
CHAPTER 7

POLARIZABLE HODGE MODULES ON CURVES

Summary. The aim of this chapter is to introduce the general notion of polar-
ized pure Hodge module on a Riemann surface, as the right notion of a singular
analogue of a polarized variation of Hodge structure. We will define it by local

properties, as we do for polarized variations of Hodge structure. For that pur-
pose, we first recall basics on D-modules, which are much more developed in
Chapters 8–12. While the notion of a variation of C-Hodge structure on a punc-
tured compact Riemann surface is purely analytic, that of a pure Hodge module
on the corresponding smooth projective curve is partly algebraic.

7.1. Introduction

Let j : X
!
,! X be the inclusion of the complement of a finite set of points

D in a compact Riemann surface(1) X, and let (H,S) be a polarized variation of
Hodge structure on X

! , with associated local system H and filtered holomorphic
bundle (V,r, F •V), as considered in Chapter 6. The Hodge-Zucker theorem gives
importance to the differential object (Vmid,r) (see Exercise 6.2(6)). However it is,
in general, not a coherent OX -module with connection. It is neither a meromorphic
bundle with connection in general, i.e., it is not an OX (⇤D)-module (where OX (⇤D)
denotes the sheaf of meromorphic functions on X with poles on D at most). We have
to consider it as a coherent DX -module, where DX denotes the sheaf of holomorphic
differential operators. In order to do so, we recall in Section 7.2 the basic notions on
D-modules in one complex variable, the general case being treated in Chapter 8.

The punctured Riemann surface will then be a punctured disc ! ! in the remain-
ing part of this introduction. The object analogue to (V,r, F •V) on ! is a holo-
nomic D�-module M equipped with an F -filtration F

•M (this encodes the Griffiths
transversality property). Here, the language of triples introduced in Section 5.2 be-
comes useful in order to avoid using “C" bundles with singularities”. On the other
hand, we can increase the domain (C" functions) where sesquilinear pairing takes

(1)In order to simplify some statements, we will always assume in this chapter that X is connected.
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values: as in our discussion of Schmid’s theorem, we should add to C
" functions

on ! functions like |t|2�L( t)k/k!. More generally, we should also accept Dirac “delta
functions”, so that the sheaf of distributions on ! is a possible candidate as the target
sheaf of sesquilinear pairings, as it is acted on by holomorphic and anti-holomorphic
differential operators.

The idea of M. Saito for defining the Hodge property of a filtered D-module (more
precisely, triples) in an axiomatic way is to impose the Hodge property on the restric-
tion of the data—a filtered triple in the sense of Section 5.2—at each point of ! , in
order to apply the corresponding definitions. While this does not cause any trouble at
points of ! ! := ! r {0}, this leads to problems at the origin for the following reason:
the restriction of M in the sense of D-modules is a complex, which has two coho-
mology vector spaces in general. The right way to consider the restriction consists in
introducing nearby cycles. Therefore, the compatibility of the data with the nearby
and vanishing cycle functors will be the main tool in the theory of Hodge modules.

However, not all D�-modules underlie a Hodge module. On the one hand, we
have to restrict the category by only considering holonomic D�-modules having a
regular singularity at the origin. This is “forced” by the theorem of Griffiths-Schmid
(see Remark 6.3.8(1)) stating the regularity of the connection on the extended Hodge
bundles. Moreover, the Hodge-Zucker theorem leads us to focus on regular holonomic
D�-modules which are middle extensions of their restriction to ! ! . Now, a new
phenomenon appears when dealing with D�-modules, when compared to the case of
vector bundles with connection, namely, there do exist D�-modules supported at the
origin, like those generated by Dirac distributions. But their Hodge variants are easy
to define.

There are thus two kinds of D�-modules that should underlie a pure Hodge module.
Which extensions between these two kinds can we allow? Since our goal is to define
the category of polarizable Hodge modules as an analogue over ! of the category
of polarizable Hodge structures, we expect to obtain a semi-simple category. The
polarizability condition we impose solves this question for us: only direct sums of
objects of each kind may appear as a polarizable Hodge module. This is called
Support-decomposability (S-decomposability), and is obtained as a consequence of the
S-decomposability theorem for polarizable Hodge-Lefschetz structures 3.4.22.

In this chapter, we will consider left D-modules in order to keep the analogy with
vector bundles with connections and variations of Hodge structure considered in Chap-
ter 6.

The Hodge theorem takes the following form in the framework of C-Hodge modules
on a compact Riemann surface X. We consider the constant map a : X ! pt . For a
given C-Hodge module M polarized by S, we define for k = �1, 0, 1 the k-th de Rham
cohomology Ta

(k)

X! M in the category C-Triples (see Definition 5.2.1).

7.1.1. Theorem (Hodge-Saito). If M is a polarizable Hodge module of weight w on a
compact Riemann surface X, the triple Ta

(k)

X! M is a polarizable Hodge structure of
weight w + k.
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7.2. Basics on holonomic D-modules in one variable

We refer to Chapter 8 for a more general setting. We denote by t a coordinate on
the disc ! , by C{t} the ring of convergent power series in the variable t. Let us denote
by D = C{t}h@ti the ring of germs at t = 0 of holomorphic differential operators: this
is the quotient of the free algebra generated by C{t} and the ring C[@] of polynomials
in one variable @ by the two-sided ideal generated by the elements @g�g@�g

# for any
g 2 C{t} (where g

# denotes the derivative). We denote by @t the class of @. This is
a noncommutative algebra, which operates in a natural way on C{t}: the subalgebra
C{t} acts by multiplication and @t acts as the usual derivation. There is a natural
increasing filtration F•D indexed by Z defined by

FkD =

(
0 if k 6 �1,
P

k

j=0
C{t} · @j

t
if k > 0.

This filtration is compatible with the ring structure (i.e., Fk · F` ⇢ Fk+` for every
k, ` 2 Z). The graded ring grFD :=

L
k

grF
k
D =

L
k
Fk/Fk$ 1 is isomorphic to the

polynomial ring C{t}[⌧ ] (graded with respect to the degree in ⌧).
We also denote by D� the sheaf of differential operators with holomorphic coef-

ficients on ! . This is a coherent sheaf, similarly equipped with an increasing filtra-
tion F•D� by free O�-modules of finite rank. The graded sheaf grFD� is identified
with the sheaf on ! of functions on the cotangent bundle T

! ! which are polynomial
in the fibers of the fibration T

! ! ! ! .

7.2.a. Coherent F -filtrations, holonomic modules. Let M be a finitely gener-
ated D-module (we basically use left D-modules, but similar properties can be applied
to right ones). By an F -filtration of M we mean increasing filtration F•M by O =
C{t}-submodules, indexed by Z, such that, for every k, ` 2 Z, FkD · F`M ⇢ Fk+`M .
Such a filtration is said to be coherent if it satisfies the following properties:

(1) FkM = 0 for k ⌧ 0,
(2) each FkM is finitely generated over O,
(3) there exists `0 2 Z such that, for every k > 0 and any ` > `0, FkD · F`M =

Fk+`M .

7.2.1. Remark (Increasing or decreasing?) In Hodge theory, one usually uses decreasing
filtrations. The trick (see Notation 0.4) to pass from increasing (lower index) to
decreasing (upper index) filtrations is to set, for every p 2 Z,

F
p
M := F$ pM.

The notion of shift is compatible with this convention:

F [k]pM = F
p+k

M, F [k]pM = Fp$ kM.

7.2.2. Definition. We say that M is holonomic if it is finitely generated and any element
of M is annihilated by some nonzero P 2 D.
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One can prove that any holonomic D-module can be generated by one element
(i.e., it is cyclic), hence of the form D/I where I is a left ideal in D, and that this
ideal can be generated by two elements (see [BM84]).

7.2.b. The V -filtration. In order to analyze the behaviour of a holonomic module
near the origin, we will use another kind of filtration, called the Kashiwara-Malgrange
filtration. It is an extension to holonomic modules of the notion of Deligne lattice for
meromorphic bundle with connection.

We first define the increasing filtration V•D indexed by Z, by giving to any mono-
mial ta1@

b1
t

· · · tan@
bn
t

the V -degree
P

i
bi �

P
i
ai, and by defining the V -order of an

operator P 2 D as the biggest V -degree of its monomials. (See Exercise 7.2.)

7.2.3. Definition. Let M be a left D-module. By a V -filtration we mean an decreasing
filtration U

•
M of M , indexed by Z, which satisfies VkD · U `

M ⇢ U
`$ k

M for every
k, ` 2 Z. We say that U

•
M is coherent if there exists `0 2 N such that the previous

inclusion is an equality for every k > 0 and ` 6 �`0, and for every k 6 0 and ` > `0.

Some properties of V -filtrations are given in Exercise 7.3. In particular, for any
V -filtration U

•
M of a holonomic D-module M , the graded spaces grk

U
M are finite-

dimensional and we denote by E the action of t@t on each grk
U
M , which has thus a

minimal polynomial on each such space.

7.2.4. Proposition (The Kashiwara-Malgrange filtration). Let M be a holonomic
D-module. Then there exists a unique coherent V -filtration denoted by V

•
M and

called the Kashiwara-Malgrange filtration of M , such that the eigenvalues of E acting
on the finite dimensional vector spaces grk

V
M have their real part in [k, k + 1) .

Proof. Adapt Exercise 9.14 to the present setting.

See Exercises 7.4–7.7 for more properties of the Kashiwara-Malgrange filtration.

7.2.5. Caveat. It may happen that the V -filtration is constant, so that all V -graded
modules are zero. The regularity condition explained below prevents such a behaviour.

7.2.c. Nearby and vanishing cycles. For simplicity, in the following we always
assume that M is holonomic. We will also assume that the eigenvalues of E (Exer-
cise 7.3) acting on grk

V
M are real, i.e., belong to [k, k + 1) . This will be the only

case of interest in Hodge theory, according to Theorem 6.3.2(6.3.2). Let B ⇢ [0, 1)
be the finite set of eigenvalues of E acting on gr0

V
M , to which we add 0 if 0 is not an

eigenvalue. By Exercise 7.5, the set Bk of eigenvalues of E acting on grk
V
M satisfies

k + ( B r {0}) ⇢ Bk ⇢ k + B.
For every � 2 R, we denote by V

�
M ⇢ V

[�]
M the pullback by V

[�]
M ! gr[�]

V
M

of the sum of the generalized eigenspaces of gr[�]
V
M corresponding to eigenvalues of E

which are > �, i.e., the subspace
L

�%[�,[�]+1)
Ker(E �� Id)N , N � 0.

In such a way, we obtain a decreasing filtration V
•
M indexed by B + Z ⇢ R, and

we now denote by gr�
V
M the quotient space V

�
M/V

>�
M . It is identified with the
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generalized eigenspace of E with eigenvalue � in V
[�]
M/V

[�]+1
M , and we still denote

by E the induced action of t@t on it. As a consequence, E�� Id is nilpotent on gr�
V
M .

We can also consider V •
M as a filtration indexed by R which jumps at most at B + Z

(see Exercise 7.8).
Exercise 7.5 implies:
(1) for every � > �1, the morphism V

�
M ! V

�+1
M induced by t is an isomor-

phism, and so is the morphism t : gr�
V
M ! gr�+1

V
M ; in particular, V �

M is O-free if
� > �1;

(2) for every � < 0, the morphism gr�
V
M ! gr�$ 1

V
M induced by @t is an isomor-

phism;
(3) for every � 2 [�1, 0) and k > 1,

V
�$ k

M = @
k

t
V

�
M +

k$ 1X

j=0

@
j

t
V

$ 1
M.

In particular, the knowledge of gr�
V
M for � 2 [�1, 0] implies that for all �. The

following notation will be used.

7.2.6. Notation.
•  t,�M := gr �

V
M , if � = exp(� 2⇡i�) with � 2 (�1, 0],

• �t,1M := gr $ 1
M .

7.2.7. Definition (The morphisms N, can, var). Let M be a holonomic D-module.
(a) We denote by N the nilpotent part of the endomorphism induced by �E on

gr�
V
M for every � (we will only consider � 2 [�1, 0], according to (1) and (2) above).

So we have N = �(E �� Id) on gr�
V
M for � 2 [�1, 0].

(b) We define can :  t,1M ! �t,1M as the homomorphism induced by �@t and
var : �t,1M !  t,1M as that induced by t, so that var � can = N :  t,1M !  t,1M

and can� var = N : �t,1M ! �t,1M .
(c) We also denote by M•gr�

V
M the monodromy filtration defined by the nilpotent

endomorphism N (see Section 3.4.a).

(See Exercise 7.9 for various properties.)

7.2.8. Examples.
(1) If 0 is not a singular point of M , then M is O-free of finite rank and gr�

V
M = 0

unless � 2 N (i.e.,  t,�M = 0 if � 6= 1 and �t,1M = 0 ). Then can = 0, var = 0 and
N = 0 .

(2) If M is supported at the origin, i.e., if any element of M is annihilated by some
power of t, then  t,�M = 0 for any �, so that can, var,N are zero, and M is identified
with (�t,1M )[@t].

(3) If M is purely irregular, e.g. M = ( O[t$ 1],r) with r = d + d t/t
2, then

gr�
V
M = 0 for every �. In such a case, the gr�

V
-functors do not bring any interesting

information on M .



180 CHAPTER 7. POLARIZABLE HODGE MODULES ON CURVES

7.2.9. Definition (Regular singularity). We say that M has a regular singularity (or is
regular) at the origin if V 0

M (equivalently, any V
�
M) has finite type over O.

(See Exercises 7.10 and 7.11.)

Structure of regular holonomic D-modules. Let M be regular holonomic. For � 2 R, set

M
� :=

S
k

Ker
⇥
(t@t � �)k : M !M

⇤
.

Then M
� \M� = 0 if � 6= �. Moreover, M� \V >�

M = 0 : indeed, if (t@t��)km = 0
and b(t@t)m = tP (t, t@t)m with b having roots > �, we conclude a relation m =
tQ(t, t@t)m by Bézout, so the D-module D · m satisfies D · m = V

1(D · m), and its
V -filtration is constant; iterating, we find V

1(D · m) = tV
1(D · m); however, the

O-finiteness of V
1(D · m) implies V

1(D · m) = 0 (Nakayama), hence D · m = 0 ,
and therefore m = 0 . As a consequence, M

� injects in gr�
V
M and thus has finite

dimension. Obviously, multiplication by t sends M
� to M

�+1 and @t goes in the
reverse direction. Moreover, t : M

� ! M
�+1 is an isomorphism if � > �1 and

@t : M�+1 !M
� is an isomorphism if � < 0.

The set consisting of �’s such that M
� 6= 0 is therefore contained in B + Z (B is

defined at the beginning of Section 7.2.c), and M
alg :=

L
�
M

� is a regular holonomic
C[t]h@ti-module.

7.2.10. Proposition. If M is regular holonomic, Then the natural morphism

C{t}⌦C[t] M
alg �!M

is an isomorphism of D-modules, and induces an R-graded isomorphism

M
alg &�! gr

V
M

alg &�! gr
V
M.

Sketch of proof. If M is supported at the origin, the result is easy. One can then
assume that M has no section supported at the origin. Let us first set V

>$ 1
M

alg :=L
�>$ 1

M
� and prove C{t} ⌦C[t] V >$ 1

M
alg &�! V

>$ 1
M . Note that V

>$ 1
M is

O-free and the matrix A(t) of the action of t@t on V
>$ 1

M is holomorphic and the
eigenvalues of A(0) belong to (�1, 0]. It is standard that there exists an O-basis
(m1, . . . ,mr) of V >$ 1

M for which the matrix of t@t is equal to A(0). This gives the
desired isomorphism.

Let us extend this isomorphism to V
$ 1

M
alg and V

$ 1
M for example. If m 2

V
$ 1

M , then tm =
P

r

i=1
ai(t)mi with ai holomorphic. Let us set ai(t) = ai(0)+ tbi(t).

Then t(t@t + 1) k(m �
P

i
bi(t)mi) = 0 for some k > 1 and, by our assumption,

m�
P

i
bi(t)mi 2M

$ 1. Continuing this way, we get the result.

7.2.11. Definition (Middle extension). We say that a regular holonomic M is the mid-
dle (or minimal) extension of M [t$ 1] := O[t$ 1] ⌦O M if can is onto and var is
injective, that is, if M has neither a quotient nor a submodule supported at the origin
(see Exercise 7.9).

Clearly, there is non non-zero morphism between a middle extension and a D-mod-
ule supported at the origin.
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7.2.12. Definition (S-decomposability). We say that a regular holonomic D-module M

is S(upport)-decomposable if it can be decomposed as M1�M2, where M1 is a middle
extension and M2 is supported at the origin.

See Exercise 7.9 for details. In particular, such a decomposition is unique if it
exists, and there is a criterion for S-decomposability, obtained by considering M

alg

first:

7.2.13. Proposition. A holonomic M is S-decomposable if and only if

�t,1M = Im can �Ker var .

The following proposition makes the link between the D-module approach and the
approach of Section 6.2.a.

7.2.14. Proposition. Assume that M has a regular singularity at the origin. Then
M [t$ 1] is equal to the germ at 0 of (V! ,r) (Deligne’s canonical meromorphic exten-
sion), where (V,r) is the restriction of M to a punctured small neighbourhood of the
origin. Moreover, if M is a middle extension, then M is equal to the germ at 0 of
(Vmid,r). Lastly, the filtration V•

! (resp. V•
mid

) is equal to the Kashiwara-Malgrange
filtration.

Proof. Let M be a coherent D�-module that represents the germ M on a small disc ! ,
having a singularity at 0 only. Set (V,r) = M|�⇤ . By the uniqueness of the Deligne
lattices with given range of eigenvalues of the residue, we have V>$ 1

! = V
>$ 1M.

We then have M[t$ 1] = V
>$ 1M[t$ 1] = V! , according to Exercise 7.10(1). If M is

a middle extension, the assertion follows from 7.10(2). The last assertion is proved
similarly.

F -filtration on nearby and vanishing cycles. Let M be holonomic and equipped with a
coherent F -filtration F•M . In order to keep notations analogous to that of Chapter 6,
we rather use the associated decreasing filtration F

•
M (see Remark 7.2.1). There is

a natural way to induce a filtration on each vector space gr�
V
M by setting

(7.2.15) F
pgr�

V
M :=

F
p
M \ V

�
M

F pM \ V >�M
.

Notation 7.2.6 is convenient for the following convention.

F
p
 t,�M := F

pgr�
V
M =

F
p
M \ V

�
M

F pM \ V >�M

F
p
�t,1M := F

p$ 1gr$ 1

V
M = F [�1]pgr$ 1

V
M =

F
p$ 1

M \ V
$ 1

M

F p$ 1M \ V >$ 1M
.

(7.2.16)

We also write (see (5.1.5 ⇤⇤))

(7.2.17)  t,�(M,F
•) = (gr �

V
M,F

•), �t,1(M,F
•) = (gr $ 1

V
M,F

•)(�1).
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We then have a Lefschetz quiver (see Exercise 7.17)

(7.2.18) ( t,1M,F
•)

can = �@t ·
**

(�t,1M,F
•).

var = t ·
jj

($ 1)

jj

The notion of strict R-specializability models a good behaviour of the filtration
F

•
M with respect to the V -filtration. In the following, we will set

F
p
V

�
M := F

p
M \ V

�
M.

7.2.19. Definition (Strict R-specializability). An F -filtered D-module (M,F
•
M ) is said

to be strictly R-specializable if the properties 6.14.2(3a) and (3b) are satisfied, that
is,

(a) for every � > �1 and p, t(F p
V

�
M ) = F

p
V

�+1
M ,

(b) for every � < 0 and p, @t(F pgr�
V
M ) = F

p$ 1gr�$ 1

V
M .

(See also Definition 9.3.18 together with Proposition 10.7.3.) We note that strict
R-specializability implies regularity:

7.2.20. Proposition. Let (M,F
•
M ) be a coherently F -filtered D-module with M holo-

nomic. If (M,F
•
M ) is strictly R-specializable, then M is regular holonomic.

See Exercise 7.15 for the proof.

7.2.21. Lemma. For a coherently F -filtered D-module (M,F
•
M ), 7.2.19(a) and (b)

are respectively equivalent to
(a) for every � > �1 and p, t : F pgr�

V
M ! F

pgr�+1

V
M is an isomorphism,

(b) for every � < 0 and p, @t : F pgr�$ 1

V
M ! F

p$ 1gr�$ 1

V
M is an isomorphism.

Proof. 7.2.19(a) , 7.2.21(a):
• For =) , we note that since t : gr�

V
M ! gr�+1

M is injective (� > �1), it
remains so when restricted to F

pgr�
V
M . Surjectivity in 7.2.21(a) is then clear.

• For (, we know by regularity that V
�
M has finite type over C{t}. Recall

that Artin-Rees implies that tF
p
V

�
M � F

p \ t
q
V

�
M for q � 0. On the other

hand, 7.2.21(a) means that F
p
V

�+1
M = tF

p
V

�
M + F

p
V

>�+1
M and, by an easy

induction, F p
V

�+1
M = tF

p
V

�
M + F

p
V

�+q
M for any q > 1. We can thus conclude

by Artin-Rees.
7.2.19(b) , 7.2.21(b): 7.2.19(b) means surjectivity in 7.2.21(b). Injectivity is

automatic since it holds when forgetting filtrations.

7.2.22. Caveat. Even if (M,F
•
M ) is strictly R-specializable, Proposition 7.2.10 may

not hold with filtration.

The full subcategory of that of coherently F -filtered D-modules which are strictly
R-specializable is not abelian. Nevertheless, strictly R-specializable morphisms have
kernels and cokernels in this category.
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7.2.23. Proposition. Let ' : (M1, F
•
M1) ! (M2, F

•
M2) be a morphism between strictly

R-specializable coherently F -filtered D-modules. If ' is strictly R-specializable, that
is, if gr�

V
' is strict for any � 2 [0, 1], then ' is strict and Ker ', Im ',Coker' are

strictly R-specializable.

Proof.

Step 1: strictness of '. It is enough to prove that, for any � and p, we have

(7.2.24) '(V �
M1) \ F

p
V

�
M2 = '(F p

V
�
M1),

where we have set F p
V

�
M := F

p
M \ V �

M . We know that all objects involved have
finite type over C{t}, and the inclusion � is clear. By assumption, gr�

V
' is strict for

any � 2 [�1, 0]. Now, strict R-specializability of M1,M2 implies that it is so for any
� 2 R. This is translated as

'(V �
M1) \ F

p
V

�
M2 = '(F p

V
�
M1) + V

>�
M2

= '(F p
V

�
M1) + ( '(V �

M1) \ F
p
V

>�
M2)

(7.2.25)

for any � and p. By an easy induction, one can replace in the right-hand side the
term F

p
V

>�
M2 with F

p
V

�+k
M2 for any k > 1. If � > �1, we have F

p
V

�+1
M2 =

tF
p
V

�
M2 and, by V -strictness of ',

'(V �
M1) \ V

�+1
M2 = '(V �+1

M1) = t'(V �
M1),

hence
'(V �

M1) \ F
p
V

�+1
M2 = t('(V �

M1) \ F
p
V

�
M2),

so (7.2.24) holds by Nakayama’s lemma. Assuming now that (7.2.24) holds for �#
> �,

(7.2.25) reads

'(V �
M1) \ F

p
V

�
M2 = '(F p

V
�
M1) + '(F p

V
>�

M1) = '(F p
V

�
M1),

as wanted.

Step 2. We prove that Ker gr�
V
' (with filtration induced by that of gr�

V
M) is equal

to gr�
V

Ker ' (with filtration coming from that on Ker ' induced by that of M), and
similarly for Coker.

The case of Coker gr�
V
' is clear, since both induced filtrations are equal to the

image of F p
V

�
M2.

Let us consider the case of Ker '. The assertion amounts to the following property
(for all �, p):

{m 2 F
p
V

�
M1 | '(m) 2 V

>�
M2} ⇢ {m 2 F

p
V

�
M1 | '(m) = 0 } + V

>�
M1.

By the V -strictness of ', the equality holds if we forget F
p. Let us fix m in the left-

hand side, and let us write it as m = m1�m#
1
, with m1 2 V

� Ker ' and m
#
1
2 V

>�
M1.

We aim at proving that m1 2 F
p
V

�
M1. We thus write m1 = m + m

#
1
, m 2 F

p
V

�
M1

and m
#
1
2 V

>�
M1.
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Assume that m
#
1
2 V

�
M1 with � > �, and let [m#

1
] its class in gr�

V
M1. Its image

by gr�
V
', being the class of '(m), belongs to F

pgr�
V
M2 and, by F -strictness of gr�

V
',

is also the image of [em] 2 F
pgr�

V
M1. It follows that

m1 = m + em + m
##
1
, em 2 F

p
V

�
M1, m

##
1
2 V

>�
M1.

Continuing this way, we can write for each k > 1

m1 = m
(k) + m

(k)

1
, m

(k) 2 F
p
V

�
M1, m

(k)

1
2 t

k
V

�
M1.

In other words, let us denote by [m1] the image of m1 in V := V
�
M1/F

p
V

�
M1.

Then [m1] becomes zero in V/t
k
V for any k, hence in bV = lim �k

V/t
k
V . Since V has

finite type over C{t}, we have bV = C[[t]] ⌦C{ t} V and the natural morphism V ! bV
is injective. Therefore, [m1] = 0 , as wanted.

Step 3. We prove that Ker ' and Coker', as F -filtered D�-modules, are strictly
R-specializable at the origin. Properties 7.2.21(a) and (b) hold for gr�

V
Mi (i = 1 , 2,

any � 2 R), hence they old for Ker gr�
V
' and Coker gr�

V
'. But by Step 2, these are

gr�
V

Ker ' and gr�
V

Coker', so the assertion holds, according to Lemma 7.2.21.

The definition of middle extension for a coherently F -filtered D-module similar to
that of Definition 7.2.12 is not sufficient for our purposes (see Proposition 9.7.2). If we
restrict to those coherently F -filtered D-modules which are strictly R-specializable,
the definition in terms of injectivity of var and surjectivity of can is stronger and
more convenient. Let us make precise that, for a morphism of filtered vector spaces,
surjectivity means means subjectivity of F p to F

p for each p.

7.2.26. Definition (Filtered middle extension). Let (M,F
•
M ) be a coherently F -filtered

holonomic D-module which is strictly R-specializable. We say that (M,F
•
M ) is a

middle extension if M is a middle extension, i.e.,
(a) t : gr$ 1

V
M ! gr0

V
M is injective,

(b) @t : gr0
V
M ! gr$ 1

V
M is onto,

and moreover
(c) F

pgr$ 1

V
M = @tF

p+1gr0
V
M for all p.

Then the notion of S-decomposability for a coherently F -filtered D-module with M

strictly R-specializable is similar to that of Definition 7.2.12. The criterion of Propo-
sition 7.2.13 extends to the filtered case:

7.2.27. Proposition. If (M,F
•
M ) is coherent, holonomic and strictly R-specializable,

then it is S-decomposable if and only if

�t,1(M,F
•
M ) = Im can �Ker var .

One should be careful with the notion of image and kernel, since the category of
filtered D-modules is not abelian. Here, we take the image filtration can(F •

 t,1M )
and the induced filtration Ker var \F •

�t,1M . The proof is left as an exercise. A similar
statement in higher dimension is given in Proposition 9.7.5.
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The germic version of the de Rham complex. Let us first consider the de Rham complex
of M . The holomorphic de Rham complex DR M is defined as the complex

DR M = {0!M
r���! " 1 ⌦O M ! 0},

with the standard grading, i.e., M is in degree 0 and " 1 ⌦O M in degree 1. The
de Rham complex can be V -filtered, by setting

V
� DR M = {0! V

�
M
r���! " 1 ⌦O V

�$ 1
M ! 0},

for every � 2 R. As the morphism gr�
V
M ! gr�$ 1

V
M induced by @t is an isomorphism

for every � < 0, it follows that the inclusion of complexes

(7.2.28) V
0 DR M ,�! DR M

is a quasi-isomorphism. If M has a regular singularity, the terms of the left-hand
complex have finite type as O-modules.

If M comes equipped with a coherent filtration F
•
M , we set, in accordance with

the future definition 8.4.1 (see also Remark 8.4.9),

F
p DR M = {0! F

p
M
r���! " 1 ⌦O F

p$ 1
M ! 0}.

7.2.d. F -Filtered holonomic D�-modules. We now sheafify the previous con-
structions and consider a D�-module M. We assume it is holonomic, that is, its
germ at any point of the open disc ! ⇢ C centered at 0 is holonomic in the previous
sense. Then the D�-module M is an O�-module and is equipped with a connection.
Moreover, we always assume that the origin of ! is the only singularity of M on ! ,
that is, away from the origin M is locally O�⇤ -free of finite rank.

All the notions of the previous subsection extend in a straightforward way to the
present setting. In particular, for a holonomic D�-module M having a regular singu-
larity at the origin, Proposition 7.2.10 reads

M ' O� ⌦C[t] M
alg

.

There are filtered analogues of these notions. We only work with coherently
F -filtered D�-modules, that is, we assume that each F

pM is OX -coherent and that
there exists po such that F

po$ pM = FpDX · F poM.

7.2.29. Definition (Pure support).
(1) We say that M as above has pure support the disc ! if its germ M at the origin

is a middle extension, as defined in 7.2.11.
(2) We say that (M, F

•M) as above has pure support the disc ! if its germ (M,F
•)

at the origin is a filtered middle extension, as defined in 7.2.26.

Clearly, if (M, F
•M) has pure support ! , then so does the underlying M, but the

latter condition is not sufficient to ensure the former.

7.2.30. Remark. For the sheaf version, the conditions 7.2.19(a) and (b) are respectively
equivalent to
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(a) for � > �1 and any p, F p
V

�M = ( j! j
$ 1

F
pM) \ V

�M,
(b) for � 2 [�1, 0), k > 1 and any p,

F
p
V

�$ kM = @
k

t
F

p+k
V

�M +
k$ 1X

j=0

@
j

t
F

p+j
V

$ 1M.

In particular, F pM =
P

j>0
@
j

t
F

p+j
V

$ 1M.
Moreover, if (M, F

•M) is a filtered middle extension (Definition 7.2.26), 7.2.19(b)
together with 7.2.26(c) are equivalent to

(c) for � 2 (�1, 0], k > 1 and any p,

F
p
V

�$ kM = @
k

t
F

p+k
V

�M +
k$ 1X

j=0

@
j

t
F

p+j
V

>$ 1M.

In particular, F pM =
P

j>0
@
j

t
F

p+j
V

>$ 1M.
As a consequence, if (M, F

•M) is a filtered middle extension, F
•M is uniquely

determined from j
$ 1

F
•M.

7.2.19(a) , 7.2.30(a): The direction ( is clear. Let us prove =) . Let m be a local
section of (j! j

$ 1
F

pM\V �M). Then m is a local section of (F q
V

�M) for some q > p,
and m induces a section of (F q

V
�M)/(F p

V
�M) supported at the origin. Since the

latter quotient is O�-coherent, it follows that t
N
m is a local section of F p

V
�M for

some N , hence also a local section of (F p
V

�M)\V �+NM = F
p
V

�+NM = t
N
F

p
V

�M,
according to Property 7.2.19(a). Since t

N is injective on V
�M, this implies that m is

a local section of F p
V

�M, hence the desired assertion.
7.2.19(b) , 7.2.30(b): This is obvious by an easy induction on �.

By definition of F pVmid (see (6.14.1)), we deduce from this remark and Proposi-
tion 6.14.2:

7.2.31. Corollary.
(1) Assume that (M, F

•M) is a filtered middle extension. With the identification
M = Vmid of Proposition 7.2.14, we have F

pM = F
pVmid.

(2) If (V, F •V) underlies a polarizable variation of Hodge structure, then the pair
(Vmid, F

•Vmid) is a filtered middle extension.

On the other hand, we say that M (resp. (M, F
•M)) has support the origin if any

local section m of M = M0 (resp. F p
M for any p) is annihilated by some power

of t. Here, the condition on (M, F
•M) is equivalent to that on M. Let us denote by

◆ : {0} ,! ! the inclusion.

7.2.32. Proposition. Let (M, F
•M) be a coherently F -filtered D�-module which is strict-

ly R-specializable. Then it has support the origin if and only if it takes the form
D◆! (H, F

•H) for some filtered finite dimensional C-vector space (H, F
•H). We then

have (H, F
•H) = �t,1(M, F

•M).
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Proof. Since M is supported at {0}, there exists a finite-dimensional vector space
H (equal to gr$ 1

V
M) such that M = ◆! H[@t] (Exercise 7.7). Considering the finite-

dimensional C-vector space H as a holonomic D-module on a point, we regard M as
the D-module pushforward of H by the inclusion ◆, a relation that we denote

M = D◆! H := ◆! H[@t].

For k > 0 we have V
kM = 0 and V

$ k$ 1M =
P

j6k
◆! H@

j

t
, so that one recovers H

from M as
H = �t,1M.

Let now (H, F
•H) be a filtered vector space. The F -filtration on M = D◆! H is defined

by (see also Example 8.7.7(2))

(7.2.32 ⇤) F
pM = F

p
D◆! H =

L
j>0

◆! (F [1]p+jH) · @j
t

=
L
k>0

◆! (F p+j+1H) · @j
t
.

This defines the pushforward D◆! (H, F
•H) as a filtered holonomic DX -module sup-

ported at the origin. Note that it is strictly R-specializable at the origin. We recover
F

•H from F
•M by the formula

F
pH = F

p
�t,1M,

due to the shift in the definition of F •M and the opposite shift in that of F •
�t,1M

(see (7.2.16)).
The converse is left as an exercise (see Exercise 7.14).

7.2.e. Pushforward of regular holonomic left DX-modules. The holomorphic
de Rham complex DR M is defined as the complex (degrees as above)

DR M = {0!M
r���! " 1

�
⌦O�

M! 0},

and its filtered version is

F
p DR M = {0! F

pM
r���! " 1 ⌦O F

p$ 1M! 0}.

Away from the origin, the de Rham complex has cohomology in degree 0 only, and
H

0 DR M|�⇤ = V' is a local system of finite dimensional C-vector spaces on ! ! . In
general, DR M is a constructible complex on ! , that is, it is such a locally constant
sheaf on ! ! and its cohomology spaces at the origin are finite dimensional C-vector
spaces. The subcomplex V

0 DR M is quasi-isomorphic to DR M and, if M has a reg-
ular singularity at the origin, V

0 DR M is a complex whose terms are O�-coherent
(in fact V

0M is O� free).
If M has pure support the disc ! , the de Rham complex DR M has cohomology in

degree 0 only, and H
0 DR M = j! V

' , with j : ! !
,! ! . In such a case, both terms

of V 0 DR M are O�-free. On the other hand, if M is supported at the origin, then
DR M ' V

0 DR M reduces to the complex with the single term V
$ 1M = gr $ 1

V
M in

degree 1.
We now consider the global setting of a compact Riemann surface and a regular

holonomic DX -module M with singularities at a finite set D ⇢ X. The pushforward
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(in the sense of left DX -modules) of M by the constant map aX : X ! pt is the
complex

R#(X,DR M),

that we regard as a complex of D-modules on a point, that is, a complex of C-vector
spaces. It follows that R#(X,DR M) has cohomology in degrees 0, 1, 2.

For a regular holonomic DX -module M, it is immediate to check that the hyper-
cohomology space H

k(X,DR M) is finite dimensional for every k. Indeed, denote
by V

�M the subsheaf of M which coincides with V
�(M|�) on each disc ! near a

singularity and is equal to M away from the singularities. Then V
�M is OX -coherent

and (7.2.28) gives V
0(DR M) ' DR M, so H

k(X,DR M) = H
k(X,V

0 DR M) is fi-
nite dimensional since each term of the complex V

0 DR M is OX -coherent and X is
compact.

If (M, F
•M) is a coherently F -filtered D-module, then H

k(X,DR M) is filtered by
the formula

F
p
H

k(X,DR M) := image[Hk(X,F
p DR M) �!H

k(X,DR M)].

7.2.33. Examples.
(1) Assume that M = Vmid and set H = V' . Then DR M = j! H and

H
k(X,DR M) = H

k(X, j! H). As explained in Remark 6.14.16, the only inter-
esting cohomology is H

1(X,DR M) = H
1(X, j! H).

(2) Assume M is supported at one point in X, and let ! be a small disc centered
at that point, with coordinate t. We can then assume that X = ! . We denote by
◆ : {0} ,! ! the inclusion. Then V

0(DR M) is the complex having the skyscraper
sheaf with stalk H at the origin as its term in degree 1, and all other terms of the
complex are zero. We can thus write

DR M = ◆! H[�1],

and we find

H
k(X,DR M) =

(
H if k = 1 ,

0 otherwise.
On the other hand, for the same reason of shift in the definition, we obtain

F
p DR M = ◆! F

pH[�1],

so that, if we recover H from M as H1(X,DR M), we also recover F •H by the formula

F
pH = F

p
H

1(X,DR M).

7.2.34. Caveat. In order to treat on the same footing D-modules with pure support
in dimension zero and one, we replace the de Rham functor DR by its shifted version
p

DR = DR[1] . This shift does not affect the filtrations, in the sense that, for a filtered
D-module (M, F

•M), we set
F

p p

DR(M) = ( F p DR M)[1].

As a consequence, the notion of weight has to be shifted for variations of Hodge
structure on ! ! .
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7.3. Sesquilinear pairings between D-modules on a Riemann surface

We have seen in Section 4.1 that the notion of a sesquilinear pairing is instrumental
in order to define the polarization of a variation of C-Hodge structure and even, taking
the approach of triples (Section 5.2), in defining the notion of variation of C-Hodge
structure. It takes values in the space of C" functions. In order to extend this notion
to that of pairing on D-modules, we need to extend the target space, as suggested by
the formula in Lemma 6.8.2. When working with left D-modules, the target space
for sesquilinear pairings will be the spaces of distributions on the Riemann surface X.
A general presentation of sesquilinear pairing will be given in Chapter 12. We also
refer to Section 8.3.4 for general properties of distributions and currents.

7.3.a. Basic distributions. Let us start by noticing that the C
" functions on ! !

(punctured unit disc) considered in Lemma 6.8.2, and that we denote by

u�,p := |t|2� L( t)p

p!
, � > �1, p 2 N, (L( t) = � log |t|2),

define distributions on ! by the formula

h⌘, u�,pi =
Z

�

u�,p⌘,

for any C
" (1, 1)-form ⌘ with compact support on ! . In fact, a direct computation

in polar coordinates shows that u�,p is a locally integrable function on ! . These
distributions are related by the formula

(7.3.1) �(t@t � �)u�,p = �(t@
t
� �)u�,p = u�,p$ 1,

as can be seen by using integration by parts (u�,$ 1 := 0 ).

7.3.2. Proposition. Suppose that a distribution u 2 Db(!) solves the equations

(t@t � �#)ku = ( t@
t
� �##)ku = 0

for real numbers �#
,�

##
> �1 and an integer k > 0. Then

(a) u = 0 unless �#� �##2 Z,
(b) if �# = �

## = �, u is a linear combination of the distributions u�,p with p 2
[0, k � 1].

Proof. Let us first show that if Suppu ✓ {0}, then u = 0 . By continuity, u is
annihilated by some large power of t; let m 2 N be the least integer such that tmu = 0 .
If m > 1, we have

0 = t
m$ 1(t@t � �#)ku = ( t@t � �#� (m� 1))ktm$ 1

u

= ( @tt� �#�m)ktm$ 1
u = ( �1)k(�#+ m)ktm$ 1

u,

hence t
m$ 1

u = 0 , due to the fact that �#
> �1. The conclusion is that m = 0 , and

hence that u = 0 .
Now let us prove the general case. We recall (see Section 12.2.c for details) that

the restriction Db(!) ! Db(! ! ) has kernel consisting of distributions supported at
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the origin. The preliminary result implies that it is enough to prove the proposition
for distributions on ! ! . The pullback by the exponential mapping

H := {Re⌧ < 0} exp����! ! !
, ⌧ 7�! e⌧

of such a distribution is then well-defined: for a test (1, 1)-form ⌘ on H, that we write
a(⌧ )d⌧ ^ d⌧ with a 2 C

"
c

(H), the trace tr ⌘ is the (1, 1)-form on ! ! defined as

tr ⌘ = (tr a)( t)
dt
t
^ dt

t
, with (tr a)( t) :=

X

⌧ () t

a(⌧ ).

Since the exponential mapping is a covering and a has compact support, the sum
above is finite and tr a 2 C

"
c

(! ! ) satisfies t@t tr a = tr( @⌧a) and a conjugate analogue.
We can thus define a distribution eu := exp!

u on H by

h⌘, eui = htr ⌘, ui,

with the property that

(@⌧ � �#)keu = ( @⌧ � �##)keu = 0 .

The equations imply that the product

v = e
$ �

0
⌧
e

$ �
00
⌧ · eu

is annihilated by the k-th power of @⌧ and @⌧ , and in particular by the k-th power
(@⌧@⌧ )k of the Laplacian. By the regularity of the Laplacian, v is C" , and the above
equations imply that v is a polynomial P (⌧, ⌧ ) of degree 6 k. Consequently,

eu = P (⌧, ⌧ ) · e�
0
⌧
e
�
00
⌧
.

By construction, eu is invariant under the translation ⌧ 7! ⌧ + 2⇡i; if eu 6= 0 , this forces
P (⌧, ⌧ ) to be a polynomial in ⌧ + ⌧ and �#� �##2 Z.

Now there are two cases. If �#� �## 62 Z, then eu = 0 , hence u = 0 in Db(! ! ), as
wanted. If �# = �

##= �, then u is a linear combination of the C
" functions u�,p|�⇤

with 0 6 p 6 k � 1.

To include the case �# = �
## = �1 into the picture, we need the following sim-

ple facts about distributions. Since we do not consider currents in this chapter, we
consider the Dirac distribution �0 as defined by

h⌘(t) i

2⇡
(dt ^ dt), �0i = ⌘(0),

which thus depends on the choice of the coordinate t through the identification E1,1

�
=

C"
�

· dt^ dt. Since the form i

2⇡
(dt^ dt) is real, the distribution �0 is real, in the sense

that, defining its conjugate �0 by

h⌘ i

2⇡
(dt ^ dt), �0i := h⌘ i

2⇡
(dt ^ dt), �0i,

we have �0 = �0.
Cauchy’s formula reads (see Exercise 7.19)

@t@tL( t) = ��0.
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For the sake of simplicity, we will set for p > 0

u$ 1,p := @t@tu0,p+1 = @t@t(L( t)p+1)/(p + 1)! .

In particular, u$ 1,0 = ��o. Note that the basic relations (7.3.1) also hold for u$ 1,p,
that is,

�(t@t + 1) u$ 1,p = �(t@
t

+ 1) u$ 1,p = u$ 1,p$ 1 (u$ 1,$ 1 := 0) .

7.3.3. Proposition. Suppose that a distribution u 2 Db(!) solves the equations

(t@t + 1) k
u = ( t@

t
+ 1) k

u = 0

for some k > 1. Then u is a linear combination of u$ 1,p with 0 6 p 6 k � 1.

Proof. Using the relation t(t@t + 1) = t@tt, we find (t@t)k|t|2u = ( t@
t
)k|t|2u = 0 , and

by Proposition 7.3.2 we deduce

|t|2u =
k$ 1X

p=0

cp+2u0,p = |t|2@t@t
k+1X

q=2

cqu0,q,

according to the basic relations (7.3.1). On the other hand, distributions solutions of
|t|2v = 0 are C-linear combinations of �0, @jt �0, @

j

t
�0 (j > 1). As a consequence, and

using Cauchy’s formula above, we find an expression

u = @t@t

k+1X

q=1

cqu0,q +
X

j>1

(aj@
j

t
�0 + bj@

j

t
�0),

and we are left with showing ck+1 = aj = bj = 0 for all j > 1. For that purpose, we
note that, for p = 1 , . . . , k + 1 ,

(@tt)k@t@tu0,p = @t@t(t@t)
k
u0,p = ( �1)k@t@tu0,p$ k =

(
0 if p 6 k,

(�1)k+1
�0 if p = k + 1 .

On the other hand, since k > 1, we have (@tt)k@
j

t
�0 = @

j

t
(@tt)k�0 = 0 and thus

(@tt)k
X

j>1

(aj@
j

t
�0 + bj@

j

t
�0) =

X

j>1

aj�0(@tt)k@
j

t
�0

=
X

j>1

aj@
j

t
(@tt� j)k�0 =

X

j>1

(�j)kaj@jt �0,

and similarly
(@

t
t)k

X

j>1

(aj@
j

t
�0 + bj@

j

t
�0) =

X

j>1

(�j)kbj@j
t
�0,

so the equations satisfied by u imply

�ck+1�0 +
X

j>1

j
k
aj@

j

t
�0 = 0 and � ck+1�0 +

X

j>1

j
k
bj@

j

t
�0 = 0 ,

hence ck+1 = aj = bj = 0 , as was to be proved.

In the same vein, we solve the mixed case:
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7.3.4. Proposition. Suppose that a distribution u 2 Db(!) solves the equations

(t@t)ku = ( t@
t

+ 1) k
u = 0

for some k > 1. Then u is a linear combination of @
t
u0,p with 1 6 p 6 k.

Proof. We notice that @tu solves the equations in Proposition 7.3.3, so we can write

@tu =
k$ 1X

p=0

cp+1u$ 1,p = @t

kX

q=1

cq@tL( t)q/q!,

and thus u = h(t) +
P

k

q=1
cq@tL( t)q/q! for some anti-holomorphic function h(t). One

checks that

(t@
t

+ 1) k
@
t
L( t)q/q! = @

t
(t@

t
)kL( t)q/q! = 0 if q 6 k,

so h(t) must satisfy (t@
t

+ 1) k
h(t) = 0 , which implies h = 0 .

7.3.b. Sesquilinear pairings. Let M#
,M##be regular holonomic D�-modules, each

of which written as M ' O� ⌦C[t] Malg (see Section 7.2.d). We will consider the
conjugate module M##: this is M##as a sheaf of R-vector spaces, equipped with the
structure of a module over the sheaf D� of anti-holomorphic differential operators as
follows. Any anti-holomorphic function bj(t) can be written as the conjugate a(t) of a
holomorphic function a(t), and any anti-holomorphic differential operator

P
j
bj(t)@

j

t
,

where bj are anti-holomorphic functions, can be written as the conjugate P (t, @t) of a
holomorphic differential operator P (t, @t) =

P
j
aj(t)@t. When regarded as a section

of M##, we write a section m
##of the sheaf M##as m##, and the action of D� is defined by

P (t, @t) ·m##:= P (t, @t)m##.

A sesquilinear pairing s : M#⌦C M##! Db� is, by definition (see also Definition
5.4.1), a C-linear pairing which satisfies, for any local sections m

#
,m

##of M#
,M##,

P (t, @t)s(m#
,m##) = s(P (t, @t)m#

,m##),

P (t, @t)s(m#
,m##) = s(m#

, P (t, @t)m##).
(7.3.5)

Propositions 7.3.2 and 7.3.3 immediately imply:

7.3.6. Proposition. Let s be a sesquilinear pairing between M# and M##.

(1) The induced pairing s : M#�0 ⌦M##�00 ! Db(!) vanishes if �#� �##
/2 Z.

(2) For � > �1, m# 2 M
#� and m

##2 M
##�, the induced pairing s

(�)(m#
,m##) is a

C-linear combination of the basic distributions u�,p (p > 0).

As a consequence, the pairing s
(�), which is a sesquilinear pairing between the finite-

dimensional C-vector spaces M#� and M
##� with values in Db(!) , has a unique expan-

sion
P

p>0
s
(�)

p u�,p, where s
(�)

p (� > �1) is a sesquilinear pairing M
#� ⌦M##� ! C.
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Using the relations in (7.3.1) and (7.3.5), we get (recall that E = t@t)
X

p>0

s
(�)

p
(�(E ��)m#

,m##)u�,p = s(�(E ��)m#
,m##) = �(t@t � �)s(m#

,m##)

=
X

p>0

s
(�)

p+1
(m#

,m##)u�,p,

and therefore s
(�)

p+1
(m#

,m##) = s
(�)

p (�(E ��)m#
,m##). So, if we denote by N# or N##the

nilpotent operator �(E ��), we have

s
(�)(m#

,m##) =
X

p>0

s
(�)

0
(N#p

m
#
,m##)u�,p =

X

p>0

s
(�)

0
(m#

,N##pm##)u�,p

(the latter equality is a consequence of (7.3.1)).

7.3.7. Corollary.
(1) For � > �1, the pairing s

(�)

0
: M#� ⌦M##� ! C satisfies the equality

(s! )(�)
0

= ( s(�)
0

)!
.

(2) For � > �1, the pairing s
(�)

0
: M#� ⌦M##� ! C satisfies the relation

(7.3.7 ⇤) s
(�)

0
� (N#⌦ Id) = s

(�)

0
� (Id ⌦N##).

(3) The pairings s
(0)

0
, s

($ 1)

0
satisfy the relations

(7.3.7 ⇤⇤) s
($ 1)

0
� (can⌦Id) = s

(0)

0
� (Id ⌦var) , s

($ 1) � (Id ⌦can) = s
(0)

0
� (var ⌦Id) .

Proof. The first point is a consequence from the fact that the basic distributions are
real. The second point has already been noticed. Let us prove for example the first
equality in (7.3.7 ⇤⇤). Assume m

# 2 M
#0 and m

##2 M
##$1. Then s(m#

,m##) satisfies
the assumption of Proposition 7.3.4, hence s(m#

,m##) =
P

k$ 1

p=0
cp@tu0,p+1. Therefore,

s(canm#
,m##) = �@t

k$ 1X

p=0

cp@tu0,p+1 = �
k$ 1X

p=0

cpu$ 1,p.

On the other hand,

s(m#
, var m##) = t

k$ 1X

p=0

cp@tu0,p+1 = �
k$ 1X

p=0

cpu0,p.

Therefore, �c0 = s
($ 1)

0
(canm#

,m##) = s
(0)

0
(m#

, var m##).

Using the power series expansion of the exponential function, we may write the
above formula for s

(�) in a purely symbolic way as (m#2M
#�
, m

##2M
##�)

(7.3.8) s
(�)(m#

,m##) =

8
<

:
s
(�)

0
(|t|2(� Id $ N)

m
#
,m##) if � > �1,

@t@ts
($ 1)

0

⇣ |t|$ 2N � 1
N

m
#
,m##

⌘
if � = �1.

7.3.9. Example. We make more explicit the possible sesquilinear pairings when M
#

and M
##are either middle extensions or supported at the origin.
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(1) The “mixed case”, where for example M# is a middle extension and M## is
supported at the origin, is easily treated: in such a case, we have s = 0 (see Lemma
12.3.10 for a similar statement in higher dimension). The assumption implies that
M

##� = 0 for � 6= �1,�2, . . . , and on the other hand, t : M#k$ 1 ! M
#k is bijective

except if k = 0 , in which case it is only injective, and @t : M#k ! M
#k$ 1 is bijective

except if k = 0 , where it is only onto. If k 6= 0 , we have

s(M#k
,M##$1) = s(tM#k$ 1

,M##$1) = s(M#k$ 1
, tM##$1) = 0 .

Therefore, we also have

s(M#0
,M##$1) = s(@tM#1

,M##$1) = @ts(M#1
,M##$1) = 0 .

Lastly, for ` > 0,

s(M#k
,M##$1$ `) = s(M#k

, @
`
t
M##$1) = @

`

t
s(M#k

,M##$1) = 0 .

(2) If M#
,M##are supported at the origin, then s is determined by s

($ 1) and, for
m

#2M
#$1

,m
##2M

##$1

s
($ 1)(m#

,m##) = s
($ 1)

0
(m#

,m##)u$ 1,0 = �s($ 1)

0
(m#

,m##)�o,

where s
($ 1) can be any complex-valued sesquilinear pairing between M

#$1 and M
##$1.

(3) If M#
,M##are middle extensions, then s is uniquely determined by its restriction

s
(�) to M

#� ⌦C M##� for � 2 (�1, 0], hence by the C-valued sesquilinear pairings s
(�)

0

for � 2 (�1, 0], according to (7.3.8).
Indeed, let us first assume that � 2 (�1, 0). If k > 0 we have M

#�+k = t
k
M

#� and
M

#�$ k = @
k

t
M

#� and similar equalities for M
##. By D ⌦ D-linearity, the restriction

of s to M
#�+k ⌦M##�+` (k, ` 2 Z) is then uniquely determined by s

(�).
If � = 0 , we can argue similarly for the restriction of s to M

#k ⌦M##̀, according
to the middle extension property.

7.3.c. Sesquilinear pairing on nearby cycles. We have seen in Exercise 6.13(3)
a way to define the sesquilinear pairing gr�

V
s by means of a residue formula, if � > �1.

Notice that, for such a �, the distribution s
(�) is L1

loc
, and it follows that the restriction

of s to V
�M#⌦ V �M##takes values in L

1

loc
(!) . We can conclude:

7.3.10. Lemma. For every � > �1, the sesquilinear pairing on V
�M#⌦ V �M##defined

by the formula

(m#
,m##) 7�! Ress=$ �$ 1

Z

�

|t|2ss(m#
,m##) �(t) i

2⇡
dt ^ dt

(for some, or any, cut-off function � 2 C
"
c

(!) ) induces a well-defined sesquilinear
pairing

gr�
V
s : gr�

V
M#⌦ gr�

V
M##�! C

which coincides with s
(�)

0
via the identification M

� ' gr�
V
M (M = M#

,M##) of Propo-
sition 7.2.10 and satisfies (see (7.3.7 ⇤))

gr�
V
s(N#•, •) = gr �

V
s(•,N##•).
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7.3.11. Remark. For m#2M
#� and m

##2M
##� , we recover the equality gr�

V
s(m#

,m##) =
s
(�)

0
(m#

,m##) (by using the identification M
� = gr �

V
M) as already checked in Exercise

6.13(3), by means of the formula above for s
(�). Indeed,

Ress=$ �$ 1

Z

�

|t|2ss(�)(m#
,m##) �(t) i

2⇡
dt ^ dt

= Res�=0

Z

�

s
(�)(|t|2(�$ 1$ N)

m
#
,m##) �(t) i

2⇡
dt ^ dt

= s
(�)

0

✓
Res�=0

⇣Z

�

|t|2(�$ 1$ N)
�(t) i

2⇡
dt ^ dt

⌘
m

#
,m##

◆
,

and from Example 6.8.6 and Exercise 6.13(1) we have

Res�=0

Z

�

|t|2(�$ 1$ N)
�(t) i

2⇡
dt ^ dt = 1 .

7.3.12. Definition (Sesquilinear pairing on nearby cycles). Let s be a sesquilinear pairing
between M# and M##. For � = exp � 2⇡i� with � 2 (�1, 0], we set

 t,�s = gr �

V
s :  t,�M

#⌦  t,�M##�! C,

which satisfies  t,�(s! ) = (  t,�s)! and

 t,�s(N#•, •) =  t,�s(•,N##•).

7.3.d. Sesquilinear pairing on vanishing cycles. We note that, if � = �1, the
residue formula of Lemma 7.3.10 is identically zero, since |t|2ss(m#

,m
##) = 0 for

Re(s) � 0, and this lemma cannot be used for defining �t,1s. On the other hand,
if a distribution u is a C-linear combination of distributions u�,p (� > �1, p > 0),
one can recover the coefficient of u$ 1,0 by a residue formula applied to the Fourier
transform of u. This justifies the considerations below.

Let b�(✓) be a C
" function of the complex variable ✓ 2 C such that b� is a cut-off

function near ✓ = 0 . For s such that Res > 0, we consider the function

Ib�(t, s) :=
Z

C
e
t/✓$ t/✓ |✓|2(s$ 1) b�(✓) i

2⇡
d✓ ^ d✓,

and we define Ib�,k,` by replacing |✓|2(s$ 1) with ✓k✓` |✓|2(s$ 1) in the integral defining Ib�;
in particular, we have Ib� = Ib�,0,0 and Ib�,k,k(t, s) = Ib�(t, s+ k) for any k 2 Z. We refer
to Exercise 7.21 for the properties of these functions that we will use.

7.3.13. Remark. We can also use the coordinate ⌧ = 1/✓ to write Ib�(t, s) as

Ib�(t, s) =
Z

e
t⌧$ t⌧ |⌧ |$ 2(s+1) b�(⌧ ) i

2⇡
d⌧ ^ d⌧

where now b� is a cut-off function near ⌧ = 1. Ib�(t, s) is the Fourier transform of
|⌧ |$ 2(s+1) b�(⌧ ) (see Exercise 7.20): put ⌧ = ( ⇠ + i⌘)/

p
2 and t = ( x + iy)/

p
2; then

Ib�(t, s) =
1

2⇡

Z
e

$ i(⇠y+⌘x) |⌧ |$ 2(s+1) b�(⌧ ) d⇠ ^ d⌘.
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By applying the properties of the functions Ib�,k,k obtained in Exercise 7.21 and by
arguing as in Exercise 6.13(3), we obtain that, for any test function � on ! (we will
use a cut-off function near 0), the function

s 7�!
⌦
Ib�(t, s)�(t) i

2⇡
(dt ^ dt), s(m#

,m##)
↵

extends as a meromorphic function on the plane C with possible poles contained in
R60 (we do not use here the symbol

R
since s(m#

,m##) is a distribution which is
possibly not a function, like �0).

7.3.14. Lemma. The sesquilinear pairing on V
$ 1M#⌦ V $ 1M##defined by the formula

(m#
,m##) 7�! Ress=0

⌦
Ib�(t, s)�(t) i

2⇡
(dt ^ dt), s(m#

,m##)
↵

(for some, or any, cut-off function � 2 C
"
c

(!) ) induces a well-defined sesquilinear
pairing

gr$ 1

V
s : gr$ 1

V
M#⌦ gr$ 1

V
M##�! C

which coincides with �s($ 1)

0
via the identification M

$ 1 ' gr$ 1

V
M (M = M#

,M##) of
Proposition 7.2.10.

Sketch of proof. We note that the basic distributions u�,p (with � > �1 and p > 0) are
temperate distributions on C. Hence so are their Fourier transforms bu�,p := F(u�,p).
Assume first that � > �1. Then bu�,p solves the equations

(⌧@⌧ + � + 1) p+1bu�,p = ( ⌧@⌧ + � + 1) p+1bu�,p = 0 ,

and thus the restriction of bu�,p to ⌧ 6= 0 is a C-linear combination of the functions
|⌧ |$ 2(�+1)L(⌧ )k/k! for k 6 p. It follows from Exercise 6.13(3), applied with the
variable ✓ = 1/⌧ , that

s 7�!
Z

C
|⌧ |$ 2(s+1)b�(⌧ )bu�,p

i

2⇡
d⌧ ^ d⌧

extends as a meromorphic function with no pole at s = 0 . One can refine this
reasoning in order to get the first statement.

For the second statement, we are reduced to showing

Ress=0

⌦
Ib�(t, s)�(t) i

2⇡
(dt ^ dt), u$ 1,p)

↵
=

(
�1 if p = 0 ,

0 if p > 1.

The first case follows from the identity Ress=0 Ib�(0, s) = 1 (see Exercise 7.21(2)), since
u$ 1,0 = ��0. For p > 1, one uses Exercise 7.21(1) and (4) to show that (( t@t)pIb�)(0, s)
has no pole at s = 0 .

7.3.15. Definition. The sesquilinear pairing

�t,1s : gr$ 1

V
M#⌦ gr$ 1

V
M##�! C

is well-defined by the formula

(7.3.15 ⇤) ([m#], [m##]) 7�! Ress=0

⌦
Ib�(g, s)�(t) i

2⇡
(dt ^ dt), s(m#

,m##)
↵
,
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where m#
,m

##are local liftings of [m#], [m##] and �(t) is any cut-off function. It satisfies
(see Corollary (7.3.7)) �t,1(s! ) = ( �t,1s)! and

(7.3.15 ⇤⇤)
�t,1s(N#•, •) = �t,1s(•,N##•),

�t,1s(can#•, •) = � t,1s(•, var##•), �t,1s(•, can##•) = � t,1s(var#•, •).

7.3.16. Examples (Sesquilinear pairing on vanishing cycles). Let s be a sesquilinear
pairing between M# and M##. We denote by M either M# or M##.

(1) If M#
,M##are supported at the origin, we have M = M

$ 1[@t] and we recover
(see Example 7.3.9(2)) that �t,1s on M

#$1 ⌦M##$1 is the coefficient of �0 in s
($ 1).

This explains the minus sign occurring in the second line of (7.3.15 ⇤⇤), while there
is no minus sign in (7.3.7 ⇤⇤).

(2) If M is a middle extension, we have �t,1M = Im N :  t,1M !  t,1M, with
can = N and var = incl . Formulas (7.3.15 ⇤⇤) give

�t,1s(N#•,N##•) := � t,1s(N#•, •) = � t,1s(•,N##•).

Note that this is compatible with Proposition 3.4.20.

7.3.e. Pushforward of a sesquilinear pairing. We will consider the case of the
closed inclusion ◆ : {0} ,! ! and, in the global setting, the case of the constant map
X ! pt on a Riemann surface X.

7.3.17. Pushforward of a sesquilinear pairing by a closed inclusion. Let ◆ : {0} ,! !
denote the inclusion and let s : H#⌦H##be a sesquilinear pairing between C-vector
spaces. We set the following, for H = H#

,H##:
• ◆! H is the skyscraper sheaf with stalk H at the origin.
• M = D◆! H is the sheaf supported at the origin

◆! H[@t] := ◆! H ⌦C C[@t] =
L
k>0

◆! H · @k
t
,

where we regard @t as a new variable, and that we equip with the left D�-module
structure for which the action of t defined by t · v@k

t
= �kv@k$ 1

t
(v 2 H), and the

action of @t is the obvious one @t · v@kt = v@
k+1

t
.

• The pairing D,D◆! s : M#⌦C M##! Db� is defined by D� ⌦C D�-linearity from
its restriction to ◆! H#⌦C ◆! H##as follows:

(D,D◆! s)(v#
, v##) = s(v#

, v##)�0.

Note that, since �0 is real, we have D,D◆! (s! ) = ( D,D◆! s)! .

Pushforward of a sesquilinear pairing by a constant map. Let s : M#⌦C M##! DbX be
a sesquilinear pairing. We wish to “integrate” it on X, that is, to define for each k,
by integration, a sesquilinear pairing

(7.3.18)
R
(k,$ k)

X
s : H1+k(X,DR M#) ⌦H

1$ k(X,DR M##) �! C.

It is convenient to realize elements of the de Rham cohomology H
j(X,DR M) as

differential forms with coefficients in M. For that purpose, we replace the complex
DR M with its C" resolution (E•

X
⌦M, d+ r). An element of Hj(X,DR M) can then
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be represented by a global section of Ej

X
⌦M which is closed under d + r (a shortcut

for d⌦ Id + Id ⌦r), modulo exact global sections. By using a partition of unity, each
global section can be written as a sum of terms ⌘ ⌦m, where m is a section of M on
some open set of X and ⌘ is a C

"
j-form with compact support contained in this

open subset. For ⌘# of degree 1 + k and ⌘##of degree 1� k, we set

(7.3.19) (
R
(k,$ k)

X
s)(⌘#⌦m

#
, ⌘##⌦m##) := h⌘#^ ⌘##, s(m#

,m##)i,

where s(m#
,m##) is regarded as a distribution on the intersection of the domains of m#

and m
##, which contains the support of the C

" 2-form ⌘
#^ ⌘##.

7.3.20. Proposition. Formula (7.3.19) (extended by linearity on both sides) well defines
a sesquilinear pairing (7.3.18).

Proof. If we denote by D the differential of the C
" de Rham complex, the assertion

would follow from the property

(7.3.21) (
R
X
s)(D(⌘#⌦m

#), ⌘##⌦m##) = ±(
R
X
s)(⌘#⌦m

#
, D(⌘##⌦m##)) ,

where ± depends on k. Assume for example that ⌘# is a C
" function and ⌘##a 1-form.

Stokes formula implies

h⌘#
⌘##, d#

s(m#
,m##)i = �hd#(⌘#

⌘##), s(m#
,m##)i

and similarly with d##. Since D(⌘#⌦m#) = d ⌘#⌦m#+ ⌘#^rm# and since s(rm#
,m##) =

d#
s(m#

,m##), the left-hand side of (7.3.21) is equal to

h(d⌘#) ^ ⌘##, s(m#
,m##)i � hd#(⌘#

⌘##), s(m#
,m##)i

while the right-hand side of (7.3.21) is similarly

h⌘#(d⌘##), s(m#
,m##)i � hd##(⌘#

⌘##), s(m#
,m##)i,

and the sum of the two sides is equal to zero.

7.3.22. Definition. The pushforward

D,Da
(k,$ k)

! s : H1+k(X,DR M#) ⌦H
1$ k(X,DR M##) �! C

is defined as

D,Da
(k,$ k)

! s := Sgn(1, k)
R
(k,$ k)

X
s.

7.4. Hodge D-modules on a Riemann surface and the Hodge-Saito theorem

What kind of an algebraic object do we get by considering Vmid together with its
connection and its filtration? How to describe it axiomatically, as we did for variations
of Hodge structure? Is there a wider class of filtered D-modules which would give rise
to a Hodge theorem? We give an answer to these questions in this section.
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7.4.a. The category of triples of filtered DX-modules and its functors

The category of triples, as considered in Section 5.4, will prove much convenient
as an ambient abelian category for Hodge modules. We develop here the language of
triples for filtered DX -modules.

A filtered DX -triple

T = (( M#
, F

•
M#), (M##

, F
•
M##), s)

consists of filtered DX -modules together with a sesquilinear pairing between the un-
derlying DX -modules. We say that a triple is coherent, holonomic, regular, strictly
R-specializable, S-decomposable, middle extension, with punctual support, if both
its filtered DX -module components are so. We note that, by Example 7.3.9(1),
if T is holonomic, strictly R-specializable at any point, hence also regular (Propo-
sition 7.2.20), and S-decomposable, then T decomposes in a unique way as T1 � T2,
where T1 has pure support X and T2 has punctual support.

7.4.1. Morphisms, Hermitian duality, twist
(1) The notion of morphism is the obvious one, as in the category of triples. A mor-

phism ' : T1 ! T2 is a pair ('#
,'

##), where '# is a filtered morphism (M#
1
, F

•M#
1
) !

(M#
2
, F

•M#
2
) and '##a filtered morphism (M##

2
, F

•M##
2
) ! (M##

1
, F

•M##
1
), both satisfying

the compatibility relation (5.2.1 ⇤⇤) in DbX .
(2) It is convenient to embed the category of triples of filtered DX -modules as a

full subcategory of that of triples of RFD-modules, which is abelian. In order to
do so, we start by applying the Rees construction of Section 5.1.3, and we denote
by eDX = RFDX the Rees ring obtained from the filtered ring (DX , F•DX ). We
the consider the triples consisting of pairs ( eM#

, eM##) of graded RFDX -modules and
a sesquilinear pairing between the associated DX -modules M = eM/(z � 1) eM) with
values in DbX , and we associate with a triple T as above the triple consisting of the
Rees modules RFM

#
, RFM

##(in particular they are strict as graded RFDX -modules)
and the sesquilinear pairing s between M# and M##. This category of triples of is
abelian, since one does not insist on the torsion freeness with respect to z.

(3) Hermitian duality is defined as in Section 5.2.2(6):

T! = (( M##
, F

•
M##), (M#

, F
•
M#), s! ).

(4) Tate twist is defined as in Section 5.2.2(7), so

T(k) = (( M#
, F [k]•M#), (M##

, F [�k]•M##), s).

(5) A pre-polarization of T of weight w is an isomorphism S : T ! T! (�w) which
is Hermitian.

(6) The data of a pre-polarized filtered triple (T,S) of weight w is equivalent to
the data of a filtered Hermitian pair ((M#

, F
•M#), S) together with the weight w.

The normalization of Section 5.4.b leads us to de-symmetrize the nearby cycle
functors, in a way similar to that of the pullback functor.
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7.4.2. Nearby and vanishing cycles. We assume that X = ! . Let

T = (( M#
, F

•
M#), (M##

, F
•
M##), s)

be coherent, holonomic and strictly R-specializable at the origin. We set (see (7.2.16))

 t,�T := ((  t,�M
#
, F

•
 t,�M

#), ( t,�M
##
, F

•
 t,�M

##)(�1), t,�s)

�t,1T := (( �t,1M#
, F

•
�t,1M

#), (�t,1M##
, F

•
�t,1M

##),�t,1s),

N = (N #
,N##), can = (can#

,� var##), var = (var #
,� can##).

The signs are reminiscent of (5.3.7). We have

( t,�T)! =  t,�(T! )(�1), (�t,1T)! = �t,1(T! ).

Since can# is a morphism ( t,1M
#
, F

•
 t,1M

#) ! (�t,1M#
, F

•
�t,1M

#) and var##is a mor-
phism (�t,1M##

, F
•
�t,1M

##) ! ( t,1M
##
, F

•
 t,1M

##)(�1), and similarly when exchang-
ing the prime and double prime parts, we deduce from (7.3.15 ⇤⇤) a nearby/vanishing
cycle Lefschetz quiver

 t,1T

can
))

�t,1T.

var

hh

($ 1)

hh

If S :T ! T! (�w) is a pre-polarization, it induces pre-polarizations

 t,�S : ( t,�T,N) �! ( t,�T,N)! (�(w � 1)),

�t,1S : (�t,1T,N) �! (�t,1T,N)! (�w).

where we have set ( t,�T,N)! = (  t,�T
!
,N! ) and similarly for �t,1. We then set

 t,�(T,S) := ( t,�T, t,�S),

�t,1(T,S) := ( �t,1T,�t,1S).

For the corresponding filtered Hermitian pair ((M#
, F

•M#), S, w), this reads as

 t,�((M#
, F

•
M#), S, w) := (  t,�(M#

, F
•
M#), t,�S, w � 1),

�t,1((M#
, F

•
M#), S, w) := ( �t,1(M#

, F
•
M#),�t,1S, w).

7.4.3. S-decomposability. In the local setting above, we say that T is S-decomposa-
ble if its filtered D-module components are so. It follows from Example 7.3.9(1)
that the sesquilinear pairing decomposes correspondingly, and thus T = T1 � T2

with T2 supported at the origin and where T1 is a middle extension. The criterion
of Proposition 7.2.27 extends as well: T is S-decomposable if and only if �t,1T =
Im can�Ker var .

7.4.4. Pushforward by a closed inclusion. For a filtered C-triple

T = (( H#
, F

•
H#), (H##

, F
•
H##), s),

we use the notation of (7.2.32 ⇤) and of Section 7.3.17, and we set

T◆! T :=
�
D◆! (H#

, F
•
H#), D◆! (H##

, F
•
H##), D,D◆! s

�
.


