Extending morphisms of torsors for finite flat group schemes

Addendum to "A Purity Theorem for Torsors"

Andrea Marrama

March 12, 2023

In this note, we give a positive answer to a question left open in [2]. Let us recall the context of the mentioned work. For a scheme S and a finite flat S-group scheme $\pi: G \rightarrow S$, denote by $\operatorname{Tors}(S, G)$ the category of fppf G-torsors over S. The main purpose of 2$]$ was to provide a proof of the following fact, which was previously stated (without proof) in [4].

Theorem 1 (4), Lemme 2; 2, Theorem 3.1). Let S be a regular scheme, $U \subseteq S$ an open subscheme, $Z=S \backslash U$ its closed complement and suppose that the codimension of Z in S is at least 2 . Let $\pi: G \rightarrow S$ be a finite flat S-group scheme and denote by $\pi_{U}: G_{U} \rightarrow U$ its restriction to U. Then, the restriction functor:

$$
\operatorname{Tors}(S, G) \longrightarrow \operatorname{Tors}\left(U, G_{U}\right)
$$

is an equivalence of categories.
This result is analogous to the purity theorem for finite étale coverings (cf. [1, §X.3]), originally due to Zariski and Nagata as "purity of the branch locus". In that context, it is investigated in [2] what remains true after relaxing the assumption on the codimension of Z in S. It turns out that for U any dense open subscheme of S, the restriction functor from the category of finite étale coverings of S to that of finite étale coverings of U is still fully faithful. In fact, this holds even more generally for S just a normal scheme and it is due to the following result, proved in [2] as an application of Zariski's main theorem.

Lemma 2 ([2], Proposition 1.9). Let S be a locally Noetherian scheme, $U \subseteq S$ a dense open subscheme, X and Y two finite flat S-schemes; set $X_{U}:=X \times_{S} U$ and $Y_{U}:=Y \times{ }_{S} U$. Suppose that X is normal. Then, writing Hom_{S} and Hom_{U} for the homomorphisms of schemes respectively over S and over U, the restriction map:

$$
\operatorname{Hom}_{S}(X, Y) \longrightarrow \operatorname{Hom}_{U}\left(X_{U}, Y_{U}\right)
$$

is bijective.
In analogy with the case of finite étale coverings, it is then natural to ask whether, for U any dense open subscheme of S, the functor of Theorem 1 remains fully faithful. Using the same Lemma 2, we can give a positive answer to this question, again only requiring S to be normal.

Theorem 3. Let S be a normal scheme, $U \subseteq S$ a dense open subscheme. Let $\pi: G \rightarrow S$ be a finite flat S-group scheme and denote by $\pi_{U}: G_{U} \rightarrow U$ its restriction to U. Then, the restriction functor:

$$
\operatorname{Tors}(S, G) \longrightarrow \operatorname{Tors}\left(U, G_{U}\right)
$$

is fully faithful.
Proof. Let $X, Y \in \operatorname{Tors}(S, G)$ and consider the following fppf sheaf of sets on the category of S-schemes:

$$
\begin{aligned}
\underline{\operatorname{Hom}}_{G}(X, Y): \operatorname{Sch}_{/ S} & \longrightarrow \text { Sets } \\
(T \rightarrow S) & \longmapsto \operatorname{Hom}_{\operatorname{Tors}\left(T, G_{T}\right)}\left(X_{T}, Y_{T}\right),
\end{aligned}
$$

where we denote $G_{T}:=G \times_{S} T, X_{T}:=X \times_{S} T$ and $Y_{T}:=Y \times_{S} T$. Let $V \rightarrow S$ be a faithfully flat and finitely presented covering trivialising both X and Y. Then, $\underline{\operatorname{Hom}}_{G}(X, Y)$ restricted to V is isomorphic to G_{V}. Thus, by a similar argument as in 3, Theorem III.4.3(a)] (for the representability of G-torsors) and by faithfully flat descent, we have that $\operatorname{Hom}_{G}(X, Y)$ is represented by some finite flat S-scheme $Z \rightarrow S$. Therefore, by Lemma 2, the restriction map:

$$
\operatorname{Hom}_{\operatorname{Tors}(S, G)}(X, Y)=\operatorname{Hom}_{S}(S, Z) \longrightarrow \operatorname{Hom}_{U}\left(U, Z_{U}\right)=\operatorname{Hom}_{\operatorname{Tors}\left(U, G_{U}\right)}\left(X_{U}, Y_{U}\right)
$$

is bijective and this concludes the proof.

References

[1] A. Grothendieck, M. Raynaud - Cohomologie Locale des Faisceaux Cohérents et Théorèmes de Lefschetz Locaux et Globaux (SGA2); Advanced Studies in Pure Mathematics 2, North-Holland Publishing Company, 1968.
[2] A. Marrama - A purity theorem for torsors; ALGANT Master thesis, Universiteit Leiden and Universität Duisburg-Essen, 2016.
Available from https://perso.pages.math.cnrs.fr/users/andrea.marrama/research/
[3] J. S. Milne - Étale Cohomology; Princeton University Press, 1980.
[4] L. Moret-Bailly - Un Théoréme de Pureté pour les Familles de Courbes Lisses; Comptes Rendus de l'Académie des Sciences Paris 300 (14) : 489-492, 1985.

Andrea Marrama

Centre de Mathématiques Laurent Schwartz (CMLS), CNRS, École polytechnique Institut Polytechnique de Paris, 91120 Palaiseau, France
E-mail: andrea.marrama@polytechnique.edu

