10.7. The support SuppM of a coherent eDX-module M is a closed
analytic subset of X.

Proof. The property of being an analytic subset being local, we may assume that M
is generated over eDX by a coherent eOX -submodule F (see Exercise A.51(4)). Then
the support of M is equal to the support of F .

The support is usually not the right geometric object attached to a eDX -module M ,
as it does not provide enough information on M . A finer object is the characteristic
variety. Using the convention A.2.14, we set eT ⇤X = T ⇤X or eT ⇤X = T ⇤X ⇥ Cz.

Definition A.10.8 (Characteristic variety). Let M be a coherent eDX -module. The
characteristic variety CharM is the subset of the cotangent space eT ⇤X defined locally
as the support of grFM for some (or any) local coherent filtration of M .

Exercise A.55. Let 0!M 0
!M !M 00

! 0 be an exact sequence of eDX -modules.
Show that CharM = CharM 0

[ CharM 00. [Hint : take a coherent filtration on M
and induce it on M 0 and M 00.]

Exercise A.56 (Coherent eDX -modules with characteristic variety T ⇤XX)
Assume that M is coherent with characteristic variety contained in T ⇤XX ⇥ eCz.

(1) Show that, for any local coherent filtration F•M , the graded module grFM is
locally of finite type, hence coherent (see Exercise A.51(5)) over eOX .

(2) Deduce that, locally on X, there exists po such that grFp M = 0 for p > po.
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(3) Conclude that M is eOX -coherent.
(4) For a DX -module M, deduce that M is locally free of finite rank.

Exercise A.57 (Coherent DX -modules with characteristic variety contained in T ⇤Y X)
In this exercise, we switch to the case of DX -modules. Let ◆ : Y ,! X be the in-

clusion of a smooth codimension p closed submanifold. Define the p-th algebraic local
cohomology with support in Y by Rp�

[Y ]

OX = lim
�!

k
Extp(OX/I k

Y ,OX), where IY

is the ideal defining Y . Rp�
[Y ]

OX has a natural structure of DX -module. In local
coordinates (x

1

, . . . , xn) where Y is defined by x
1

= · · · = xp = 0, we have

Rp�
[Y ]

OX '
OCn [1/x

1

· · ·xn]
Pp

i=1

OCn(xi/x1

· · ·xn)
.

Denote this DX -module by BY X.
(1) Show that BY X has support contained in Y and characteristic variety equal

to T ⇤Y X.
(2) Identify BY X with D◆⇤OY .
(3) Let M be a coherent DX -module with characteristic variety equal to T ⇤Y X.

Show that M is locally isomorphic to (BY X)d for some d.

A.10.c. Holonomic eDX-modules and duality

Definition A.10.9 (Holonomic eDX -modules). A coherent eDX -module M is said to be
holonomic if CharM ⇢ ⇤⇥ eCz, where ⇤ is a Lagrangian closed subvariety of T ⇤X.

Such a Lagrangian subvariety is the union of its irreducible components, each of
which is usually written as T ⇤ZX, where Z is a closed irreducible subvariety of X and
T ⇤ZX means the closure, in the cotangent space T ⇤X of the conormal bundle T ⇤ZoX of
the smooth part Zo of Z. It is also known that, due to the existence of stratifications
satisfying Whitney condition (a), there exist a locally finite family (Zo

i )i2I of locally
closed sub-manifolds Zo

i of Z, with analytic closure and one of them being Zo, such
that T ⇤ZX ⇢

F

i T
⇤
Zo

i
X.

For example, a coherent eDX -module as in Exercise A.56 is holonomic. The case of
DX -modules is the most useful. We will recall some fundamental results.

Proposition A.10.10. Let M be a coherent DX-module. We have

Ext iDX
(M,DX) = 0 for i > n+ 1.

Theorem A.10.11. Let M be a coherent DX-module and x 2 SuppM. Then

2n� dimx CharM = inf{i 2 N | Ext iDX,x
(Mx,DX,x) = 0}.

Corollary A.10.12. Let M be a coherent DX-module. Then M is holonomic if and
only if Ext iDX

(M,DX) = 0 for i 6= dimX. The DX-module ExtdimX
DX

(M,DX)
(see Section A.4.5), after having applied the suitable side changing functor to it, is
called the dual of M, and denoted by DM.
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Theorem A.10.13 (Bi-duality, see [Kas76]). Let M be a holonomic DX-module. Then
its dual module DM is holonomic and the natural functorial morphism from M to its
bi-dual module DDM is an isomorphism.

Let us now consider holonomicity and duality for strict coherent RFDX -modules.

Exercise A.58. Let M be a coherent DX -module equipped with a coherent filtration
F•M.

(1) Show that Char(RFM) = (CharM) ⇥ Cz, so that M is holonomic (in the
sense of Definition A.10.9) if and only if M is holonomic. (In other words, for a
strict coherent eDX -module M , M /(z � 1)M is holonomic if and only if M itself is
holonomic.)

(2) In such a case, show that Ext iRF DX
(RFM, RFDX) consists of z-torsion if i 6=

dimX.

Definition A.10.14. We say that RFM is strict holonomic if RFM is holonomic and
Ext iRF DX

(RFM, RFDX) is a strict RFDX -module for every i (and as a consequence,
Ext iRF DX

(RFM, RFDX) = 0 for i 6= dimX).

Exercise A.59. Assume that RFM is strict holonomic. Then there is a unique coherent
filtration F• ExtdimX

DX
(M,DX) such that

RF ExtdimX
DX

(M,DX) = ExtdimX
RF DX

(RFM, RFDX).

A.10.d. Coherence of the pushforward

Theorem A.10.15 (Coherence of the pushforward). Let f : X ! X 0 be a holomorphic
map between complex manifolds and let M be a coherent eDX-module. Assume that M
admits a coherent filtration F•M . Then, if f is proper, the pushforward complex
Df⇤M has eDX0-coherent cohomology.

Proof. Assume first that M is an induced right eDX -module L ⌦ eOX

eDX where L is
a coherent eOX -module. Due to the formula of Exercise A.43(3), the result follows
from Grauert’s direct image theorem. As a consequence, the same result holds for
any bounded complex of such induced right eDX -modules.

For M arbitrary, it is enough by Remark A.8.4(3) to prove the coherence of
H j

Df⇤M for j 2 [� dimX, 2 dimX]. Since the eDX0 -coherence is a local property
on X 0, it is enough to prove the coherence property in the neighbourhood of any
x0 2 X 0, and therefore it is enough to show the existence, in the neighbourhood of the
compact set f�1(x0), of a resolution of M�N�1 ! · · ·!M

0

!M ! 0 of sufficiently
large length N+2, such that Mj is a coherent induced eDX -module for j = �N, . . . , 0.

Since f�1(x0) is compact, there exists p such that FpM ⌦ eOX

eDX is onto in
some neighbourhood of f�1(x0) (i.e., the coherent eOX -module FpM generates M

as a eDX -module). Set Fq(FpM ⌦ eOX

eDX) = FpM ⌦ eOX
Fq�p eDX . This is a co-

herent filtration of FpM ⌦ eOX

eDX , which therefore induces a coherent filtration on
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Ker[FpM ⌦ eOX

eDX !M ]. Continuing this way N+2 times, we obtained a resolution
of length N +2 of M by coherent induced right eDX -modules on some neighbourhood
of f�1(x0).

Remark A.10.16 (Pushforward of a holonomic eDX -module). Assume that the coherent
eDX -module M has a good filtration. For example, assume that M is strict. Then,
the pushforward of a holonomic eDX -module by a proper holomorphic map has coher-
ent cohomology. Moreover, a theorem of Kashiwara [Kas76] complements Theorem
A.10.15 with an estimate of the characteristic variety of the pushforward cohomology
eDX0 -modules in terms of the characteristic variety of the source eDX -module. This
estimate shows that holonomicity is preserved by proper pushforward. (The theorem
of Kashiwara is proved for holonomic DX -modules, but it extends in a straightforward
way to holonomic eDX -modules.)

A.11. Appendix: Differential complexes and the Gauss-Manin connection

In this section we switch to the case of DX -modules as in Section A.1 (see Remark
A.11.9). Let M be a left DX -module and let f : X ! Y be a holomorphic mapping.
On the one hand, we have defined the direct images Df⇤M or Df!M of M viewed as
DX -modules. These are objects in D+(DY )left. On the other hand, when f is a smooth
holomorphic mapping, a flat connection called the Gauss-Manin connection is defined
on the relative de Rham cohomology of M. We will compare both constructions,
when f is smooth. Such a comparison has essentially already been done when f is the
projection of a product X = Y ⇥ T ! Y (see Example A.8.7 and Exercise A.46(??)).

In this section we also introduce the derived category of differential complexes on
a complex manifold X, that is, complexes of OX -modules with differential morphisms
as differential. This derived category is shown to be equivalent to that of DX -modules
(Theorem A.11.16). It is sometimes useful to work in this category (see e.g. the proof
of Theorem A.11.23).

A.11.a. Differential complexes. Given an OX -module L, there is a natural OX -
linear morphism (with the right structure on the right-hand term)

L �! L⌦OX
DX , ` 7�! `⌦ 1.

There is also a (only) C-linear morphism

(A.11.1) L⌦OX
DX �! L

defined at the level of local sections by `⌦P 7! P (1)`, where P (1) is the result of the
action of the differential operator P on 1, which is equal to the degree 0 coefficient
of P if P is locally written as

P

↵ a↵(x)@↵x . In an intrinsic way, consider the natural
augmentation morphism DX ! OX , which is left DX -linear, hence left OX -linear;
then apply L⌦OX

• to it. Notice however that (A.11.1) is an OX -linear morphism by
using the left OX -module structure on L⌦OX

DX .
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Exercise A.60. Let L be an OX -module. Show that the terms of the Spencer complex
Sp(L ⌦OX

DX) are OX -modules with the “left” structure, that the differentials are
OX -linear, that this complex is a resolution of L as an OX -module and that the
morphism (A.11.1) is the augmentation morphism Sp0(L⌦OX

DX)! L. [Hint : use
Exercise A.29.]

Let L,L0 be two OX -modules. A (right) DX -linear morphism

(A.11.2) v : L⌦OX
DX �! L0 ⌦OX

DX

is uniquely determined by the OX -linear morphism

(A.11.3) w : L �! L0 ⌦OX
DX

that it induces (where the right OX -module structure is chosen on L0 ⌦OX
DX). In

other words, the natural morphism

HomOX
(L,L0 ⌦OX

DX) �! HomDX
(L⌦OX

DX ,L0 ⌦OX
DX)

is an isomorphism. We also have, at the sheaf level,

(A.11.4) HomOX
(L,L0 ⌦OX

DX)
⇠
�!HomDX

(L⌦OX
DX ,L0 ⌦OX

DX).

Notice that HomOX
(L,L0⌦OX

DX) is naturally equipped with an OX -module struc-
ture by using the left OX -module structure on L0 ⌦OX

DX (see Remark A.6.1), and
similarly HomOX

(L,L0 ⌦OX
DX) is a �(X,OX)-module.

Now, w induces a C-linear morphism

(A.11.5) u : L �! L0,

by composition with (A.11.1): L0 ⌦OX
DX ! L0. By Exercise A.60, u is nothing but

the morphism

H 0(
p
DR(v)) : H 0

�p
DR(L⌦OX

DX)
�

�!H 0

�p
DR(L0 ⌦OX

DX)
�

.

Definition A.11.6 (Differential operators between two OX -modules)
The C-vector space Hom

Di↵

(L,L0) of differential operators from L to L0 is the
image of the morphism HomDX

(L⌦OX
DX ,L0 ⌦OX

DX)! HomC(L,L0).
Similarly we define the sheaf of C-vector spaces Hom

Di↵

(L,L0).

Exercise A.61.
(1) Show that any OX -linear morphism u : L! L0 is a differential operator from L

to L0 and that a corresponding v is u⌦ 1.
(2) Assume that L,L0 are right DX -modules. Let u : L! L0 be DX -linear. Show

that the corresponding v is DX -linear for both structures (right)
triv

and (right)
tens

(see Exercise A.19) on L(0)
⌦OX

DX .
(3) Show that Hom

Di↵

(OX ,OX) = DX .
(4) Show that the morphism in Definition A.11.6 is compatible with composition.

Conclude that the composition of differential operators is a differential operator and
that it is associative.
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Exercise A.62 (Integrable connections are differential operators)
Let M be an OX -module and let r : M! ⌦1

X⌦OX
M be an integrable connection

on M.
(1) Show that r is a differential morphism, by considering the right DX -linear

morphism
v(m⌦ P ) := r(m)⌦ P +m⌦r(P ),

for any local section m of M and P of DX , and where rP is defined in Exercise A.5.
Extend this result to connections (k)

r.
(2) Let M0,M00 be OX -submodules of M such that (k)

r induces a C-linear mor-
phism (k)

r

0 : ⌦k
X⌦OX

M0 ! ⌦k+1

X ⌦OX
M00. Show that (k)

r

0 is a differential morphism.

Definition A.11.7 (The category Mod(OX ,Di↵X)). We denote by Mod(OX ,Di↵X) the
category whose objects are OX -modules and morphisms are differential operators
between OX -modules (this is justified by Exercise A.61(4)).

In particular, Mod(OX) is a subcategory of Mod(OX ,Di↵X), since any OX -linear
morphism is a differential operator (of degree zero).

Exercise A.63. Show that Mod(OX ,Di↵X) is an additive category, i.e.,
• Hom

Di↵

(L,L0) is a C-vector space and the composition is C-bilinear,
• the 0 OX -module satisfies Hom

Di↵

(0, 0) = 0,
• Hom

Di↵

(L
1

� L
2

,L0) = Hom
Di↵

(L
1

,L0) � Hom
Di↵

(L
2

,L0) and similarly with
L0

1

,L0
2

.

We will now show that the correspondence L 7! L ⌦OX
DX induces a functor

Mod(OX ,Di↵X) 7! Mod
i

(DX). In order to do so, one first needs to show that to any
differential morphism u corresponds at most one v.

Lemma A.11.8. The morphism

HomDX
(L⌦OX

DX ,L0 ⌦OX
DX) �! HomC(L,L

0)

v 7�! u

is injective.

Proof. Recall that, for any multi-index �, we have @↵x (x�) = 0 if �i < ↵i for some
i, and @↵x (x

↵) = ↵!. Assume that u = 0. Let ` be a local section of L and, using
local coordinates (x

1

, . . . , xn), write in a unique way w(`) =
P

↵ w(`)↵ ⌦ @↵x , where
the sum is taken on multi-indices ↵ and w is as in (A.11.3). If w(`) 6= 0, let � be
minimal (with respect to the usual partial ordering on Nn) among the multi-indices
↵ such that w(`)↵ 6= 0. Then,

0 = u(x�`) =
X

↵

@↵x (x
�)w(`)↵ = �!w(`)� ,

a contradiction.
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Remark A.11.9. A similar lemma would not hold in the category of induced graded
RFDX -modules because of possible z-torsion: one would only get that zku(x�`) = 0
for some k.

According to Lemma A.11.8, the following definition is meaningful.

Definition A.11.10 (The inverse de Rham functor). The functor
diffDR-1 : Mod(OX ,Di↵X) �! Mod

i

(DX)

is defined by diffDR-1(L) = L⌦OX
DX and diffDR-1(u) = v.

Exercise A.64 (De Rham and inverse de Rham on induced D-modules)
(1) Let L be an OX -module. Show that H k

�p
DR(L⌦OX

DX)
�

= 0 for k 6= 0 and
H 0

�p
DR(L⌦OX

DX)
�

= L. [Hint : use Exercise A.60.]
(2) Show that H 0(

p
DR) defines a functor Mod

i

(DX) 7! Mod(OX ,Di↵X), which
will be denoted by diffDR.

(3) Show that diffDR-1 : Mod(OX ,Di↵X) 7! Mod
i

(DX) is an equivalence of cate-
gories, a quasi-inverse functor being diffDR : L⌦OX

DX 7! L, diffDR(v) = u.
(4) Show that the composed functor Mod(OX ,Di↵X) 7! Mod

i

(DX) 7! Mod(DX),
still denoted by diffDR-1, is fully faithful, i.e., it induces a bijective morphism

Hom
Di↵

(L,L0)
⇠
�! HomDX

(L⌦OX
DX ,L0 ⌦OX

DX).

(One may think that we “embed” the additive (nonabelian) category Mod(OX ,Di↵X)
in the abelian category Mod(DX); we will use this “embedding” to define below acyclic
objects).

Remark A.11.11. By the isomorphism of Exercise A.64, Hom
Di↵

(L,L0) is equipped
with the structure of a �(X,OX)-module. Similarly,

HomDX
(L⌦OX

DX ,L0 ⌦OX
DX) �!HomC(L,L

0)

is injective, and and this equips the image sheaf Hom

Di↵

(L,L0) with the structure
of an OX -module.

Remark A.11.12. When considered as taking values in Mod(DX), the functor diffDR-1

is not, however, an equivalence of categories, i.e., is not essentially surjective. The
reason is that, first, not all DX -modules are isomorphic to some L ⌦OX

DX and,
next, its natural quasi-inverse would be the de Rham functor p

DR which takes values
in a category of complexes. Nevertheless, if one extends suitably these functors to
categories of complexes, they become equivalences (see below Theorem A.11.16).

A.11.b. The deRham complex as a differential complex. According to Ex-
ercise A.63, one may consider the category C?(OX ,Di↵X) of ?-bounded complexes
of objects of Mod(OX ,Di↵X) (with ? = ?,+,�, b), and the category K?(OX ,Di↵X)
of ?-bounded complexes up to homotopy (see [KS90, Def. 1.3.4]). These are called
?-bounded differential complexes.
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Exercise A.65 (The de Rham functor diffDR).
(1) Show that the de Rham complex of a left DX -module M is a complex in

Cb(OX ,Di↵X). [Hint : use Exercise A.61(1).]
(2) By using Exercise A.28(1), show that the de Rham complex of a right DX -mod-

ule M is a complex in Cb(OX ,Di↵X)
(3) Show that the de Rham complex of a ?-bounded complex of right DX -modules

has its associated single complex in C?(OX ,Di↵X). [Hint : use Exercise A.27.]
(4) Conclude that p

DR induces a functor diffDR : C?(DX) 7! C?(OX ,Di↵X).
(5) Extend this functor as a functor of triangulated categories K?(DX) !

K?(OX ,Di↵X).

Exercise A.66. Let M be a DX -module. Show that God
• diffDRM is a differential

complex. [Hint : Identify this complex with diffDRGod
•
M.]

There is a natural forgetful functor Forget from Mod(OX ,Di↵X) to Mod(CX), and
by extension a functor Forget at the level of C? and K?. The previous exercise shows
that we can decompose the p

DR functor as

Mod(DX)
diffDR

//

p
DR

))

Cb(OX ,Di↵X)
Forget

// Cb(CX)

and

K?(DX)
diffDR

//

p
DR

))

K?(OX ,Di↵X)
Forget

// K?(CX)

In order to define the “derived category” of the additive category Mod(OX ,Di↵X),
one needs to define the notion of null system in K?(OX ,Di↵X) and localize the cat-
egory with respect to the associated multiplicative system. A possible choice would
be to say that an object belongs to the null system if it belongs to the null system
of C?(CX) when forgetting the Di↵ structure, i.e., which has zero cohomology when
considered as a complex of sheaves of C-vector spaces. This is not the choice made
below. One says that a differential morphism u : L ! L0 as in (A.11.5) is a Di↵-
quasi-isomorphism if the corresponding v as in (A.11.2) is a quasi-isomorphism of
right DX -modules.

The functor diffDR-1 of Definition A.11.10 extends as a functor C?(OX ,Di↵X) 7!
C?
i

(DX) and K?(OX ,Di↵X) 7! K?
i

(DX) in a natural way, and is a functor of triangu-
lated categories on K. Moreover, according to the last part of Exercise A.64, it is an
equivalence of triangulated categories.

We wish now to define acyclic objects in the triangulated category K?(OX ,Di↵X),
and show that they form a null system in the sense of [KS90, Def. 1.6.6].
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Definition A.11.13. We say that a object L• of K?(OX ,Di↵X) is Di↵-acyclic if
diffDR-1(L•) is acyclic in K?

i

(DX) (equivalently, in K?(DX)).

Exercise A.67. Show that the family N of Di↵-acyclic objects forms a null system in
K?(OX ,Di↵X), i.e.,

• the object 0 belongs to N,
• an object L• belongs to N iff L•[1] does so,
• if L•

! L0• ! L00• ! L•[1] is a distinguished triangle of K?(OX ,Di↵X), and if
L•,L0• are objects in N, then so is L00•.
[Hint : use that the extension of diffDR-1 to the categories K? is a functor of triangu-
lated categories.]

Define, as in [KS90, (1.6.4)], the family S(N) as the family of morphisms which
can be embedded in a distinguished triangle of K?(OX ,Di↵X), with the third term
being an object of N. We call such morphisms Di↵-quasi-isomorphisms. Clearly, they
correspond exactly via diffDR-1 to quasi-isomorphisms in K?(DX).

We now may localize the category K?(OX ,Di↵X) with respect to the null system N

and get a category denoted by D?(OX ,Di↵X). By construction, we still get a functor

(A.11.14) diffDR-1 : D?(OX ,Di↵X) �! D?
i

(DX) �! D?(DX).

We note that the first component is an equivalence by definition of the null system
(since we have an equivalence at the level of the categories K?). The second component
is also an equivalence, according to Corollary A.6.3. We will show below (Theorem
A.11.16) that diffDR is a quasi-inverse functor.

Exercise A.68 (The functor D?(OX) 7! D?(OX ,Di↵X)). Using Exercise A.61(1), define
a functor C?(OX) 7! C?(OX ,Di↵X) and K?(OX) 7! K?(OX ,Di↵X). By using that DX

is OX -flat, show that if L• is acyclic in K?(OX), then L•
⌦OX

DX is acyclic in K?(DX).
Conclude that the previous functor extends as a functor D?(OX) 7! D?(OX ,Di↵X).

Remark A.11.15. The category Mod(OX ,Di↵X) is also naturally a subcategory of the
category Mod(CX) of sheaves of C-vector spaces because Hom

Di↵

(L,L0) is a subset of
HomC(L,L0). We therefore have a natural functor Forget : K?(OX ,Di↵X)! K?(CX),
forgetting that the differentials of a complex are differential operators, and forgetting
also that the homotopies should be differential operators too. As a consequence of
Theorem A.11.16, we will see in Exercise A.70 that any object in the null system N

defined above is sent to an object in the usual null system of K?(CX), i.e., objects
with zero cohomology. In other words, a Di↵-quasi-isomorphism is sent into a usual
quasi-isomorphism. But there may exist morphisms in K?(OX ,Di↵X) which are quasi-
isomorphisms when viewed in K?(CX), but are not Di↵-quasi-isomorphisms.

Theorem A.11.16. The functors diffDR : D?(DX) ! D?(OX ,Di↵X) and diffDR-1 :
D?(OX ,Di↵X)! D?(DX) are quasi-inverse functors.
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Lemma A.11.17. Let Mright be a right DX-module and let Mleft be the associated left
DX-module. Then there is a functorial isomorphism of complexes of right DX-mod-
ules

⇥

diffDR(Mright

⌦OX
DX)

triv

⇤

tens

(i.e., the structure (right)
triv

is used for diffDR
and the remaining structure (right)

tens

gives the right DX-module structure) and
⇥

diffDR(Mleft

⌦OX
DX)

tens

⇤

triv

[n] (similar meaning), and the latter complex is an ob-
ject of Cb

i

(DX).
Moreover, there is an isomorphism of functors diffDR-1 diffDR ' diffDR diffDR-1 from

Cb(DX) to itself.

Proof. We note that (Mleft

⌦OX
DX)right 'Mright

⌦OX
DX , both with the tensor struc-

ture, respectively left and right, and this isomorphism is compatible with the right
DX -structure (right)

triv

on both terms. On the other hand, diffDR(Mleft

⌦OX
DX)

tens

is the complex ⌦•
X ⌦ (Mleft

⌦OX
DX) with differential diffDR-1(r) given by a for-

mula like in Exercise A.62, and is clearly a complex in Cb

i

(DX) with respect to the
(right)

triv

-structure.
The isomorphism diffDR(Mleft

⌦OX
DX)

tens

[n] ' diffDR(Mright

⌦OX
DX)

tens

of Ex-
ercise A.28(1) is compatible with the (right)

triv

-structure, hence
h

diffDR(Mright

⌦OX
DX)

triv

i

tens

'

h

diffDR(Mright

⌦OX
DX)

tens

i

triv

(Exercise A.19)

'

h

diffDR(Mleft

⌦OX
DX)

tens

i

triv

[n].

For the last assertion, we note that, by definition (see Exercise A.65(1) and (2)),

diffDR-1 diffDRMright = diffDR-1 diffDRMleft[n].

Now,
h

diffDR-1 diffDRMleft

i

triv

'

h

diffDR(diffDR-1
Mleft)

tens

i

triv

follows from Exercise A.62: indeed,

diffDR-1 diffDRMleft = (⌦•
X ⌦Mleft)⌦DX

with differential diffDR-1(r), which is nothing but the complex ⌦•
X ⌦ (Mleft

⌦ DX)
where the differential is the connection on the left DX -module (Mleft

⌦DX)
tens

. More-
over, this identification is right DX -linear with respect to the (right)

triv

structure on
both terms.

Lastly, diffDR diffDR-1 Mleft[n] = [diffDR(Mleft

⌦DX)
triv

]
tens

[n] is identified with

[diffDR(Mright

⌦DX)
triv

]
tens

= diffDR diffDR-1
Mright

by the previous computation.

Lemma A.11.18. There is an isomorphism of functors diffDR-1 diffDR
⇠
�! Id from

D?(DX) to itself.
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Proof. By the previous lemma, we have
diffDR-1 diffDR(•) ' diffDR diffDR-1(•) =

h

diffDR(•⌦DX)
triv

i

tens

'

h

•
⌦

diffDR(DX)
triv

i

tens

'

h

•
⌦ OX

i

tens

= •.

Proof of Theorem A.11.16. From the previous lemma, it is now enough to show
that, if L• is a complex in C?(OX ,Di↵X), there exists a a Di↵-quasi-isomorphism
diffDR diffDR-1 L•

! L•, and this is equivalent to showing the existence of a quasi-
isomorphism diffDR-1 diffDR diffDR-1 L•

!

diffDR-1 L•, that we know from the previous
result applied to M = diffDR-1 L•.

Remark A.11.19. The functor diffDR-1 diffDR, regarded as a functor D?(DX) !
D?

i

(DX), is nothing but that of Corollary A.6.3.

Remark A.11.20 (The Godement resolution of a differential complex)
Let L• be an object of C+(OX ,Di↵X). Then God

•
L• is maybe not a differen-

tial complex (see Exercise A.40(2)). However, God
• diffDR diffDR-1 L• is a differential

complex, being equal to diffDRGod
• diffDR-1 L•. Therefore, the composite functor

God
• diffDR diffDR-1 plays the role of Godement resolutions in the category of differ-

ential complexes.

Exercise A.69. Show that the following diagram commutes:

D?(DX)
diffDR

//

p
DR

))

D?(OX ,Di↵X)
Forget

// D?(CX)

Exercise A.70. Assume that L• is Di↵-acyclic. Show that ForgetL• is acyclic. [Hint :
by definition, diffDR-1(L•) is acyclic; then p

DR diffDR-1(L•) is also acyclic and quasi-
isomorphic to ForgetL•.]

Conclude that Forget induces a functor D?(OX ,Di↵X) 7! D?(CX), and that we
have an isomorphism of functors

p
DR diffDR-1 ⇠

�! Forget : D?(OX ,Di↵X) 7�! D?(CX).

Compare with Exercise A.60.

Exercise A.71. Let L,L0 be two OX -modules and

v : M = L⌦OX
DX �!M0 = L0 ⌦OX

DX

a DX -linear morphism. It defines a f�1DY -linear morphism

v ⌦ 1 : M⌦DX
DX!Y �!M0 ⌦DX

DX!Y ,

where 1 is the section introduced in Exercise A.44(1). This is therefore a morphism

ev : L⌦f�1OY
f�1DY �! L0 ⌦f�1OY

f�1DY .

Show that diffDRY (ev) = diffDRX(v).
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[Hint : since the problem is local, argue with coordinates on X and Y and write
f = (f

1

, . . . , fm). Let ` be a local section of L, and let 1X be the unit of DX . Set
v(`⌦ 1X) = w(`) =

P

↵ w(`)↵ ⌦ @↵x and ev(`⌦ 1X) = v(`⌦ 1X)⌦ 1X!Y . Show that,
if ↵i 6= 0,

@↵i
xi
⌦ 1X!Y = @↵i�1

xi

X

j

@fj
@xi
⌦ @yj

.

Deduce that the image of ev(` ⌦ 1X) by the map L ⌦f�1OY
f�1DY ! L is equal to

the image of w(`)
0

, which is nothing but u(`) by definition of u := H 0 DRX(v).]

A.11.c. The Gauss-Manin connexion. We assume in this section that f : X ! Y

is a smooth holomorphic map. The cotangent map T ⇤f : f⇤⌦1

Y ! ⌦1

X is then
injective, and we will identify f⇤⌦1

Y with its image. We set n = dimX, m = dimY

and d = n�m (we assume that X and Y are pure dimensional, otherwise one works
on each connected component of X and Y ).

Consider the Leray filtration Ler
• on the complex (⌦•

X , d), defined by

Lerp⌦i
X = Im(f⇤⌦p

Y ⌦OX
⌦i�p

X �! ⌦i
X).

[With this notation, Lerp⌦i
X can be nonzero only when i 2 [0, n] and p 2

[0,min(i,m)].]

Exercise A.72.
(1) Show that the Leray filtration is a decreasing finite filtration and that it is

compatible with the differential.
(2) Show that, locally, being in Lerp means having at least p factors dyj in any

summand.

Then, as f is smooth, we have (by computing with local coordinates adapted to f),

grp
Ler

⌦i
X = f⇤⌦p

Y ⌦OX
⌦i�p

X/Y ,

where ⌦k
X/Y is the sheaf of relative differential forms: ⌦k

X/Y = ^k⌦1

X/Y and ⌦1

X/Y =

⌦1

X

�

f⇤⌦1

Y . Notice that ⌦k
X/Y is OX -locally free.

Let M be a left DX -module or an object of D+(DX)left. As f is smooth, the
sheaf DX/Y of relative differential operators is well-defined and by composing the flat
connection r : M ! ⌦1

X ⌦OX
M with the projection ⌦1

X ! ⌦1

X/Y we get a relative
flat connection rX/Y on M, and thus the structure of a left DX/Y -module on M. In
particular, the relative de Rham complex is defined as

p
DRX/Y M = (⌦•

X/Y ⌦OX
M,rX/Y ).

We have p
DRM = (⌦•

X ⌦OX
M,r) (see Definition A.5.1) and the Leray filtration

Lerp⌦•
X ⌦OX

M is preserved by the differential r. We can therefore induce the
filtration Ler

• on the complex p
DRM. We then have an equality of complexes

grp
Ler

p
DRM = f⇤⌦p

Y ⌦OX

p
DRX/Y M[�p].

Notice that the differential of these complexes are f�1OY -linear.
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The complex f⇤God
• p
DRM (resp. the complex f

!

God
• p
DRM) is filtered by sub-

complexes f⇤God
•
Lerp

p
DRM (resp. f

!

God
•
Lerp

p
DRM). We therefore get a spec-

tral sequence (the Leray spectral sequence in the category of sheaves of C-vector
spaces, see, e.g. [God64]). Using the projection formula for f

!

and the fact that ⌦p
Y

is OY -locally free, one obtains that the E
1

term for the complex f
!

God
• p
DRM is

given by

(A.11.21) Ep,q
1,! = ⌦p

Y ⌦OY
Rqf

!

p
DRX/Y M,

and the spectral sequence converges to (a suitable graded object associated with)
Rp+qf

!

p
DRM. If f is proper on SuppM or if M has DX -coherent cohomology, one

can also apply the projection formula to f⇤ (see [MN93, §II.5.4]).
By definition of the spectral sequence, the differential d

1

: Ep,q
1

! Ep+1,q
1

is the
connecting morphism (see Exercise A.73 below) in the long exact sequence associated
to the short exact sequence of complexes

0 �! grp+1

Ler

p
DRM �! Lerp

p
DRM

�

Lerp+2

p
DRM �! grp

Ler

p
DRM �! 0

after applying f
!

God
• (or f⇤God

• if one of the previous properties is satisfied).

Exercise A.73 (The connecting morphism). Let 0 ! C•
1

! C•
2

! C•
3

! 0 be an exact
sequence of complexes. Let [µ] 2 HkC•

3

and choose a representative in Ck
3

with
dµ = 0. Lift µ as eµ 2 Ck

2

.
(1) Show that deµ 2 Ck+1

1

and that its differential is zero, so that the class [deµ] 2
Hk+1C•

1

is well-defined.
(2) Show that � : [µ] 7! [deµ] is a well-defined morphism HkC•

3

! Hk+1C•
1

.
(3) Deduce the existence of the cohomology long exact sequence, having � as its

connecting morphism.

Lemma A.11.22 (The Gauss-Manin connection). The morphism

r

GM := d
1

: Rqf
!

p
DRX/Y M = E0,q

1

�! E1,q
1

= ⌦1

Y ⌦OY
Rqf

!

p
DRX/Y M

is a flat connection on Rqf
!

p
DRX/Y M, called the Gauss-Manin connection and the

complex (E
•,q
1

, d
1

) is equal to the deRham complex diffDRY (Rqf
!

p
DRX/Y M,rGM).

Sketch of proof of Lemma A.11.22. Instead of using the Godement resolution, one can
use the C1 de Rham complex E •

X ⌦OX
M, with the differential D defined by

D(⌘ ⌦m) = d⌘ ⌦m+ (�1)k⌘ ^rm,

if ⌘ is C1 differential k-form, that is, a local section of E k
X (k 6 0). By a standard

argument (Dolbeault resolution) analogous to that of Exercise A.46(??), this C1

de Rham complex is quasi-isomorphic to the holomorphic one, and is equipped with
the Leray filtration. The quasi-isomorphism is strict with respect to Ler

•. One can
therefore compute with the C1 de Rham complex. Moreover, the assertion is local
with respect to Y .
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Assume first that, in the neighbourhood of f�1(y), X is diffeomorphic to a product
X ' Z ⇥ Y . This occurs for example if f is proper (Ehresmann’s theorem). Then
we identify E p+q

X with E p
Y ⌦ E q

X/Y and the differential D decomposes accordingly as
DY + DX/Y . The flatness of D implies the flatness of DX/Y and DY . Given a
section µ of f

!

�

E p
Y ⌦ (E q

X/Y ⌦ M)
�

which is closed with respect to DX/Y , we can
identify it with its lift eµ (see Exercise A.73), and d

1

µ is thus the class of DY µ, so the
C1 Gauss-Manin connection DGM in degree zero induces d

1

in any degree.
In general, choose a partition of unity (�↵) such that for every ↵, when restricted

to some open neighbourhood of Supp�↵, f is locally the projection from a product
to one of its factors. We set D =

P

↵ �↵D =
P

↵ D(↵) and we apply the previous
argument to each D(↵).

Theorem A.11.23. Let f : X ! Y be a smooth holomorphic map and let M be left
DX-module—or more generally an object of D+(DX)left. Then there is a functorial
isomorphism of left DY -modules

Rkf
!

p
DRX/Y M �!H k

Df!M

when one endows the left-hand term with the Gauss-Manin connection rGM. The
same result holds for Df⇤ instead of Df! if f is proper on SuppM or M is DX-coherent
(or has coherent cohomology).

Proof. Recall that, for a left DX -module M, we have

Mright

⌦DX
Sp

•
X!Y (DX) ' ⌦•

X(M⌦f�1OY
f�1DY )[n],

so that the direct image of M, regarded as a right DY -module, is

(A.11.24) (Df!M)right = Rf
!

p
DRX(M⌦f�1OY

f�1DY )[m],

by Exercise A.46(1). We conclude that
diffDRY Df!M '

diffDRY

�

Rf
!

p
DRX(M⌦f�1OY

f�1DY )
�

.

There is a Leray filtration Ler
• p
DRX(M ⌦f�1OY

f�1DY ). Notice that the graded
complex grp

Ler

p
DRX(M⌦f�1OY

f�1DY ) is equal to the complex

f�1⌦p
Y ⌦f�1OY

p
DRX/Y M⌦f�1OY

f�1DY [�p],

with differential induced by rX/Y on M (remark that the part of the differential
involving T ⇤f is killed by taking grp

Ler

). The differential is now f�1OY -linear.
The filtered complex Rf

!

Ler
• p
DRX(M ⌦f�1OY

f�1DY ) gives rise to a spectral
sequence in the category of right DY -modules. By the previous computation, the Ep,q

1

term of this spectral sequence is the right DY -module

Rp+qf
!

�

f�1⌦p
Y ⌦f�1OY

p
DRX/Y M⌦f�1OY

f�1DY [�p]
�

' ⌦p
Y ⌦OY

Rqf
!

p
DRX/Y M⌦OY

DY ,

which is an induced DY -module, whose diffDRY is equal to the corresponding Gauss-
Manin term (A.11.21). We claim, as will show below, that the differential d

1

becomes
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the Gauss-Manin d
1

after applying diffDRY . This will prove that the Gauss-Manin E
1

complex is equal to diffDRY of the E
1

complex of right DY -modules.
Notice now that Lemma A.11.22 shows in particular that the E

1

complex consid-
ered there is a complex in C+(OY ,Di↵Y ), and

diffDR�1

Y (E
•,q
1

, d
1

) ' (Rqf
!

p
DRX/Y M,rGM)right[�m],

since, for a left DY -module N, we have, according to Theorem A.11.16,
diffDR�1

Y
diffDRY (N) = diffDR�1

Y
diffDRY (N

right)[�m] ' Nright[�m].

The claim above, together with Lemma A.11.18, implies that the E
1

com-
plex of the DY -Leray spectral sequence has cohomology in degree m only, hence
this spectral sequence degenerates at E

2

, this cohomology being isomorphic to
(Rqf

!

p
DRX/Y M,rGM)right[�m]. But the spectral sequences converges (the Leray

filtration is finite) and its limit is
L

p gr
pH q�m(Df!M)right for the induced filtration

on H q�m(Df!M)right, according to (A.11.24). We conclude that this implicit filtra-
tion is trivial and that H q(Df!M)right = (Rqf

!

p
DRX/Y M,rGM)right, as wanted,

after side changing.
Let us now compare the d

1

of both spectral sequences. As the construction is
clearly functorial with respect to M, we can replace M by the flabby sheaf God` M
for every `. We then have

Rf
!

�

⌦•
X⌦OX

God` M⌦f�1OY
f�1DY

�

= Rf
!

�

God`(⌦•
X ⌦OX

M)⌦f�1OY
f�1DY

�

(Exercise A.40)

= Rf
!

�

God`(⌦•
X ⌦OX

M)
�

⌦OY
DY (projection formula)

= f
!

�

God`(⌦•
X ⌦OX

M)
�

⌦OY
DY (flabbiness of God`)

= f
!

�

⌦•
X ⌦OX

God` M
�

⌦OY
DY (Exercise A.40)

= f
!

�

⌦•
X ⌦OX

God` M⌦f�1OY
f�1DY

�

(projection formula).

It is also enough to make the computation locally on Y , so that we can write
f = (f

1

, . . . , fm), using local coordinates (y
1

, . . . , ym). If µ is a section of ⌦k
X ⌦M

and 1Y is the unit of DY , then (A.7.1) can be written as

r

X(µ⌦ 1Y ) = (rµ)⌦ 1Y +
m
X

j=1

µ ^ dfj ⌦ @yj
.

Using the definition of d
1

given by Exercise A.73 and an argument similar to that of
Exercise A.71, one gets the desired assertion.

A.12. Comments

Here come the references to the existing work which has been the source of inspi-
ration for this chapter.


