
CHAPTER 3

HODGE-LEFSCHETZ STRUCTURES

Summary. We develop the notion of a Hodge-Lefschetz structure as the first
example of a mixed Hodge structure. The total cohomology of a smooth com-
plex projective variety, together with the Chern class of an ample line bun-
dle, gives rise to the notion of sl2-Hodge structure. On the other hand, de-
generations of 1-parameter families of smooth complex projective varieties are
the main provider of Hodge-Lefschetz structures. Vanishing cycles of holomor-
phic functions with isolated critical points also produce such structures. The
S-decomposition theorem 3.4.22 is the main result in this chapter.

3.1. sl2-representations and quivers

3.1.a. sl2-representations. The Lie algebra sl2(C) is generated by the three ele-
ments usually denoted by X,Y,H which satisfy the relations

[X,Y] = H, [H,X] = 2X, [H,Y] = �2Y.

(See Exercise 3.1 for a few properties of X,Y,H.) With respect to the standard basis
of C2, the matrices of X,Y,H are respectively

X =

✓
0 1

0 0

◆
, Y =

✓
0 0

1 0

◆
, H =

✓
1 0

0 �1

◆
.

Let H be a finite-dimensional C-vector space equipped with a representation ⇢ :

sl2 ! End(H) (i.e., a Lie algebra morphism sl2 ! End(H)). We still denote by
X,Y,H the endomorphisms ⇢(X), ⇢(Y), ⇢(H). The following lemma is classical.

3.1.1. Lemma.
(1) The endomorphism H is semi-simple and its eigenvalues are integers. The

eigenspace corresponding to the eigenvalue k is denoted Hk.
(2) For each k 2 Z, X (resp. Y) sends Hk to Hk+2 (resp. Hk�2).
(3) For each ` > 0, X`, resp. Y`, induces an isomorphism

X
`
: H�`

⇠�! H`, resp. Y`
: H`

⇠�! H�`.

Let H⇤ denote the Hermitian dual vector space of H. Then the Hermitian adjoint
endomorphisms (X

⇤
,Y

⇤
,�H

⇤
) define an sl2-representation on H

⇤.
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It is useful to enlarge the previous setting to sl2-representations on objects of an
abelian category. Let us introduce the corresponding notation. Let k be a field of
characteristic zero (we will mainly use k = C in the subsequent sections). We fix a
k-linear abelian category A (i.e., the Hom’s are k-vector spaces). We have in mind
the category of Hodge structures HS(C, w), the category of mixed Hodge structures
MHS(C), or the category of holonomic D-modules for example.

Let H be an object of A. By an sl2-representation ⇢ : sl2 ! EndA(H) we mean a
morphism of Lie algebras satisfying the following properties (by analogy to the case
of finite-dimensional vector spaces):

• The endomorphism ⇢(H) is semi-simple and its eigenvalues are integers. The
eigenspace corresponding to the eigenvalue k is denoted Hk. (Hence the object H

decomposes as the direct sum
L

k
Ker(⇢(H) � k Id) =

L
k
Hk and ⇢(X), resp. ⇢(Y),

send Hk to Hk+2, resp. to Hk�2.)
• The endomorphisms ⇢(X), ⇢(Y) are nilpotent.
• For each ` > 1, ⇢(X)

`
: H�` ! H` and ⇢(Y)

`
: H` ! H�` are isomorphisms

(hence the decomposition H =
L

k
Hk is finite).

In the following, we will omit ⇢ in the notation of an sl2-representation, and
we denote by X,Y,H the endomorphisms that ⇢ induces. A morphism between
sl2-representations in A is a morphism in A which commutes with the sl2-action.
It is then graded, and its kernel, image and cokernel in A are sl2-representations in A,
so that the category of sl2-representations in A is abelian.

3.1.2. �-sl2-representations. We will have to apply the previous notions in a slightly
more general setting. We assume that the abelian category A is equipped with an
automorphism � : A 7! A. By a �-endomorphism of an object H of A we mean
a morphism H ! �

�1
H. It defines for every k a morphism �

�k
H ! �

�k�1
H.

We say that a �-endomorphism N is nilpotent if there exists k > 0 such that
�
�k

N � · · · � ��1
N �N = 0. By a �-sl2-representation ⇢ we mean the data of nilpotent

⇢(X) 2 Hom(H,�H) and ⇢(Y) 2 Hom(H,�
�1

H), and semi-simple ⇢(H) 2 End(H)

satisfying the sl2-relations. We will mainly use the case where � is the Tate twist (1)
in the category of Hodge structures. We will omit the reference to � when there is
no possible confusion.

3.1.3. Definition (Primitive subobjects). For each ` > 0, the primitive subobject P�` ⇢
H�` of an sl2-representation is KerY : H�` ! H�`�2. Similarly, the primitive
subobject P` is KerX : H` ! H`+2.

Note that P0 is equal to both KerX and KerY acting on H0. One also checks the
following.

3.1.4. Lemma (Lefschetz decomposition).
• For each ` > 0, X` induces an isomorphism P�`

⇠�! P` = X
`
(P�`). Similarly,

Y
` induces an isomorphism P`

⇠�! P�` = Y
`
(P`).
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• For each ` > 0, we have

(3.1.4 ⇤)
P�` = KerX

`+1
: H�` �! H`+2,

P` = KerY
`+1

: H` �! H�`�2.

• For every k > 0 we have

(3.1.4 ⇤⇤)
H�k =

L
j>0

X
j
P�k+2j and Hk =

L
j>0

X
k+j

P�k+2j ,

Hk =
L
j>0

Y
j
Pk+2j and H�k =

L
j>0

Y
k+j

Pk+2j .

• The morphism Y : Hk ! Hk�2 is a monomorphism if k > 1 and an epimorphism
if k 6 �1, and the morphism X : Hk ! Hk+2 is a monomorphism if k 6 �1 and an
epimorphism if k > 0.

This structure is pictured in Figure 3.1. By exponentiating the action of X,Y,H,
an sl2-representation leads to an action of the group SL2. There is a distinguished
element in this group, called the Weil element and denoted by w, which induces an
automorphism (also denoted by) w of H. It is defined by the formula

w = e
X
e
�Y

e
X
.

In the standard basis of C2, its matrix is

w =

✓
0 1

�1 0

◆
.

Some of its properties are considered in Exercise 3.1.

3.1.5. Lemma. The Weil element w induces isomorphisms w : Hk

⇠�! H�k and Pk

⇠�!
P�k for any k 2 Z.

Proof. We use the relations of Exercise 3.1(3). The first assertion follows from the
relation wHw

�1
= �H. If k > 0 and x 2 Pk for example, then Xx = 0, hence

Y(wx) = �w(Xx) = 0, so wx 2 P�k.

3.1.6. Proposition. Let (H•,N) be a finitely graded object in A endowed with a nilpotent
endomorphism N sending Hk to Hk�2 for each k and such that N

`
: H` ! H�` is

an isomorphism for each ` > 0. Then there exists a unique A-representation of sl2

on H mapping Y to N and such that H|H`
= ` IdH`

for every ` 2 Z. Lastly, any
endomorphism Z 2 End(H) which commutes with Y and H also commutes with X.

Proof. Indeed, if X exists, the relation [H,X] = 2X implies that X sends H` to
H`+2 for every ` 2 Z. Then, for ` > 0 and 0 6 j 6 ` � 1, let us denote by
N`,j : N

j
P`

⇠�! N
j+1

P` the isomorphism induced by N. We define the morphism
X`,j+1 : N

j+1
P`

⇠�! N
j
P` as c`,jY

�1

`,j
, where c`,j are positive integers uniquely deter-

mined by the relations c`,j+1 = c`,j + ` � j. This determines X, according to the
Lefschetz decomposition for N.

For the uniqueness it suffices to check that if [Z,Y] = 0 and [H, Z] = 2Z, then
Z = 0. For ` > 0, the composition Y

`+2
Z : P`H ! H�`�2, being equal to ZY

`+2, is
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H` = P`

⇤⇤

H`�1 = P`�1

⇥⇥

� 0

H`�2 = P`�2 � 0 � YP`

⌅⌅

...
...

...

...
...

...

H2 = P2

⇤⇤

� 0

H1 = P1

⇤⇤

� 0 � YP3 � . . .

H0 = P0 � 0 � YP2

⌅⌅

� 0 � Y2P4� . . .

H�1 = YP1 � 0 � Y2P3 � . . .

H�2 = Y2P2 � 0

...
...

...

⌃⌃

...
...

⇧⇧

...

H�`+2= 0 � Y�`+1P�`

⇧⇧

H�`+1= Y`�1P`�1 � 0

H�` = Y`P`

Figure 3.1. A graphical way of representing the Lefschetz decomposition
(with ` > 0): the arrows represent the isomorphisms induced by Y; each Hk

is the direct sum of the terms of its line, where empty places are replaced
with 0. The Lefschetz decomposition relative to X is obtained by reversing
the vertical arrows.

zero, so Z is zero on P`H. It is then easy to conclude that Z is zero on each Y
j
P`H

(j > 0).
Let now Z 2 End(H) be such that Z commutes with Y and H. Then for

c 2 k nonzero, the Jacobi identity shows that (X + c[Z,X],Y,H) also defines an
sl2-representation on H, hence [Z,X] = 0 by uniqueness.

3.1.7. Remark. One can obviously exchange the roles of X and Y in the previous
proposition.
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3.1.b. sl2-quivers

By an sl2-quiver we mean a data (H,G, c, v) consisting of a pair (H,G) of sl2-rep-
resentations and A-morphisms c : H ! G, v : G ! H, with

c : Hk �! Gk�1 and v : Gk �! Hk�1, for each k 2 Z,

such that c � v = YG and v � c = YH . The sl2-quivers form in an obvious way an
abelian category (morphisms of sl2-quivers consist of pairs of morphisms H ! H

0,
G ! G

0, of sl2-representations which commute both with c and v). We denote such
an object (omitting the shift in the notation) by

(3.1.8) H

c

&&

G.

v

ee

Note that c, v commute with Y, but are not morphisms of sl2-representations in A

since they do not commute with H (hence neither with X). The properties of Y in
Lemma 3.1.4 imply that

• c : Hk ! Gk�1 and v : Gk ! Hk�1 are monomorphisms for k > 1 and epimor-
phisms for k 6 �1.

3.1.9. Remark (X-sl2-quiver). One can also develop the notion of sl2-quiver by replac-
ing Y with X, in which case we speak of an X-sl2-quiver to distinguish the notion.
In such a case, c sends Hk to Gk+1 and v sends Gk to Hk+1, and satisfy c � v = XG,
v � c = XH. Then c : Hk ! Gk+1 and v : Gk ! Hk+1 are monomorphisms for k 6 �1

and epimorphisms for k > 1.

3.1.10. Definition (Middle extension, punctual support, S-decomposability)
Let (H,G, c, v) be an sl2-quiver.

• We say that it is a middle extension if c is an epimorphism and v is a monomor-
phism in A.

• We say that it has a punctual support if H = 0, hence G = G0 is endowed with
the zero sl2-representation.

• We say that (H,G, c, v) is Support-decomposable, or simply S-decomposable, if it
can be decomposed as the direct sum of a middle extension quiver and a quiver with
punctual support.

Let H be an sl2-representation. Set Gk = Im[Y : Hk+1 ! Hk�1]. Then G =L
k
Gk is left invariant by H and Y (but not by X) and (G, (H + Id)|G,Y|G) can be

completed as an sl2-representation, according to Proposition 3.1.6. The sl2-quiver

(3.1.10 ⇤) H

c = Y

&&

G

v = incl

ff

is called the middle extension quiver attached to H (see Remark 3.3.12 for an expla-
nation of the terminology).
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The following proposition is easily checked by using the Lefschetz decomposition
for Y.

3.1.11. Proposition. For a middle extension quiver (H,G, c, v), we have the following
properties. For each k 2 Z,

(a) c : Hk ! Gk�1 is an epimorphism and, if k > 1, an isomorphism,
v : Gk ! Hk�1 is a monomorphism and, if k 6 �1, an isomorphism

(b) v(Gk) = Im
⇥
Y : Hk+1 ! Hk�1

⇤
'

(
Hk+1 if k > 0,

Hk�1 if k 6 0,

(c) Pk(G) = c(Pk+1(H)) if k > 0.

3.1.12. Remark (A criterion for S-decomposability). An sl2-quiver (H,G, c, v) is
S-decomposable if and only if the sl2-representation G decomposes as Im c � Ker v,
in which case

(H,G, c, v) = (H, Im c, c, v| Im c)� (0,Ker v, 0, 0).

The following weaker property is modeled on the classical weak Lefschetz theorem
for a smooth projective variety.

3.1.13. Definition (Weak Lefschetz property). We say that an sl2-quiver (H,G, c, v)

satisfies the weak Lefschetz property if v is an isomorphism for k 6 �1 (and an
epimorphism for k = 0). For an X-sl2-quiver, the condition is that v is an isomorphism
for k > 1 (and a epimorphism for k = 0).

3.1.14. Remarks.
(1) Clearly, if (H,G, c, v) is S-decomposable, it satisfies the weak Lefschetz prop-

erty.
(2) If (H,G, c, v) satisfies the weak Lefschetz property, then v : G�1!H�2 is an

isomorphism, and therefore P0(H)=Ker[Y:H0!H�2] is equal to Ker[c :H0!G�1].
For an X-sl2-Hodge quiver, P0(H) = Ker[c : H0 ! G1].

3.2. Polarized sl2-Hodge structures

3.2.a. sl2-Hodge structures and quivers. We say that an sl2-representation H is
an sl2-Hodge structure with central weight w 2 Z if for each k 2 Z, Hk is (equipped
with) a pure Hodge structure of weight w+ k, and if sl2 acts by morphisms of Hodge
structure as follows, for k 2 Z,

X : Hk �! Hk+2(1), Y : Hk �! Hk�2(�1).

(Note that H acts by k Id on Hk, hence is trivially a morphism of Hodge structure).
It follows from (3.1.4 ⇤) that PkH is a pure Hodge structure of weight w+k for each k 2
Z and that the Lefschetz decompositions (3.1.4 ⇤⇤) are decompositions in the category
of Hodge structures of weight w + k. The notion of Tate twist is meaningful in this
context, and the twist by (k) shifts the central weight by �2k. Lastly, the Hermitian
dual sl2-representation H

⇤ is an sl2-Hodge structure with central weight (�w).
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3.2.1. Remark (sl2-Hodge structures are mixed Hodge structures)
The sl2-Hodge structures are examples of mixed Hodge structures, with (increas-

ing) weight filtration W• defined by

WkH =
L
k06k

Hk0�w.

The symmetry of Lemma 3.1.1(3) reads, for ` > 0,

X
`
: gr

W

w�`
H

⇠�! gr
W

w+`
H(`) and Y

`
: gr

W

w+`
H

⇠�! gr
W

w�`
H(�`),

justifying the expression “with central weight w”.

An sl2-quiver (H,G, c, v) is an sl2-Hodge quiver with central weight w if H resp. G is
an sl2-Hodge structure with central weight w�1 resp. w and c, v are graded morphisms
of degree �1 of mixed Hodge structures:

c : H �! G, v : G �! H(�1).

More precisely, for each k, c, resp. v, is a morphism of pure Hodge structure of weight
w + k:

(3.2.2) ck : Hk+1 �! Gk, resp. vk : Gk �! Hk�1(�1).

We will use the notation

(3.2.3) H

c

&&

G.

v

ee

(�1)

We say that (H,G, c, v) is a middle extension sl2-Hodge quiver if the morphisms
(3.2.2) are respectively epimorphisms and monomorphisms in the category of pure
Hodge structures of weight w + k for each k 2 Z (equivalently, c, v, are graded epi
(resp. mono) morphisms of degree �1 of mixed Hodge structures). We also have
similar definitions for punctual support and S-decomposability. Lastly, the notion of
X-sl2-Hodge quiver is defined similarly (see Remark 3.1.9), with the Tate twist shift
by v being equal to (1).

3.2.4. Remark. The criterion of S-decomposability given in Remark 3.1.12 holds for
sl2-Hodge quivers, by replacing sl2-quiver, resp. sl2-representation, with sl2-Hodge
quiver, resp. sl2-Hodge structure.

3.2.5. Example. If H is an sl2-Hodge structure with central weight w � 1, then the
middle extension quiver (3.1.10 ⇤) is an sl2-Hodge quiver with central weight w. In-
deed, since Y : Hk+1 ! Hk�1(�1) is a morphism of pure Hodge structures of weight
w + k, its image Gk is of the same kind, and is a Hodge sub-structure of Hk�1(�1),
since HS(w + k) is an abelian category.

3.2.6. Example (see [Voi02, §13.2.2]). Let X ⇢ P
N be a smooth projective variety

of dimension n and let Y be a smooth hyperplane section of X. The cohomology
H =

L
k
Hk =

L
k
H

n+k
(X,C), endowed with the action of the cup product with

(2⇡i)[Y ] = X is an sl2-Hodge structure centered at n. The cohomology G =
L

k
Gk =
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L
k
H

n�1+k
(Y,C) of Y is also endowed with a natural action of X. If we denote

by c : H
n+k

(X,C) ! H
n�1+(k+1)

(Y,C) the restriction morphism ◆
⇤
Y

and by v :

H
n�1+k

(Y,C) ! H
n+(k+1)

(X,C)(1) the Gysin morphism (2⇡i)◆Y ⇤, then (H,G, c, v)

is an X-sl2-Hodge quiver.

3.2.b. Polarization of sl2-Hodge structures and quivers

3.2.7. Definition. Let H be an sl2-Hodge structure with central weight w.
(1) A pre-polarization of H is a Hermitian isomorphism S : H

⇠�! H
⇤
(�w) of

sl2-Hodge structures with central weight w. Equivalently, S is a morphism of mixed
Hodge structures

S : H ⌦H �! C
H
(�w)

which is Hermitian and non-degenerate on the underlying vector spaces and satisfies
the identities, for x, y 2 H,

S(Hx, y) = �S(x,Hy), S(Xx, y) = S(x,Xy), S(Yx, y) = S(x,Yy),

hence also S(wx, y) = S(x,wy).
(2) We say that a pre-polarization S of H is a polarization if the form S(w•, •)

induces a polarization
Sk : Hk ⌦Hk �! C(�w � k)

of each Hodge structure Hk of weight w + k (k 2 Z), i.e., the Hermitian form

hk(x, y) = Sk(x,CDy) = S(wx,CDy) (x, y 2 Hk)

is positive definite on Hk.

3.2.8. Remarks.
(1) If S is a pre-polarization of H, we have S(Hk ⌦H`) = 0 if k+ ` 6= 0. It follows

that the direct sum decomposition H =
L

k
Hk is orthogonal for S(w•, •). If more-

over S is a polarization, h(•, •) = S(w•,CD
•) is positive definite on H.

(2) With respect to h, X,Y,H satisfy the following relations:

h(X•, •) = h(•,Y•), h(Y•, •) = h(•,X•), h(H•, •) = h(•,H•).

Let us check the first one for example: we have

h(Xx, y) = S(wXx,CDy) = �S(Ywx,CDy)

= �S(wx,YCDy) = S(wx,CDYy) = h(x,Yy).

3.2.9. Equivalent definitions of a polarized sl2-Hodge structure (1)
We can describe a polarized sl2-Hodge structure by means of the metric h in a way

similar to Definition 2.5.11.
Let H be an sl2-Hodge structure and let h be a positive definite Hermitian form

on H such that
(1) the direct sum H =

L
k
Hk is orthogonal for h,

(2) for each k, the Hodge decomposition Hk =
L

H
p,q

k
is h-orthogonal,

(3) X,Y are adjoint with respect to h and H is h-self-adjoint.
If we define S such that h(•, •) = S(w•,CD

•), then S is a polarization of H.
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3.2.10. Equivalent definitions of a polarized sl2-Hodge structure (2)
From the last identities in 3.2.7(1) and those of Exercise 3.1(3), one deduces that,

for each k 2 Z, the Lefschetz decomposition of Hk is Sk-orthogonal. The relation
w|P�`

= X
`

|P�`

for ` > 0 (Exercise 3.1(5)) implies that the restriction to P�` of the
form

P�`S(x, y) = S(X
`
x, y)

is a polarization of P�` if ` > 0. Indeed, for x 6= 0 2 P�`, we have CDx 2 P�` and
wx = X

`
x/`!, hence

0 < h(x, x) = S(wx,CDx) = S(X
`
x,CDx)/`! = P�`S(x,CDy)/`!.

Conversely, if S as in Definition 3.2.7 satisfies 3.2.7(1) and
(20) P�`S is a polarization of P�` for each ` > 0,

then S is a polarization of H in the sense of Definition 3.2.7, that is, it also satisfies
3.2.7(2). Indeed, let us fix k, ` > 0 and, for i, j > 0, let us first compute S(wx,CDy)

for x = X
i
x�k and y = X

j
y�` with x�k 2 P�k and y�` 2 P�`. Since X is of type

(1, 1), it anti-commutes with CD, so that

CDX
j
y�` = (�1)

j
X

j
CDy�`.

Therefore,

S(wx,CDy) = S(wX
i
x�k,CDX

jy�`)

= (�1)
j
S(wX

i
x�k,X

jCDy�`)

= S(wY
j
X

i
x�k,CDy�`) since wX = �Yw (Exercise 3.1(3)).

According to the computation of Exercise 3.1(2), this term vanishes if we do not have
0 6 j 6 i 6 k, and is equal to ?S(wX

i�j
x�k,CDy�`) = ?S(X

i�j
x�k,wCDy�`) if this

condition holds, where ? is a positive constant. Furthermore, this term vanishes if
k � ` 6= 2(i � j). Since CDy�` 2 P�`, we have wCDy�` = X

`
CDy�`/`!, so finally

S(wx,CDy) may be nonzero only if 0 6 j 6 i 6 k and k > 2(i� j), in which case

S(wx,CDy) = ?S(X
`+i�j

x�k,CDy�`) = ?S(X
k�(i�j)

x�k,CDy2(i�j)�k), ? > 0.

Lastly, if k � (i � j) > k � 2(i � j), we have X
k�(i�j)

y2(i�j)�k = 0, so the only
remaining possibility for S(wx,CDy) to be nonzero is the case where i = j. Then

S(wx,CDy) = ?S(X
k
x�k,CDy�k) = ?P�kS(x,CDy).

By using the Lefschetz decomposition with respect to X, we finally find that, with
the assumption that all P�`S are polarizations, S(wx,CDx) > 0 for any nonzero
x 2 H.

3.2.11. Equivalent definitions of a polarized sl2-Hodge structure (3)
For ` > 0, let us define similarly P`S on P` as the restriction to P` of S � (Y` ⌦ Id).

If S as in Definition 3.2.7 satisfies 3.2.7(1) and
(200) (�1)

`
P`S is a polarization of P` for each ` > 0,



46 CHAPTER 3. HODGE-LEFSCHETZ STRUCTURES

then S is a polarization of H in the sense of Definition 3.2.7, that is, it also satisfies
3.2.7(2). Indeed, for x

0 2 P` r {0}, we have x = Y
`
x
0 2 P�` and thus, by 3.2.10,

0 < S(X
`
x,CDx) = S(X

`
Y

`
x
0
,CDY

`x0) = ?S(x
0
,CDY

`x0)

= (�1)
`
? S(x

0
,Y`CDx

0) (Y of type (�1,�1))

= (�1)
`
? S(Y

`
x
0
,CDx

0).

3.2.12. Definition. Let (H,G, c, v) be an sl2-Hodge quiver with central weight w.
A (pre-)polarization of (H,G, c, v) is a pair S = (SH , SG) of (pre-)polarizations of
the sl2-Hodge structures H,G of respective central weights w�1 and w, which satisfy
the following relations:

SG(cx, y) = �SH(x, vy) and SG(y, cx) = �SH(vy, x), 8x 2 H, y 2 G.

3.2.13. Remark. It can be convenient to interpret the pairings as morphisms and the
above relations in terms of commutativity of a diagram. Let H

⇤
, G

⇤ be the Hermi-
tian duals of H,G respectively (Exercises 2.7 and 2.8) endowed with ⇢

⇤
(X) = X

⇤,
⇢
⇤
(Y) = Y

⇤, ⇢⇤(H) = �H
⇤, and let c

⇤
: G

⇤ ! H
⇤ and v

⇤
: H(�1)

⇤
= H

⇤
(1) ! G

⇤

denote the Hermitian adjoint morphisms. Then, defining the Hermitian dual
(H,G, c, v)

⇤ as
(H,G, c, v)

⇤
:= (H

⇤
(1), G

⇤
,�v

⇤
,�c

⇤
),

we conclude that the Hermitian dual of an sl2-Hodge quiver centered at w is an
sl2-Hodge quiver centered at �w. The signs �v

⇤
,�c

⇤ are justified as follows.
We interpret the pre-polarizations SH of H and SG of G as sl2- isomorphisms

SH : H
⇠�! H

⇤
(�w + 1), SG : G

⇠�! G
⇤
(�w).

Then the relations in Definition 3.2.7(1) are equivalent to the commutativity of the
following diagram:

(3.2.14)

H
SH
//

c

✏✏

H
⇤
(�w + 1) = H

⇤
(1)(�w)

�v
⇤

✏✏

G
SG

// G
⇤
(�w)

and

G
SG

//

v

✏✏

G
⇤
(�w)

�c
⇤

✏✏

H(�1)
SH
// H

⇤
(�w)

In other words, we can regard the pair S = (SH , SG) as an isomorphism

S : (H,G, c, v)
⇠�! (H,G, c, v)

⇤
(�w).

3.2.15. Proposition. If (H,G, c, v) is a middle extension sl2-Hodge quiver with central
weight w, and if H is a polarizable sl2-Hodge structure, then (H,G, c, v) is polarizable.

Proof. Let SH be a polarization of H. It defines a morphism of mixed Hodge structures

�SH(•, •) : H ⌦H(�1) �! C(�w),

that induces morphism �SH(•, v•) : H ⌦ G ! C(�w). Since c : H ! G is an
epimorphism, this morphism induces a well-defined morphism SG : G⌦G ! C(�w)
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if and only if SH(x, vy) = 0 whenever x 2 Ker c = KerYH and y 2 G. We can write
vy = YHy

0 for some y
0 2 H, and then

SH(x, vy) = SH(x,YHy0) = SH(YHx, y0) = 0.

We thus obtain the existence of SG : G ⌦ G ! C(�w). Let us check polarizability.
We will use the criterion of Section 3.2.11. Let us fix ` > 0. We have P`(G) =

c(P`+1(H)). For x
0
, y

0 2 P`(G), we set x
0
= cx and y

0
= cy with x, y 2 P`+1(H), so

that

(3.2.16)

P`SG(x
0
,CDy

0) = SG(Y
`

G
x
0
,CDy

0) = SG(cY
`

H
x,CDcy) (YGc = cYH)

= �SH(Y
`

H
x, vCDcy)

= SH(Y
`

H
x,CDvcy) (v of type (�1,�1))

= SH(Y
`

H
x,CDYHy)

= �SH(Y
`

H
x,YHCDy) (YH of type (�1,�1))

= �SH(Y
`+1

H
x,CDy) = �P`+1SH(x,CD, y).

Since (�1)
`+1

P`+1SH is positive definite on P`+1(H), we conclude that (�1)
`
P`SG is

positive definite on P`(G), as desired.

3.2.c. The S-decomposition theorem for polarizable sl2-Hodge quivers

The following result is at the source of the decomposition theorem for the pushfor-
ward of pure Hodge modules (see Definition 3.1.10).

3.2.17. Theorem (S-decomposition theorem for polarizable sl2-Hodge quivers)
Let (H,G, c, v) be a polarizable sl2-Hodge quiver with central weight w. Then the

sl2-Hodge structure G decomposes as G = Imc � Ker v in the category of sl2-Hodge
structures and (H,G, c, v) is S-decomposable.

Proof of Theorem 3.2.17. Recall that YH : Hk ! Hk�2(�1) and v : Gk ! Hk�1(�1)

anti-commute with the Weil operator CD, and c : Hk ! Gk�1 commutes with it. On
the other hand, cYH = YGc and vYG = YHv. We first notice the following inclusions
for ` > 0:

c(P`H) ⇢
(
YG(P1G(1)) if ` = 0,

P`�1G�YG(P`+1G(1)) if ` > 1,

(3.2.18)

v(P`G) ⇢
(
YH(P1H) if ` = 0,

P`�1H(�1)�YH(P`+1H) if ` > 1,

(3.2.19)

Let us check the inclusions (3.2.18) for example. According to Exercise 3.2 if ` > 1 and
obviously if ` = 0, it is enough to prove that Y

`+1

G
c(P`(H)) = 0. Since YGc = cYH ,

the result follows from the definition of P`(H).
We will prove by induction the following properties for all ` > 0 (below we use the

convention that P�1H = 0 and P�1G = 0).
(a`) c(P`+2H) = P`+1G,
(b`) c(P`H) ⇢ P`�1G.

Let us fix a polarization (SH , SG) of (H,G, c, v).
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Step 1: For each ` > 0 , v(P`+1G) \ P`H = 0. We have to prove, if ` > 0,

y`+1 2 P`+1G and vy`+1 2 P`H =) y`+1 = 0.

Assume y`+1 6= 0. We have, by 3.2.11

(�1)
`+1

SG(Y
`+1

G
y`+1,CDy`+1) > 0 and (�1)

`
SH(Y

`

H
(vy`+1),CD(vy`+1)) > 0.

Then, since v anticommutes with CD,

0 6 (�1)
`
SH(Y

`

H
(vy`+1),CD(vy`+1)) = (�1)

`+1
SH(vY

`

G
y`+1, vCD(y`+1))

= (�1)
`
SG(Y

`+1

G
y`+1,CDy`+1) (by definition)

< 0, a contradiction.

Step 2: Proof that (a`) holds for ` � 0. For ` � 0 we have P`H = 0 and P`+2H = 0,
so (a`) amounts to P`+1G = 0. By (3.2.19), v(P`+1G) = 0. Since ` > 0, this implies
that P`+1G = 0 because v is injective on G`+1.

Step 3: Proof of (a`) =) (b`) if ` > 0. By (a`) we have P`+1G = c(P`+2H), so

c(P`H) ⇢ P`�1G� cYH(P`+2H).

Since c(P`H) ⇢ KerY
`

H
v and, by (3.2.19), P`�1G ⇢ KerY

`

H
v, it is enough to prove

KerY
`

H
v\cYH(P`+2H) = 0, that is, KerY

`+2

H
\P`+2H = 0, which holds by definition.

Step 4: Proof of (b`) =) (a`�2) for `>2. Let us assume that `>2. Let y`�12P`�1G.
We have vy`�1 2 P`�2H�YHP`H by (3.2.19), that is, vy`�1 = x`�2+vcx`. By (b`),
cx` 2 P`�1G. Therefore, since v(y`�1 � cx`) = x`�2 2 P`�2H and since ` > 2, Step 1

implies x`�2 = 0. By the injectivity of v on G`�1, this implies y`�1 = cx`.

We can now conclude the proof of the theorem. We notice that (b`) for all ` > 0

implies that the morphism c decomposes with respect to the Lefschetz decomposition.
Similarly, Step 1 together with (3.2.19) implies that v(P`G) ⇢ YHP`+1H, so v is
also compatible with the Lefschetz decomposition. Proving the decomposition G =

Imc�Ker v amounts thus to proving the decomposition on each primitive subspace
P`G (` > 0). We have P`+1G = c(P`+2H) by (a`), and Ker v|P`+1G

= 0 so the
decomposition is trivial. We are left with proving

P0G = c(P1H)�Ker v|P0G
.

This follows from Exercise 3.5 applied to the category of Hodge structures of weight w.

One can replace the polarizability property of (H,G, c, v) in Theorem 3.2.17 by a
weaker condition, involving the weak Lefschetz property (Definition 3.1.13).

3.2.20. Theorem. Let (H,G, c, v) be an sl2-Hodge quiver with central weight w such that
(a) (H,G, c, v) satisfies the weak Lefschetz property,
(b) there exists a pre-polarization (SH , SG) of (H,G, c, v) such that SG is a polar-

ization of G and P0SH is a polarization of P0H.
Then SH is a polarization of H and (H,G, c, v) is S-decomposable.
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Proof. In view of Theorem 3.2.17, it is enough to prove that SH is a polarization of H
and it is enough to check that (�1)

`
P`SH is a polarization of P`H if ` > 1 since this

property is assumed if ` = 0.
We first claim that, for ` > 1, we have the inclusion c(P`H) ⇢ P`�1G. Indeed,

let x` 2 P`H, so that Y
`+1

H
x` = 0, hence vY

`

G
c(x`) = 0. We have Y

`

G
c(x`) 2 G�`�1

and �`� 1 6 �2, so the weak Lefschetz property implies that Y
`

G
c(x`) = 0, that is,

c(x`) 2 P`�1G.
Assume that x` 6= 0 with ` > 1. Since c is a monomorphism for ` > 1, we have

cx` 6= 0. Assumption (b) then implies

(�1)
`
P`SH(x`,CDx`) = (�1)

`
SH(Y

`

H
x`,CDx`) = (�1)

`
SH(vY

`�1

G
cx`,CDx`)

= (�1)
`�1

SG(Y
`�1

G
cx`, cCDx`) = (�1)

`�1
SG(Y

`�1

G
cx`,CDcx`) > 0.

3.2.d. Differential polarized (bi-) sl2-Hodge structures

3.2.21. Definition (Differential polarized sl2-Hodge structure)
Let (H, S) be a polarized sl2-Hodge structure with central weight w. A differential

on (H, S) is a morphism d : H ! H(�1) of mixed Hodge structures which satisfies
the following properties:

• d � d = 0,
• d is self-adjoint with respect to S,
• [H, d] = �d and [Y, d] = 0.

We say that (H, S, d) is a differential polarized sl2-Hodge structure with central
weight w.

The breaking of symmetry between X and Y is clarified with the next lemma. Note
that, since h (defined by h(•, •) = S(w•,CD

•)) is non-degenerate, X can be defined as
the h-adjoint of Y.

3.2.22. Lemma. Let d? be the h-adjoint of d. Then d
? is a morphism of mixed Hodge

structures H ! H(1) which satisfies the following properties:
• d

? � d? = 0,
• d

? is self-adjoint with respect to S,
• [H, d

?
] = d

? and [X, d
?
] = 0.

Proof. Since h(x, y) = S(x,wCDy), we have the relation

d
?
wCD = wCD d,

and as d anti-commutes with CD, we obtain

d
?
= �w dw

�1
.

Since w and d are self-adjoint with respect to S, so is d
?. The other properties are

obtained by means of the relations of Exercise 3.1(3).
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It is instructive to interpret d and d
? as elements of the sl2-representation End(H)

(see Exercise 3.3). Here, we omit the Hodge structure in order not to deal with the
Tate twist.

3.2.23. Lemma. Let d and d
? be as above. Then d belongs to P�1 End(H), d? belongs

to P1 End(H), and we have

d
?
= �X(d) and d = �Y(d

?
).

Furthermore, the subspace Cd� Cd
? of End(H) is an sl2-sub-representation.

Proof. Due to the commutation relations with H, we have d 2 End(H)�1 and d
? 2

End(H)1. The commutation relations with X and Y show the primitivity of d and d
?.

Since w|P�1
= X|P�1

and w
�1

|P1

= Y|P1
according to the formulas of Exercise 3.1(5)

and (6), we deduce

d
?
= �w(d) = �X(d) and d = �w

�1
(d

?
) = �Y(d

?
).

The last assertion is then clear, and with respect to the sl2-representation, we can
write Cd� Cd

?
= P�1(Cd� Cd

?
)� P1(Cd� Cd

?
).

Let (H, S, d) be a differential polarized sl2-Hodge structure with central weight w.
The grading of H defined by the action of H induces a grading on the cohomology
Ker d/ Im d, and Y induces a nilpotent endomorphism on it, which is a graded mor-
phism of degree �2, since Y commutes with d. Moreover, since d is S-self-adjoint, S
induces a sesquilinear pairing on Ker d/ Im d.

3.2.24. Proposition. If (H, S, d) is a differential polarized sl2-Hodge structure with cen-
tral weight w, then its cohomology Ker d/ Im d, equipped with the previous grading,
nilpotent endomorphism and sesquilinear pairing, is a polarized sl2-Hodge structure
with central weight w.

Proof. The first point is to prove that, for ` > 1, Y`
: (Ker d/ Im d)` ! (Ker d/ Im d)�`

is an isomorphism. Let d
? be the h-adjoint of d and consider the “Laplacian” � :=

dd
?
+ d

?
d. It is graded of degree zero. Due to the positivity of h, we have, in a way

compatible with the grading,

Ker d/ Im d = Ker d \Ker d
?
= Ker�, H = Ker�

?
� Im�

where the sum is orthogonal with respect to h. We first notice that H commutes with
dd

? and d
?
d, hence with �, so that H preserves the decomposition. We will prove

that � commutes with Y. Since � is h-self-adjoint, it also commutes with X, hence
with w.

Furthermore, � is a morphism of mixed Hodge structures H ! H, hence induces
for each k 2 Z a morphism of pure Hodge structures Hk ! Hk, and therefore com-
mutes with CD. In particular, Ker� is an sl2-Hodge structure.

On the other hand, if we denote by an index � the restriction of the objects to
Ker�, the sesquilinear form h�(w

�1

�
•,CD�

•) on Ker� is a polarization of Ker�,
since h� is Hermitian positive definite. But by the previous commutation relations,
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this form is equal to the restriction S� of S to Ker�. In such a way, we have obtained
all the desired properties.

Let us thus prove the commutation of � with Y. Let us consider the graded
subspace D = Cd

?�Cd of the sl2-representation EndH (see Lemma 3.2.23; note that
we now forget the Hodge structure) and the morphism induced by the composition

Comp : D ⌦D �! EndH,

which is a morphism of sl2-representations (see Exercise 3.3(2)). The image of d?⌦d+

d⌦ d
? is equal to �. We wish to prove that � 2 P0 EndH (see Exercise 3.4). Since

Comp sends P0(D ⌦D) to P0 EndH, the assertion will follow from the property

(3.2.25) d
? ⌦ d+ d⌦ d

? 2 P0(D ⌦D) + KerComp.

The Lefschetz decomposition of the four-dimensional vector space D ⌦ D is easy to
describe (a particular case of the Clebsch-Gordan formula):

• (D ⌦D)2 = C(d
? ⌦ d

?
),

• (D ⌦D)�2 = C(d⌦ d),
• (D ⌦D)0 = YC(d

? ⌦ d
?
)� P0(D ⌦D).

The assumption d�d=0 implies that Comp(D ⌦D)�2=0, hence Comp(D ⌦D)2=0,
CompY(D ⌦D)2 = 0. In other words, D ⌦D = P0(D ⌦D) + KerComp, so (3.2.25)
is clear.

We will meet the following bi-graded situation when dealing with spectral sequen-
ces. A bi-sl2-Hodge structure with central weight w on a mixed Hodge structure H

consists of the data of two commuting sl2-representation ⇢1, ⇢2 on H making it an
sl2-Hodge structure with central weight w in two ways. The basic operators of one
structure commute with those of the other structure. We denote them X1,X2, etc.
The space H is equipped with a bi-grading, induced by the commuting actions of H1

and H2, and a Lefschetz bi-decomposition involving the bi-primitive subspaces, which
are pure Hodge structures of suitable weight.

We note that X := X1 + X2, Y := Y1 + Y2 and H := H1 + H2 form an sl2-triple,
and define an sl2-Hodge structure with central weight w, with H` =

L
`1+`2=`

H`1,`2
.

The corresponding w is w1w2, due to the commutation properties.

3.2.26. Proposition. Let (H, ⇢1, ⇢2, S) be a polarized bi-sl2-Hodge structure. Then the
associated sl2-Hodge structure (H, ⇢1 + ⇢2), equipped with the same sesquilinear pair-
ing S, is a polarized sl2-Hodge structure.

Sketch of proof. By analyzing the action on each term of the Lefschetz bi-decomposi-
tion in terms of bi-primitive subspaces, in a way similar to that in the proof of Section
3.2.11, one checks that the sesquilinear form S(x,w1w2CDy) is Hermitian positive
definite on H. The statement follows from the identity w = w1w2. Let us emphasize
that this proof enables us not to give an explicit expression for P`(H, ⇢1 + ⇢2).

This leads to the bi-graded analogue of Proposition 3.2.24. Let (H, ⇢1, ⇢2, S) be
a polarized bi-sl2-Hodge structure with central weight w. A differential d on it is a
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morphism d : H ! H(�1) of mixed Hodge structures such that (H, ⇢i, S, d) (i = 1, 2)
are both differential polarized sl2-Hodge structures with central weight w.

3.2.27. Proposition. If (H, ⇢1, ⇢2, S, d) is a differential polarized bi-sl2-Hodge structure
with central weight w, then its cohomology Ker d/ Im d, equipped with the natural bi-
grading, nilpotent endomorphisms and sesquilinear pairing, is a polarized bi-sl2-Hodge
structure with central weight w.

Proof. We consider the positive definite Hermitian form h(x, y) = S(x,wCDy) with
w := w1w2 and the Laplacian � = dd

?
+d

?
d corresponding to h, with d

?
= �wdw

�1.
Then � is bi-graded of bi-degree zero. As in Proposition 3.2.24, we consider the
bi-graded space D = Cd

? � CY1(d
?
) � Y2(d

?
) � Cd, with d = Y1Y2(d

?
). Arguing

similarly, we only need to prove that

(3.2.28) (d⌦ d
?
+ d

? ⌦ d) 2 P0,0(D ⌦D) + KerComp,

where P0,0(D ⌦D) = KerY1 \KerY2 \ (D ⌦D)(0,0). We have

KerComp 3 Y1Y2(d
?⌦d

?
) = (d⌦d

?
+d

?⌦d)+
⇥
(Y1(d

?
)⌦Y2(d

?
))+(Y2(d

?
)⌦Y1(d

?
))
⇤
.

On the other hand,

Y1

⇥
(Y1(d

?
)⌦Y2(d

?
)) + (Y2(d

?
)⌦Y1(d

?
))
⇤

= (Y1(d
?
)⌦Y1Y2(d

?
)) + (Y1Y2(d

?
)⌦Y1(d

?
))

= Y1

⇥
(d

? ⌦Y1Y2(d
?
)) + (Y1Y2(d

?
)⌦ d

?
)
⇤

= Y1(d⌦ d
?
+ d

? ⌦ d),

and similarly with Y2, so we obtain

(d⌦ d
?
+ d

? ⌦ d)�
⇥
(Y1(d

?
)⌦Y2(d

?
)) + (Y2(d

?
)⌦Y1(d

?
))
⇤
2 P0,0(D ⌦D),

since this element is annihilated by Y1, Y2 and has bi-degree (0, 0). We conclude that
(3.2.28) holds.

3.3. A-Lefschetz structures

We use the notation of Section 3.1.a.

3.3.a. The monodromy filtration. Let H be an object of A equipped with a
nilpotent endomorphism N (i.e., Nk+1

= 0 for k large).

3.3.1. Lemma (Jakobson-Morosov). There exists a unique increasing exhaustive filtra-
tion of H indexed by Z, called the monodromy filtration relative to N and denoted by
M•(N)H or simply M•H, satisfying the following properties:

(a) For every ` 2 Z, N(M`H) ⇢ M`�2H,
(b) For every ` > 1, N` induces an isomorphism gr

M

`
H

⇠�! gr
M

�`
H.
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The proof of Lemma 3.3.1 is left as an exercise. In case of finite-dimensional vector
spaces, one can prove the existence by using the decomposition into Jordan blocks
and Example 3.3.2. In general, one proves it by induction on the index of nilpotence.
The uniqueness is interesting to prove. In fact, there is an explicit formula for this
filtration in terms of the kernel filtration of N and of its image filtration (see [SZ85]).

3.3.2. Example. If H is a finite dimensional vector space and if N consists only of one
lower Jordan block of size k + 1, one can write the basis as ek, ek�2, . . . , e�k, with
Nej = ej�2. Then M` is the space generated by the ej ’s with j 6 `.

3.3.3. Definition ((Graded) Lefschetz structure).
(1) We call such a pair (H,N) an A-Lefschetz structure. A morphism between two

such pairs is a morphism in A which commutes with the nilpotent endomorphisms.
(2) Assume moreover that H is a graded object in A. We then say that (H,N) a

graded A-Lefschetz structure if H` = gr
M

`
H for every `.

For a pair (H,N), we will denote by grN the induced morphism gr
M

`
H ! gr

M

`�2
H.

Therefore, an A-Lefschetz structure (H,N) gives rise to a graded A-Lefschetz struc-
ture, namely, the graded pair (grM• H, grN). Any morphism ' : (H1,N1)!(H2,N2) is
compatible with the monodromy filtrations and induces a graded morphism of degree
zero gr' : (gr

M

• H1, grN1) ! (gr
M

• H2, grN2).

3.3.4. Remarks.
(1) According to Proposition 3.1.6, a graded A-Lefschetz structure is nothing but

an sl2-representation in the category A. The results of Section 3.1.a apply thus to
graded A-Lefschetz structures. We will emphasize some of these properties in the
setting of A-Lefschetz structures.

(2) The case of a category A with an automorphism � can (and will) be considered
in the realm of A-Lefschetz structures. The arguments of 3.1.2 readily apply to this
case.

3.3.5. Lefschetz decomposition. For vector spaces, the choice of a splitting of the fil-
tration (which always exists for a filtration on a finite dimensional vector space)
corresponds to the choice of a Jordan decomposition of N. The decomposition (hence
the splitting) is not unique, although the filtration is. In general, there exists a de-
composition of the graded object, called the Lefschetz decomposition (see Figure 3.1).
For every ` > 0, we define the `-th N-primitive subspace as

(3.3.5 ⇤) P`(H) := Ker(grN)
`+1

: gr
M

`
(H) �! gr

M

�`�2
(H).

Then for every k > 0, we have

(3.3.5 ⇤⇤) gr
M

k
(H) =

L
j>0

N
j
Pk+2j(H) and gr

M

�k
(H) =

L
j>0

N
k+j

Pk+2j(H).
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3.3.6. Lemma. Let H1, H2 be two objects of the abelian category A, equipped with nilpo-
tent endomorphisms N1,N2. Let ' : (H1,N1) ! (H2,N2) be a morphism which is
strictly compatible with the corresponding monodromy filtrations M(N1),M(N2). Then

ImN1 \Ker' = N1(Ker') and ImN2 \ Im' = N2(Im').

Proof. Let us first consider the graded morphisms gr
M

`
' : gr

M

`
H1 ! gr

M

`
H2. One

easily checks that it decomposes with respect to the Lefschetz decomposition
(see Exercise 3.9). It follows that the property of the lemma is true at the graded
level.

Let us now denote by M(N1)• Ker' (resp. M(N2)• Coker') the induced filtration
on Ker' (resp. Coker'). Since ' is strictly compatible with M(N1),M(N2), we have
for every ` an exact sequence

0 �! gr
M(N1)

`
Ker' �! gr

M(N1)

`
H1

gr
M

`
'

�����! gr
M(N2)

`
H2 �! gr

M(N2)

`
Coker' �! 0,

from which we conclude that M(N1)Ker' (resp. M(N2) Coker') satisfies the char-
acteristic properties of the monodromy filtration of N1|Ker' (resp. N2|Coker'). As a
consequence, Ker' \M(N1)` = M(N1|Ker')` and Im' \M(N2)` = M(N2| Im')` for
every `.

Let us show the first equality, the second one being similar. By the result at the
graded level we have

ImN1 \Ker' \M(N1)` = N1

�
Ker' \M(N1)`+2

�
+ ImN1 \Ker' \M(N1)`�1,

and we can argue by induction on ` to conclude.

3.3.7. Lemma (Strictness of N : (H,M•H) ! (H,M[2]•H)). The morphism N, regarded
as a filtered morphism (H,M•H) ! (H,M[2]•H) is strictly compatible with the fil-
trations, i.e., for every `, N(M`) = ImN \M`�2. Moreover, considering the induced
filtrations M` KerN := M`H \KerN and M` CokerN = M`H/(M`H \ ImN), we have

gr
M
CokerN ' Coker grN =

L
`>0

P`, gr
M
KerN ' Ker grN =

L
`>0

N
`
P`.

In particular, KerN ⇢ M0H and M�1 CokerN = 0.

Proof. The first assertion is equivalent to the following two properties:

(1) if ` 6 1, N : M`H ! M`�2H is onto,
(2) if ` > �2, N : H/M`+2H ! H/M`H is injective.

Let us prove the first one for example. By looking at Figure 3.1, one checks that
M`�2H ⇢ N(M`H) + M`�1H for ` 6 1. Iterating this inclusion for ` � 1, ` � 2, . . .

gives (1).
Once we know that N is M-strict, we deduce that gr

M
KerN ' Ker grN and

gr
M
CokerN ' Coker grN, so that the second part follows from the Lefschetz de-

composition (3.3.5 ⇤⇤).
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The following criterion, whose proof will not be reproduced here, is at the heart
of the decomposition theorem 14.3.3. The notation D

b
(A) is for the bounded derived

category of the abelian category A.

3.3.8. Theorem (Deligne’s criterion). Let C
• be an object of D

b
(A) equipped with an

endomorphism N : C
• ! C

•+2. Assume that (
L

k
H

k
(C

•
),N) is a graded A-Lefschetz

structure (see Definition 3.3.3 and set H�k(C
•
) = H

k
(C

•
)). Then C

• is isomorphic
to

L
k
H

k
(C

•
)[�k] in D

b
(A).

3.3.b. Lefschetz quivers

By a Lefschetz quiver on an abelian category A we mean a data (H,G, c, v) con-
sisting of a pair (H,G) of objects of A and a pair of morphisms

(3.3.9) H

c

%%

G

v

ee

such that c � v is nilpotent (on G) and v � c is nilpotent (on H). We denote by
NH ,NG the corresponding nilpotent endomorphisms, so that c, c are morphisms be-
tween (H,NH) and (G,NG). Lefschetz quivers form in an obvious way an abelian
category.

3.3.10. Definition (Middle extension, punctual support, S-decomposability)
We say that a Lefschetz quiver (H,G, c, v) is a middle extension if c is an epi-

morphism and v is a monomorphism. We say that it has a punctual support if
H = 0. We say that a Lefschetz quiver (H,G, c, v) is Support-decomposable, or sim-
ply S-decomposable, if it can be decomposed as the direct sum of a middle extension
quiver and a quiver with punctual support.

Let (H,N) be an A-Lefschetz structure. Set G = ImN and NG = N|G. The
Lefschetz quiver

(3.3.11) (H,N)

c = N
**

(G,NG)

v = incl

jj

is called the middle extension quiver attached to (H,NH).

3.3.12. Remark (on the terminology). Given an A-Lefschetz structure, one can asso-
ciate with it in a canonical way, i.e., without any other choice, three natural Lefschetz
quivers, that we call “extensions of (H,N)”:

• (H,N)! is the quiver (H,H, c = Id, v = N),
• (H,N)⇤ is the quiver (H,H, c = N, v = Id),
• (H,N)!⇤ is the middle extension quiver (H, ImN, c = N, v = incl).

There are canonical epi and mono morphisms in the abelian category of Lefschetz
quivers:

(H,N)! �!�! (H,N)!⇤ ,�! (H,N)⇤,
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justifying the name “middle extension” for (H,N)!⇤. These morphisms are obtained
through the following diagram:

H

Id

  

Id
// H

N

  

Id
// H

N

  

H

N

HH

N
// ImN

incl

HH

incl
// H

Id

HH

3.3.13. Lemma (The middle extension quiver). For the middle extension quiver (3.3.11),
we have the following properties.

(a) M•(NG) = G \M•�1(N) = N(M•+1(N)).
(b) c(M•H) ⇢ M•�1G, v(M•G) ⇢ M•�1H,
(c) the filtered morphisms
c : (H,M•(N)) �! (G,M•�1(NG)) and v : (G,M•(NG)) �! (H,M•�1(N))

are strictly filtered and the associated graded morphisms are the corresponding canon-
ical morphisms at the graded level. They satisfy the properties of Proposition 3.1.11.

Proof. Assume that ` > 0. We first check that the morphism N
`
: ImN\M`�1(N) !

ImN\M�`�1(N) is an isomorphism. By Lemma 3.3.7, this amounts to showing that
N

`
: N(M`+1) ! N(M�`+1) is an isomorphism. This is a consequence of the following

properties: N : M`+1 ! N(M`+1) is an isomorphism, N : M�`+1 ! M�`�1 is onto,
and N

`+1
: M`+1 ! M�`�1 is an isomorphism. Now, (b) and (c) follow from the

strictness of N : (H,M•H) ! (H,M[2]•H). The remaining part of the lemma is
straightforward.

3.4. Polarizable Hodge-Lefschetz structures

3.4.a. Hodge-Lefschetz structures. We adapt the general framework of Sec-
tion 3.3 on the Lefschetz decomposition to the case of Hodge structures. Let
H = (H, F

0•H, F
00•H) be a bi-filtered vector space and let N : H ! H be a nilpotent

endomorphism. In the case of Hodge structures, as we expect that the nilpotent
operator N : H ! H sends F

k into F
k�1 (this is an infinitesimal version of Griffiths

transversality property, see Section 4.1), we regard N as a morphism H ! H(�1)

(see Definition 2.5.8 for the Tate twist).
Let M•H be the monodromy filtration of (H,N). For each ` 2 Z, we define

the bifiltered object (M`H, F
0•
M`H, F

00•
M`H) as the sub-object for which, for F =

F
0
, F

00, F p
M`H = F

pH \ M`H. The quotient space gr
M

`
H = M`H/M`�1H is thus

bifiltered by setting, for F = F
0
, F

00,

(3.4.1) F
p
gr

M

`
H :=

F
pH \M`H

F pH \M`�1H
.

By assumption on N, we obtain for each ` a bi-filtered morphism (with F = F
0
, F

00)

(3.4.2) grN : (gr
M

`
H, F

•
gr

M

`
H) �! (gr

M

`�2
H, F

•�1
gr

M

`
H).
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By definition, Condition (a) in Lemma 3.3.1 holds in the setting of bi-filtered
vector spaces. Without any other condition on H, there is no reason that, for ` > 0,
Condition (b) holds when considering grN

` as a bi-filtered morphism. The main
reason is that grN in (3.4.2) may not be strictly bi-filtered. If we add the condition
that each bi-filtered vector space is a Hodge structure of suitable weight, then suddenly
everything gets better.

3.4.3. Definition (Hodge-Lefschetz structure). Let H = (H, F
0•H, F

00•H) be a bi-
filtered vector space and let N : H ! H(�1) be a nilpotent endomorphism. We say
that (H,N) is a Hodge-Lefschetz structure with central weight w if for every `, the
object gr

M

`
H belongs to HS(C, w + `).

3.4.4. Remarks.
(1) We can consider a bi-filtered vector space H as an object of the abelian cate-

gory T (see Remark 2.6.a). The general setting of Section 3.3.a applies: the ambient
abelian category A is the category T of triples considered in Remark 2.6.a and we
choose for � the Tate twist (1) by the Hodge-Tate structure C

H
(1) of weight �2

(see Section 2.2). (In Section 5.2 we also consider the abelian category of triples as
in Definition 5.2.1, and we use the Tate twist as in Notation 5.2.3.) The monodromy
filtration M•H in T is then well-defined. What goes wrong in general is that the
quotient objects grM

`
H in T may not be bi-strict, hence do not necessarily correspond

to bi-filtered vector spaces. If we assume they are bi-strict, then the corresponding
bi-filtered vector spaces are given by the formula (3.4.1). Therefore, we could have
defined a Hodge-Lefschetz structure by simply imposing that gr

M

`
H in T belong to

HS(C, w + `).
(2) Notice also that the Hodge property implies that, for each `, the bi-filtered

morphism (3.4.2) is bi-strict.
(3) One can equivalently define the notion of Hodge-Lefschetz structure by asking

that the graded object grMH =
L

`
gr

M

`
H, equipped with the nilpotent endomorphism

grN, is part of a (unique) sl2-Hodge structure with central weight w. That this second
definition is equivalent to the first one follows from the variant of Proposition 3.1.6
in the Hodge setting.

(4) It is important to notice, as in Remark 3.2.1, that Hodge-Lefschetz structures
are mixed Hodge structures. Furthermore, M•H is a filtration in MHS, and each
object gr

M

`
H is a pure object of MHS (of weight w + `). In other words, the weight

filtration W•H is equal to the shifted filtration M•�wH. Then, for each ` 2 Z,

grN : gr
M

`
H �! gr

M

`�2
H(�1)

is a morphism in HS(C, w + `).

3.4.5. Definition (Category of Hodge-Lefschetz structures). The category HLS of
Hodge-Lefschetz structures is the category whose objects consist of Hodge-Lefschetz
structures with central weight some w 2 Z, and whose morphisms are morphisms
of mixed Hodge structures compatible with N. The category HLS(w) is the full
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sub-category consisting of objects with central weight w. It is an abelian category
(see Exercise 3.14).

3.4.6. Proposition. Let (H,N) be an object in HLS(w). Then
(1) (H,N)(k) := (H(k),N) is an object in HLS(w + k) for every k 2 Z,
(2) (G := ImN,NG) is an object of HLS(w + 1). Furthermore, it satisfies

gr
M
(ImN) = Im(grN).

Proof. The first point is clear. Let us check (2). The image of N is regarded in
the abelian category T considered at the beginning of this section: it consists of the
triple (N(H),N(F

0•H),N(F
00•H)). Since N : H ! H(�1) is a morphism of mixed

Hodge structures, it is F -strict and we can also write
ImN = (N(H),N(F

0•H),N(F
00•H))

= (N(H), F
0•�1H \N(H), F

00•�1H \N(H)).
(3.4.6 ⇤)

We can thus consider G = ImN as an object of the abelian category MHS. It is
equipped with a weight filtration which satisfies W•G := N(W•H), by W -strictness
of N. Then (2) amounts to identifying the weight filtration W•G with M•�(w+1)G.
This follows from Lemma 3.3.13, provided that we work in the abelian category MHS

�

and extend our objects to objects in this category (see Exercise 3.14(4)). Lastly, the
property gr

M
(ImN) = Im(grN) is a consequence of W -strictness of N as a morphism

in MHS, that is, grW (ImN) = Im(gr
W
N).

3.4.b. Hodge-Lefschetz quivers. The definition of a Hodge-Lefschetz quiver will
be a little different from the general definition (3.3.9) of a Lefschetz quiver, since
we will impose that the nilpotent morphisms NH ,NG are those of the corresponding
Hodge-Lefschetz structures, hence are (1)-morphisms (we use the terminology of 3.1.2,
see Remark 3.3.4).

3.4.7. Definition (Hodge-Lefschetz quiver). A Hodge-Lefschetz quiver with central
weight w consists of data

(H,N), (G,N), c, v,

such that
• (H,N) is a Hodge-Lefschetz structure with central weight w � 1,
• (G,N) is a Hodge-Lefschetz structure with central weight w,
• c, v are morphisms in HLS, hence in MHS:

c : (H,N) �! (G,N), v : (G,N) �! (H,N)(�1),

• c � v = NG and v � c = NH .

We will use the notation reminiscent to that of (3.2.3):

(3.4.8) (H,N)

c

((

(G,N).

v

hh

(�1)
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3.4.9. Proposition. Let ((H,N), (G,N), c, v) be a Hodge-Lefschetz quiver with central
weight w. Then

(1) (Im c,N) and (Ker v,N) are objects of HLS(w),
(2) grading all data with respect to the monodromy filtrations M (in the sense of

Lemma 3.3.13) produces an sl2-Hodge quiver.

Proof. We will use in an essential way that H and G are in MHS and that c, v are
strict with respect to the weight filtrations W•. Let us prove the statement (1) for
Im c. W -strictness of c shows that c(M`�1(NH)) = c(H) \ M`(NG) for every `, by
interpreting M• in terms of the weight filtrations. We will prove that this term is
equal to M`(Nc(H)) in MHS. The point is to check that, for ` > 0, N

` induces an
isomorphism

(⇤) c(H) \M`(NG)

c(H) \M`�1(NG)

⇠�! c(H) \M�`(NG)

c(H) \M�`�1(NG)
(�`),

also expressed equivalently by means of c(M•(NH)). Since

grN
`

G
: gr

M

`
(G) �! gr

M

`
(G)(�`)

is a monomorphism and the left-hand term of (⇤) is contained in gr
M

`
(G), we conclude

that (⇤) is a monomorphism. On the other hand, grN`

H
: gr

M

`�1
H ! gr

M

�`�1
H(�`) is

an epimorphism. Since c is strict with respect to the weight filtrations, we also have
c(gr

M

`�1
(NH)) = c(M`�1(NH))/c(M`�2(NH)), and thus

grN
`
: c(M`�1(NH))/c(M`�2(NH)) �! c(M�`�1(NH))/c(M�`�2(NH))(�`)

is also an epimorphism, concluding the proof that (⇤) is an isomorphism. It is then
straightforward to check that (Im c,N) is a subobject of (G,N) in HLS(w).

The proof of (2) is obtained similarly by using strictness of all involved morphisms
with respect to W•, hence to M• up to a suitable shift.

3.4.10. Example. We say that a Hodge-Lefschetz quiver is a middle extension if c is
an epimorphism and v is a monomorphism (when considered as morphisms in the
abelian category MHS). According to Proposition 3.4.6, the set of data

�
(H,N), (ImN,N|ImN), c = N, v = incl

�

forms a middle extension quiver. Here, we consider c as the morphism N : (H,N) !
(ImN,N|ImN) and v as the inclusion (ImN,N|ImN) ,! (H,N)(�1) (see (3.4.6 ⇤)).
Similarly, we have the notion of S-decomposable quiver (see Definition 3.3.10).

3.4.11. Lemma. A Hodge-Lefschetz quiver is a middle extension, resp. with punctual
support, resp. S-decomposable if and only if its associated M-graded quiver is so.

Proof. Similar to that of Proposition 3.4.9.

3.4.12. Remark. The criterion of S-decomposability of Remark 3.2.4 holds for Hodge-
Lefschetz quivers, by replacing there sl2-Hodge quiver, resp. sl2-Hodge structure, with
Hodge-Lefschetz quiver, resp. Hodge-Lefschetz structure.
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The proof of the following proposition is straightforward, once we know that
HLS(w) is abelian (Exercise 3.14) and according to Proposition 3.4.9. We empha-
size that the criterion in item (4) or (5) below will be essential in the construction of
Hodge modules.

3.4.13. Proposition (The category HLQ(w) of Hodge-Lefschetz quivers with central
weight w)

(1) The Hodge-Lefschetz quivers with central weight w form an abelian category
HLQ(w) in an obvious way.

(2) There is no nonzero morphism from a middle extension to an object with punc-
tual support.

(3) There is no nonzero morphism from an object with punctual support to a middle
extension.

(4) A Hodge-Lefschetz quiver (H,G, c, v) is S-decomposable if and only if G =

Imc�Ker v in HLS(w). Then, the decomposition is unique.
(5) The latter condition is also equivalent to the conjunction of the following two

conditions:
• the natural morphism Im(v � c) ! Imv is an isomorphism,
• the natural morphism Ker c ! Ker(v � c) is an isomorphism.

3.4.c. Polarization. Let H = (H, F
0•H, F

00•H) be a bi-filtered vector space and let
N : H ! H be a nilpotent endomorphism. Let w be an integer and let

S : H ⌦H �! C
H
(�w)

be a bi-filtered morphism. Assume that N is self-adjoint with respect to S, that is,
S(•,N•) = S(N•, •) = 0. Then S induces a sesquilinear pairing

gr
M
S : gr

M
H ⌦ grMH �! C

H
(�w)

with respect to which grN is self-adjoint.

3.4.14. Definition (Polarization of a Hodge-Lefschetz structure)
Let (H,N) be a Hodge-Lefschetz structure with central weight w. We say that a

sesquilinear pairing S : H ⌦H ! C
H
(�w) is a polarization of (H,N) if

(1) N is self-adjoint with respect to S,
(2) gr

M
S is a polarization of the sl2-Hodge structure (gr

M
H, grN) centered at w

(see Definition 3.2.7).

3.4.15. Remark. If S is a polarization of (H,N), then
(1) (�1)

k
S is a polarization of (H,N)(k) for every k 2 Z (see Remark 2.5.17(5)),

(2) S is non-degenerate and Hermitian. Indeed, we can regard S as a morphism of
mixed Hodge structures H ! H

⇤
(�w), where H

⇤ is the Hermitian dual of H. By def-
inition and Remark 3.2.8(1), grWS is an isomorphism (non-degenerate) and equal to
its Hermitian dual (Hermitian). One deduces that S satisfies the same properties.
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3.4.16. Hodge-Lefschetz Hermitian pairs. We can simplify the data of a polarized
Hodge-Lefschetz structure with central weight w by giving a Hodge-Lefschetz Hermi-
tian pair ((H, F

•H),N, S, w), where N is a filtered morphism

(H, F
•
H) �! (H, F

•
H)(�1)

and S is a Hermitian isomorphism S : (H,N) ! (H,N)
⇤ in such a way that, defining

F
00•H as in Section 2.5.18, we obtain data (H,N, S) as in Definition 3.4.14.

3.4.17. Mixed Hodge structure polarized by N. The terminology mixed Hodge structure
polarized by N is also used in the literature for a polarized Hodge-Lefschetz structure.

Let us summarize a few properties of the categories HLS(w) and pHLS(w) (polar-
izable Hodge-Lefschetz structures of weight w).

3.4.18. Proposition.
(1) The category HLS(w) is abelian, and a morphism in HLS(w) is a monomor-

phism (resp. an epimorphism, resp. an isomorphism) if and only if it is injective
(resp. ...) on the underlying vector spaces.

(2) Let
�
(H,N), S

�
be a polarized Hodge-Lefschetz structure with central weight w,

and let (H1,N) be a sub-object in HLS(w). Then S induces a polarization S1 on
(H1,N) and

�
(H1,N), S1

�
is a direct summand of

�
(H,N), S

�
.

(3) The category pHLS(w) of polarizable Hodge-Lefschetz structures with central
weight w is abelian and semi-simple.

Proof. Assertion (1) is treated in Exercise 3.14. For (2), we know by Exercise 3.14(6)
that the inclusion (H1,N) ,! (H,N) is strict for M•(N). Therefore, grM

`
H1 is a sub

Hodge structure of grM
`
H for each `. Let S1 be the sesquilinear pairing induced by S

on H1. Then gr
M
S1 is the sesquilinear pairing induced by gr

M
S on gr

M
H1 ⌦ grMH1,

and gr
M
S1(•,wCD

•) that induced by gr
M
S(•,wCD

•). Since the latter is Hermitian
positive definite by assumption, so is the former, meaning that S1 is a a polarization
of (H1,N). That

�
(H1,N), S1

�
is a direct summand of

�
(H,N), S

�
is proved in a way

similar to Exercise 2.12(2).
Finally, (3) directly follows from (2).

3.4.d. Polarization of Hodge-Lefschetz quivers and the S-decomposition
theorem. In analogy with Definition 3.2.12, we introduce the notion of polarization
of a Hodge-Lefschetz quiver.

3.4.19. Definition. Let (H,G, c, v) be a Hodge-Lefschetz quiver with central weight w.
A polarization of (H,G, c, v) is a pair S = (SH , SG) of polarizations of the Hodge-
Lefschetz structures H,G of respective central weights w�1 and w, which satisfy the
following relations:

SG(cx, y) = �SH(x, vy) and SG(y, cx) = �SH(vy, x), 8x 2 H, y 2 G.

Remark 3.2.13 applies as well for polarizations of Hodge-Lefschetz quivers.
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3.4.20. Proposition. If (H,N) is a Hodge-Lefschetz structure with central weight w� 1,
then the middle extension quiver of Example 3.2.5 is polarizable. More precisely,
let SH be a polarization of (H,N) and let (G,NG) = (ImN,N|ImN) be the image of N
regarded as an object of HLS(w) (Proposition 3.4.6). Using the quiver notation of
Example 3.4.10, the formula

SG(cx, cy) := �SH(Nx, y) = �SH(x,Ny)

well-defines a sesquilinear pairing on G, which is a polarization of (G,NG).

Proof. We argue as in the proof of Proposition 3.2.15 to show that SG is well-defined
as a morphism of mixed Hodge structures G ⌦ G ! C

H
(�w). Furthermore, grading

with respect to M gives back the formula of Proposition 3.2.15, whose conclusion
yields the conclusion of the present proposition.

3.4.21. Examples.
(1) By Proposition 3.4.20, if (H,N) is a polarizable Hodge-Lefschetz structure,

then the associated middle extension quiver is polarizable.
(2) If (G,NG) is a polarizable Hodge-Lefschetz structure, then the quiver with

punctual support (0, (G,NG), 0, 0) is polarizable.

The following theorem is one of the main results in this chapter.

3.4.22. Theorem (S-decomposition theorem for polarizable Hodge-Lefschetz quivers)
Let (H,G, c, v) be a polarizable Hodge-Lefschetz quiver with central weight w.

Then the polarizable Hodge-Lefschetz structure (G,NG) decomposes as (G,NG) =

Im c�Ker v in pHLS(w) and (H,G, c, v) is S-decomposable.

Proof. S-decomposability follows from the decomposition of (G,NG) and Remark
3.4.12.

Recall (Proposition 3.4.9) that (Im c,N) and (Ker v,N) are subobjects of (G,NG)

in HLS(w). By Proposition 3.4.18, a polarization on (G,NG) induces a polarization
on each of them, hence they also belong to pHLS(w). There is a natural morphism in
HLS(w):

(Im c,N)� (Ker v,N) �! (G,NG).

It is enough to prove that it is an isomorphism. Since it is strict with respect to M•

(because it is so with respect to W•), it is enough to prove that grM of this morphism
is an isomorphism. This is provided by the S-decomposition theorem for sl2-Hodge
quivers (Theorem 3.2.17).

Proposition 3.4.18 and Theorem 3.4.22 have the following consequence for Hodge-
Lefschetz quivers.

3.4.23. Proposition.
(1) The category HLQ(w) is abelian, and a morphism in HLQ(w) is a monomor-

phism (resp. epi, resp. iso) if and only if it is injective (resp. onto, resp. iso) on the
underlying vector spaces.
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(2) Let
�
(H,G, c, v), S

�
be a polarized Hodge-Lefschetz quiver with central weight w,

and let (H1, G1, c, v) be a sub-object in HLQ(w). Then S induces a polarization S1 on
(H1, G1, c, v) and

�
(H1, G1, c, v), S1

�
is a direct summand of

�
(H,G, c, v), S

�
.

(3) The category pHLQ(w) of polarizable Hodge-Lefschetz quivers of with central
weight w is abelian and semi-simple.

3.5. Exercises

Exercise 3.1.
(1) Show the following identities in End(H):

e
Y
He

�Y
= H+ 2Y, e

�X
Ye

X
= Y �H�X,

e
�X

He
X
= H+ 2X, e

Y
Xe

�Y
= X�H�Y.

[Hint : Denote by adY : End(H) ! End(H) the Lie algebra morphism A 7! [Y, A];
show that e

Y
He

�Y
= e

adY
(H) = H+ [Y,H] +

1

2
[Y, [Y,H]] + · · · and conclude for the

first equality; argue similarly for the other ones.]
(2) Show that, for j, k, ` > 0,

Y
j
X

k

|P�`H
=

8
<

:
a
(`)

j,k
X

k�j

|P�`H
if 0 6 j 6 k 6 ` and with a

(`)

j,k
=

k!(`� k + j)!

(k � j)!(`� k)!
,

0 otherwise.

[Hint : Compute first a
(`)

1,k
by noticing that Y|P�`H

= 0 and HX
m

|P�`H
= (2m � `)X

m

if 0 6 m 6 ` and is zero otherwise.]
Show similarly that X

j
Y

k

|P`H
= a

(`)

j,k
Y

k�j

|P�`H
or zero in the same range. Conclude

that the isomorphism inverse to X
`

|P�`H
is Y

`

|P`H
/(`!)

2.
(3) Let w := e

X
e
�Y

e
X 2 Aut(H) denote the Weil element. Show that

wH = �Hw, wX = �Yw, wY = �Xw.

Conclude that w sends H` to H�` for every `.
(4) Deduce that we

�X
= e

Y
w and

w = e
�Y

e
X
e
�Y

.

Conclude also that, if h is a Hermitian metric on H such that the h-adjoints X
⇤
,Y

⇤

satisfy X
⇤
= Y and Y

⇤
= X (hence H

⇤
= H), then w

⇤
= w

�1.
(5) For ` > 0, show that

w|P`H
=

(�1)
`

`!
Y

`

|P`H
and w|P�`H

=
1

`!
X

`

|P�`H
.

[Hint : Use (3) to avoid any computation.]
(6) Deduce that, for ` > 0 and 0 6 j 6 `,

wY
j

|P`H
=

(�1)
`�j

`!
X

j
Y

`

|P`H
=

(�1)
`�j

j!

(`� j)!
Y

`�j

|P`H
and w

�1
Y

j

|P`H
=

(�1)
j
j!

(`� j)!
Y

`�j

|P`H
.
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Exercise 3.2. Let H be an sl2-representation in A. Assume that ` > 0. Show that

P`H �YP`+2H = Ker[Y
`+2

: H` ! H�`�4].

[Hint : Consider the rough Lefschetz decomposition

H` = P`H �YP`+2H �Y
2
H`+4,

and show that the first two terms are contained in KerY
`+2, while Y

`+2 is injective
on the third term.]

Exercise 3.3 (The sl2 representation on End(H)).
(1) Let H be an sl2-representation. Consider the grading End•(H) defined by

End`(H) :=
L

k
Hom(Hk, Hk+`), and the nilpotent endomorphism adY = [Y, • ].

Show that this defines the sl2 representation for which H acts by adH, X by adX,
and w by Adw(•) := w •w

�1.
(2) Show that the composition morphism Comp : End(H) ! End(H) is a mor-

phism of sl2-representations:
(a) Since any ' 2 End(H) decomposes with respect to the grading, prove

commutation with H by showing that if ' is of degree k and '
0 of degree `, then

' � '0 is of degree k + `.
(b) Show the commutation with X,Y by means of the formula [X,''

0
] =

[X,']'
0
+ '[X,'

0
], and similarly for Y.

(3) Show that if d 2 End�`(H) (` > 0) commutes with Y, then w
�1

dw and
wdw

�1 2 End`(H) belong to P` End(H), i.e., commute with X.

Exercise 3.4. This exercise complements Proposition 3.1.6. Let ' : (H1,•,N1) !
(H2,•,N2) be a morphism between graded Lefschetz structures. Show that ' com-
mutes with the action of X. [Hint : Equip Hom(H1, H2) with an sl2-action as in 3.3(1)
above; with respect to this action, show that H(') = 0, i.e., ' 2 Hom0(H1, H2), and
Y(') = 0, i.e., N2 � '� ' � N1 = 0, and deduce that ' 2 P0 Hom(H1, H2); conclude
that X(') = 0.]

Exercise 3.5. Let P1, P
0
0
, P�1 be objects of an abelian category A. Let c : P1 ! P

0
0

and
v : P

0
0
! P�1 be two morphisms such that v � c : P1 ! P�1 is an isomorphism. Show

that P
0
0
= Im c�Ker v. [Hint : Check that it amounts to proving that the composed

morphism ' : Im c ! P
0
0
/Ker v is an isomorphism; with the commutative diagram

P1

c
✏✏

✏✏

⇠
v � c

// P�1

Im c
'
// P

0
0
/Ker v

� ?

v

OO

show that Ker' = Ker v �' = c(Ker v � c) = 0, and similarly, Im v �' = Im v �'� c =
Im v � c = P�1, hence conclude that v � ' is an epimorphism, then that v is both an
epimorphism and a monomorphism, thus an isomorphism, and ' is an isomorphism.]
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Exercise 3.6. Show that an sl2-Hodge structure is completely determined by the Hodge
structures P`H (` > 0).

Exercise 3.7. Let H be a finite dimensional vector space and let N,N
0 be nilpotent

endomorphisms with monodromy filtrations M•(N),M•(N
0
).

(1) Show that if N0 � N sends M`(N) to M`�3(N), then M•(N
0
) = M•(N). [Hint :

Show that M•(N) satisfies the characteristic properties of M•(N
0
).]

(2) Deduce that, in such a case, N0 is then conjugate to N. [Hint : Show that N
0

and N have the same Jordan normal form.]

Exercise 3.8 (Morphisms and monodromy filtration). Let ' : H1 ! H2 be a morphism
such that N2 � ' = ' � N1, in other words, ' is a morphism of pairs (H1,N1) !
(H2,N2).

(1) Show that ' is compatible with the monodromy filtrations.
(2) Let grM' be the associated graded morphism gr

M
H1 ! gr

M
H2. Show that ' is

an isomorphism if and only if grM' is an isomorphism. [Hint : If ' is an isomorphism,
identify '(M`H1) with M`H2 by uniqueness of the monodromy filtration.]

Exercise 3.9 (Morphisms and Lefschetz decomposition). Let ' : H1 ! H2 be a mor-
phism between A-Lefschetz structures, and assume that they are graded. Show that '
is graded with respect to the Lefschetz decomposition. [Hint : Show that, for ` > 0,
' maps P`H1 to P`H2.]

Exercise 3.10 (Inductive construction of the monodromy filtration)
Assume N

`+1
= 0 on H. Show the following properties:

(1) M`H = H, M`�1H = KerN
`, M�`H = ImN

`, M�`�1H = 0.
(2) Set H

0
= KerN

`
/ ImN

` and N
0
: H

0 ! H
0 is induced by N. Then N

0`
= 0 and

for j 2 [�`+ 1, `� 1], MjH is the pullback of MjH
0 by the projection H ! H

0.
(3) Conclude that any morphism of A-Lefschetz structures is compatible with the

monodromy filtrations.

Exercise 3.11.
(1) Show that the Lefschetz quivers on A form an abelian category in an obvious

way.
(2) Show that there is no nonzero morphism from a middle extension to an object

with punctual support.
(3) Show that there is no nonzero morphism from an object with punctual support

to a middle extension.
(4) Show that a Lefschetz quiver (H,G, c, v) is S-decomposable if and only if G =

Imc�Ker v. Show then that the decomposition is unique.
(5) Show that the latter condition is also equivalent to the conjunction of the

following two conditions:
• The natural morphism Im(v � c) ! Imv is an isomorphism.
• The natural morphism Ker c ! Ker(v � c) is an isomorphism.
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Exercise 3.12. The goal of this exercise is to show that any Hodge-Lefschetz struc-
ture is isomorphic (non-canonically) to its associated sl2-Hodge structure obtained by
grading with the monodromy filtration. In (1)–(4) below, the filtration F is either F 0

or F
00.

(1) For every ` > 0 and p, choose a section sj,p : gr
p

F
P`H ! F

p
M`H of the

projection F
p
M`H ! gr

p

F
gr

M

`
H and show that ImN

`+1
s`,p ⇢ F

p�`�1
M�`�3H. The

next questions aim at modifying this section in such a way that its image is contained
in KerN

`+1.
(2) Show that, for every j > 0, and any p, ` � 0

F
p�`�1

M�`�3�jH ⇢ N
`+j+3

F
p+j+2

M`+j+3H + F
p�`�1

M�`�3�(j+1)H.

(3) Conclude that, for every j > 0,

F
p�`�1

M�`�3�jH ⇢ N
`+1

F
p
M`�1H + F

p�`�1
M�`�3�(j+1)H.

(4) Show that if for some j > 0 we have constructed a section s
(j)

`,p
such that

ImN
`+1

s
(j)

`,p
⇢ F

p�`�1
M�`�3�jH, then one can find a section s

(j+1)

`,p
such that

ImN
`+1

s
(j+1)

`,p
⇢ F

p�`�1
M�`�3�(j+1)H. Use then s`,p = s

(0)

`,p
to obtain a section s

(1)

`,p

such that N
`+1

s
(1)

`,p
= 0.

(5) Use the Lefschetz decomposition to obtained the desired isomorphism.

Exercise 3.13 (Twist of Hodge-Lefschetz structures). Define the twist (k, `) of an
Hodge-Lefschetz structure (H,N) with central weight w as (H(k, `),N) and leav-
ing N unchanged. Show that (H,N)(k, `) is a Hodge-Lefschetz structure with
central weight w � (k + `). In particular, the Tate twisted object (H,N)(k) is a
Hodge-Lefschetz structure with central weight w � 2k.

Exercise 3.14 (The category HLS(w) is abelian). Show the following properties.
(1) In the category HLS, any morphism is strict with respect to the filtrations F

•

and the filtration W•. [Hint : Use Proposition 2.6.8.]
(2) N :

�
H,N) ! (H,N)(�1) is a morphism in this category. In particular,

N(F
pH) = F

p�1H \ ImN for F = F
0 or F

00.
(3) The filtration M•(N)H is a filtration in the category of mixed Hodge structures.
(4) Consider the category MHS

� whose objects are H
�

:=
L

k,`2Z H(k, `),
where H is a mixed Hodge structure, and morphisms '

�
: H

�
1

! H
�
2

are the direct
sums of the same morphism of mixed Hodge structures ' : H1 ! H2(ko, `o) for some
(ko, `o), twisted by any (k, `) 2 Z. Show that

(a) the category MHS
� is abelian,

(b) for (H,N) in HLS(w), N defines a nilpotent endomorphism N
� in the

category MHS
� on H

�,
(c)

L
k,`

M•(N)H(k, `) is the monodromy filtration of N� in the abelian cat-
egory MHS

�.
(5) Let ' : (H1,N1) ! (H2,N2) be a morphism in HLS. Then ' = 0 if w1 > w2.

[Hint : Use that ' is compatible with both M• and W•.]



3.6. COMMENTS 67

(6) Let ' be a morphism in HLS(w). Show that ' is strictly compatible with M•.
Conclude that HLS(w) is abelian.

(7) Let ' be a morphism in HLS(w). Show that ' is a monomorphism (resp. an
epimorphism, resp. an isomorphism) if and only if it is injective (resp. ...) on the
underlying vector spaces. [Hint : Use that the forgetful functor (H,N) 7! H from
HLS(w) to the category of vector spaces is faithful.]

(8) Show that, for such a ', the conclusion of Lemma 3.3.6 holds in the category of
mixed Hodge structures. [Hint : Use the auxiliary category MHS

� and the nilpotent
endomorphisms N�

1
,N

�
2

; this trick is useful since N is not an endomorphism of (H,N)

in HLS(w), due to the twist by (�1).]
(9) Similar results hold for sl2-Hodge structures.

3.6. Comments

The Hard Lefschetz theorem for complex projective varieties equipped with an
ample line bundle, named so after the fundamental memoir of Lefschetz [Lef24], and
for which there does not exist up to now a purely topological proof (see [Lam81] for
an overview of the topology of complex algebraic varieties), is intrinsically present in
classical Hodge theory (see e.g. [GH78, Dem96, Voi02]). That a relative version
of this theorem is instrumental in proving the decomposition theorem (one of the
main goals of the theory of pure Hodge modules) had been emphasized and proved
by Deligne in [Del68], by introducing the criterion 3.3.8. On the other hand, the
theory of degeneration of polarized variations of Hodge structure [Sch73, GS75] also
gives rise to such Hodge-Lefschetz structures, not necessarily graded however. Note
also that such structures have been discovered by Steenbrink [Ste77] and Varchenko
[Var82] on the space of vanishing cycles attached to an isolated critical point of a
holomorphic function. This property was at the source of the definition of pure Hodge
modules by Saito in [Sai88].

Since the very definition of a pure Hodge module by Saito [Sai88] is modeled on
the theory of degenerations, we devote a complete chapter to the notion of a Hodge-
Lefschetz structure. Together with the criterion 3.3.8, a few results are used in an
essential way in the decomposition theorem for pure polarized Hodge modules as
proved by Saito [Sai88], namely the S-decomposition theorem 3.4.22 and those of
Section 3.2.d. They are originally proved in [Sai88, §4]. We follow here the proof
given by Guillén and Navarro Aznar in [GNA90], according to the idea, due to
Deligne, of using harmonic theory in finite dimensions and the full strength of the
action of SL2 by means of the Weil element denoted by w. The polarization property
is often reduced to saying that the primitive part of the Hodge-Lefschetz structure
is a polarized Hodge structure, and is is rarely emphasized that each graded part
of a polarized sl2-Hodge structure (like any cohomology space of a smooth complex
projective variety) is also a polarized pure Hodge structure. The latter approach
makes it explicit.
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Basic results on the monodromy filtration, which gives rise to the Hodge-theoretic
weight filtration, are explained in [Sch73, CK82, SZ85]. The notion of a polarized
Hodge-Lefschetz structure is also known under the name of polarized mixed Hodge
structure [CK82], and it is also said that the nilpotent operator polarizes the mixed
Hodge structure. This is justified by the fact that the choice of an ample line bundle on
a smooth complex projective variety is regarded as a polarization, and it determines
a polarization form on the cohomology. Such data also give rise to a nilpotent orbit
(see [Sch73, CK82] and also [Kas85, Def. 2.3.1]). We do not use this terminology
here, since we also want to use a Hodge-Lefschetz structure without any polarization,
as we did for Hodge structures.

For the purpose of pure Hodge modules, the notion of middle extension Lefschetz
quiver is a basic tool, corresponding to the notion of middle extension for perverse
sheaves or holonomic D-modules. It consists of two objects, called respectively nearby
cycles and vanishing cycles related by two morphisms usually called can and var. The
middle extension property is that can is an epimorphism and var is a monomorphism,
so that the vanishing cycles are identified with the image of N := var � can in the
nearby cycles. Hodge theory for vanishing cycles can then be deduced from Hodge
theory for nearby cycles, as already remarked by Kashiwara and Kawai [KK87].
In particular, Lemma 3.3.13 is much inspired from [KK87, Prop. 2.1.1], and also of
[Sai88, Lem. 5.1.12].

The basic decomposition result of Exercise 3.5 is at the heart of the notion of
Support-decomposability, which is a fundamental property of Saito’s pure Hodge mod-
ules [Sai88]. Exercise 3.12 is taken from [Sai89b, Prop. 3.7].


