Barsotti- Tate groups with RAMIFIED ENDOMORPHISM STRUCTURE

Andrea Marrama

École Polytechnique
Journées Arithmétiques
Nancy, 3 July 2023

Introduction

In joint work with Stéphane Bijakowski (arXiv:2303.06166), we associate a new invariant, called the integral Hodge polygon, to objects as in the title.

Introduction

In joint work with Stéphane Bijakowski (arXiv:2303.06166), we associate a new invariant, called the integral Hodge polygon, to objects as in the title.
The aim of this talk is to introduce this invariant focusing on a particular example of these objects.

Dieudonné theory

Setup:
k perfect field of characteristic $p>0$;
$W(k)$ Witt vectors with coefficients in k;
$\sigma: W(k) \rightarrow W(k)$ Frobenius lift.

Dieudonné theory

Setup:
k perfect field of characteristic $p>0$;
$W(k)$ Witt vectors with coefficients in k;
$\sigma: W(k) \rightarrow W(k)$ Frobenius lift.
(Barsotti-Tate groups over $k)^{O P} \xrightarrow{\sim}$ (Dieudonné modules over k)

$$
H \mapsto(\mathbb{D}, \varphi)
$$

Here:
\mathbb{D} finite free $W(k)$-module;
$\varphi: \mathbb{D} \rightarrow \mathbb{D}$ injective, σ-linear, satisfying $p \mathbb{D} \subseteq \varphi \mathbb{D} ;$
height of H : ht $H=\mathrm{rk}_{W(k)} \mathbb{D} \in \mathbb{N}$;
invariant differentials of $H: \omega \cong \mathbb{D} / \varphi \mathbb{D}$, finite k-vector-space.

Example in special fibre

Let H be the Barsotti-Tate group over k corresponding to:

$$
\mathbb{D}=W(k)^{6}, \quad \varphi=\left(\begin{array}{cccccc}
0 & p & 0 & & & \\
0 & 0 & p & & 0 & \\
1 & 0 & 0 & & & \\
& & & 0 & 0 & p \\
& 0 & & 1 & 0 & 0 \\
& & & 0 & 1 & 0
\end{array}\right) \sigma
$$

Example in special fibre

Let H be the Barsotti-Tate group over k corresponding to:

$$
\mathbb{D}=W(k)^{6}, \quad \varphi=\left(\begin{array}{cccccc}
0 & p & 0 & & & \\
0 & 0 & p & & 0 & \\
1 & 0 & 0 & & & \\
& & & 0 & 0 & p \\
& 0 & & 1 & 0 & 0 \\
& & & 0 & 1 & 0
\end{array}\right) \sigma
$$

We have:
ht $H=6$;
$\operatorname{dim} H:=\operatorname{dim}_{k} \omega=\operatorname{dim}_{k} \mathbb{D} / \varphi \mathbb{D}=3$.

Example in special fibre

Let H be the Barsotti-Tate group over k corresponding to:

$$
\mathbb{D}=W(k)^{6}, \quad \varphi=\left(\begin{array}{cccccc}
0 & p & 0 & & & \\
0 & 0 & p & & 0 & \\
1 & 0 & 0 & & & \\
& & & 0 & 0 & p \\
& 0 & & 1 & 0 & 0 \\
& & & 0 & 1 & 0
\end{array}\right) \sigma
$$

We have:

$$
\begin{aligned}
& \text { ht } H=6 ; \\
& \operatorname{dim} H:=\operatorname{dim}_{k} \omega=\operatorname{dim}_{k} \mathbb{D} / \varphi \mathbb{D}=3 .
\end{aligned}
$$

Let us put some ramified endomorphism structure on H.

Ramified endomorphism structure

More setup:

$$
\begin{aligned}
& F:=\mathbb{Q}_{p}(\pi) \text { with } \pi^{3}=p ; \\
& \mathcal{O}_{F} \subseteq F \text { ring of integers; } \\
& d:=\left[F: \mathbb{Q}_{p}\right]=3 .
\end{aligned}
$$

Ramified endomorphism structure

More setup:

$$
\begin{aligned}
& F:=\mathbb{Q}_{p}(\pi) \text { with } \pi^{3}=p ; \\
& \mathcal{O}_{F} \subseteq F \text { ring of integers; } \\
& d:=\left[F: \mathbb{Q}_{p}\right]=3 .
\end{aligned}
$$

We obtain an action of \mathcal{O}_{F} on H by letting π act on (\mathbb{D}, φ) via:

$$
[\pi]=\left(\begin{array}{llllll}
0 & 0 & p & & & \\
1 & 0 & 0 & & 0 & \\
0 & 1 & 0 & & & \\
& & & 0 & 0 & p \\
& 0 & & 1 & 0 & 0 \\
& & & 0 & 1 & 0
\end{array}\right)
$$

Note: $[\pi] \circ \varphi=\varphi \circ[\pi], \quad[\pi]^{3}=p \cdot \mathrm{id}_{\mathbb{D}}, \quad \mathbb{Z}_{p}$ acts linearly.

Ramified endomorphism structure

More setup:

$$
\begin{aligned}
& F:=\mathbb{Q}_{p}(\pi) \text { with } \pi^{3}=p ; \\
& \mathcal{O}_{F} \subseteq F \text { ring of integers; } \\
& d:=\left[F: \mathbb{Q}_{p}\right]=3 .
\end{aligned}
$$

We obtain an action of \mathcal{O}_{F} on H by letting π act on (\mathbb{D}, φ) via:

$$
[\pi]=\left(\begin{array}{llllll}
0 & 0 & p & & & \\
1 & 0 & 0 & & 0 & \\
0 & 1 & 0 & & & \\
& & & 0 & 0 & p \\
& 0 & & 1 & 0 & 0 \\
& & & 0 & 1 & 0
\end{array}\right)
$$

Note: $[\pi] \circ \varphi=\varphi \circ[\pi], \quad[\pi]^{3}=p \cdot \mathrm{id}_{\mathbb{D}}, \quad \mathbb{Z}_{p}$ acts linearly.
We would like to lift H to a mixed characteristic base ring.

Grothendieck-Messing theory

Setup:
$K \mid \mathbb{Q}_{p}$ completely valued field with residue field k;
$v: K^{\times} \rightarrow \mathbb{R}$ normalised at $v(p)=1$;
$\mathcal{O}_{K} \subseteq K$ valuation ring;
assume that K contains a Galois closure of F; embeddings $\tau_{i}: F \rightarrow K, \pi \mapsto \tau_{i}(\pi), i=1,2,3$.

Grothendieck-Messing theory

Setup:
$K \mid \mathbb{Q}_{p}$ completely valued field with residue field k;
$v: K^{\times} \rightarrow \mathbb{R}$ normalised at $v(p)=1$;
$\mathcal{O}_{K} \subseteq K$ valuation ring;
assume that K contains a Galois closure of F; embeddings $\tau_{i}: F \rightarrow K, \pi \mapsto \tau_{i}(\pi), i=1,2,3$.
(Lifts of H to $\left.\mathcal{O}_{K}\right)^{o p} \xrightarrow{\sim}\left(\mathcal{O}_{K}\right.$-direct-summands of $\left.\mathbb{D} \otimes \mathcal{O}_{K}(\ldots)\right)$

$$
\tilde{H} \mapsto \tilde{\omega}
$$

Here:
$\tilde{\omega}$: invariant differentials of \tilde{H}, free \mathcal{O}_{K}-module, rk $\tilde{\omega}=\operatorname{dim} H$;
(\ldots) stands for: $\tilde{\omega} \otimes k \cong p \varphi^{-1} \mathbb{D} / p \mathbb{D} \subseteq \mathbb{D} / p \mathbb{D}$.

Example in mixed characteristic

Let $c \in K$ with $0<v(c)<\frac{1}{2}$, write $\mathbb{D} \otimes \mathcal{O}_{K}=\bigoplus_{i=1}^{6} \mathcal{O}_{K} \cdot f_{i}$.
Let H_{c} be the lift of H to \mathcal{O}_{K} corresponding to:

$$
\omega_{c}:=<f_{2}+c f_{4}, f_{3}+c f_{5}, \frac{p}{c} f_{1}+f_{6}>\subseteq \mathbb{D} \otimes \mathcal{O}_{K}
$$

Example in mixed characteristic

$$
\text { Let } c \in K \text { with } 0<v(c)<\frac{1}{2} \text {, write } \mathbb{D} \otimes \mathcal{O}_{K}=\bigoplus_{i=1}^{6} \mathcal{O}_{K} \cdot f_{i} \text {. }
$$

Let H_{c} be the lift of H to \mathcal{O}_{K} corresponding to:

$$
\omega_{c}:=<f_{2}+c f_{4}, f_{3}+c f_{5}, \frac{p}{c} f_{1}+f_{6}>\subseteq \mathbb{D} \otimes \mathcal{O}_{K}
$$

Since $\omega_{c} \subseteq \mathbb{D} \otimes \mathcal{O}_{K}$ is stable under $[\pi]$, the \mathcal{O}_{F}-action on H lifts to an \mathcal{O}_{F}-action on H_{c}.

We obtain a family of Barsotti-Tate groups H_{c} over \mathcal{O}_{K} with an action $\iota_{c}: \mathcal{O}_{F} \rightarrow \operatorname{End}\left(H_{c}\right)$, lifting H and its \mathcal{O}_{F}-action.

Example in mixed characteristic

Let $c \in K$ with $0<v(c)<\frac{1}{2}$, write $\mathbb{D} \otimes \mathcal{O}_{K}=\bigoplus_{i=1}^{6} \mathcal{O}_{K} \cdot f_{i}$.
Let H_{c} be the lift of H to \mathcal{O}_{K} corresponding to:

$$
\omega_{c}:=<f_{2}+c f_{4}, f_{3}+c f_{5}, \frac{p}{c} f_{1}+f_{6}>\subseteq \mathbb{D} \otimes \mathcal{O}_{K}
$$

Since $\omega_{c} \subseteq \mathbb{D} \otimes \mathcal{O}_{K}$ is stable under $[\pi]$, the \mathcal{O}_{F}-action on H lifts to an \mathcal{O}_{F}-action on H_{c}.

We obtain a family of Barsotti-Tate groups H_{c} over \mathcal{O}_{K} with an action $\iota_{C}: \mathcal{O}_{F} \rightarrow \operatorname{End}\left(H_{c}\right)$, lifting H and its \mathcal{O}_{F}-action.

Let us attach some invariants to $\left(H_{c}, \iota_{c}\right)$ and see if they record some variation along the family.

The Pappas-Rapoport polygon

We have an (eigenspace) decomposition:

$$
\omega_{c} \otimes \mathcal{O}_{K} K=\bigoplus_{i=1}^{3} \omega_{c, K, i}
$$

such that $[\pi]$ acts as $\tau_{i}(\pi)$ on $\omega_{c, K, i}$.
In fact: $\operatorname{dim}_{K} \omega_{c, K, i}=1$ for all i 's.

The Pappas-Rapoport polygon

We have an (eigenspace) decomposition:

$$
\omega_{c} \otimes_{\mathcal{O}_{K}} K=\bigoplus_{i=1}^{3} \omega_{c, K, i}
$$

such that $[\pi]$ acts as $\tau_{i}(\pi)$ on $\omega_{c, K, i}$.
In fact: $\operatorname{dim}_{K} \omega_{c, K, i}=1$ for all i 's.

$$
\operatorname{PR}\left(H_{c}, \iota_{c}\right):=\frac{1}{d} \sum_{i}(\underbrace{\operatorname{dim}_{K} \omega_{c, K, i}}_{\text {ht } H / d}, 0, \ldots, 1,0,0,0)=(1,0)
$$

The facts that ht $H / d \in \mathbb{N}$ and that $\operatorname{dim}_{K} \omega_{c, K, i} \leq$ ht H / d are general phenomena.

Picture

The integral Hodge polygon

$[\pi]: \omega_{c} \longrightarrow \omega_{c}$ is an injective map of free \mathcal{O}_{K}-modules. Thus:

$$
[\pi] \approx\left(\begin{array}{ccc}
a_{1} & & \\
& \ddots & \\
& & a_{\operatorname{dim}_{H}}
\end{array}\right) \text { for suitable bases of } \omega_{c}
$$

the a_{j} 's uniquely determined up to units and permutations.
In fact:

$$
\begin{aligned}
f_{2}+c f_{4} & =: e_{1} \mapsto e_{2} \\
f_{3}+c f_{5} & =: e_{2} \mapsto c e_{3} \\
\frac{p}{c} f_{1}+f_{6} & =: e_{3} \mapsto \frac{p}{c} e_{1}
\end{aligned}
$$

The integral Hodge polygon

$$
[\pi]: \omega_{c} \longrightarrow \omega_{c}, \quad[\pi] \approx\left(\begin{array}{lll}
\frac{p}{c} & & \\
& c & \\
& & 1
\end{array}\right)
$$

$\operatorname{Hdg}^{\text {int }}\left(H_{c}, \iota_{c}\right):=(\underbrace{\text { valuations of non units } a_{j} \text { 's in } \geq \text { order, } 0, \ldots, 0}_{\text {ht } H / d})$

$$
=\left(v\left(\frac{p}{c}\right), v(c)\right)=(1-v(c), v(c))
$$

The fact that $\#\left\{\right.$ non units a_{j} 's $\} \leq h t H / d$ is a general phenomenon.

Picture

In general

Let F be a finite, totally ramified extension of \mathbb{Q}_{p}.
Let (H, ι) be a p-divisible group over \mathcal{O}_{K} with an action of \mathcal{O}_{F}. Then $\operatorname{PR}(H, \iota)$ and $\operatorname{Hdg}^{\text {int }}(H, \iota)$ have the same end point

$$
\left(\frac{\mathrm{ht} H}{d}, \frac{\operatorname{dim} H}{d}\right)
$$

and $\operatorname{PR}(H, \iota)$ lies above $\operatorname{Hdg}^{\text {int }}(H, \iota)$.

In general

Let F be a finite, totally ramified extension of \mathbb{Q}_{p}.
Let (H, ι) be a p-divisible group over \mathcal{O}_{K} with an action of \mathcal{O}_{F}. Then $\operatorname{PR}(H, \iota)$ and $\operatorname{Hdg}^{\text {int }}(H, \iota)$ have the same end point

$$
\left(\frac{\text { ht } H}{d}, \frac{\operatorname{dim} H}{d}\right)
$$

and $\operatorname{PR}(H, \iota)$ lies above $\operatorname{Hdg}^{\text {int }}(H, \iota)$.
If (H, ι) is a family of objects over a p-adic analytic space, then:
$\operatorname{PR}(H, \iota)$ is locally constant;
$\operatorname{Hdg}^{\text {int }}(H, \iota)$ varies continuously below $\operatorname{PR}(H, \iota)$.

Geometric picture

In our example, the family $\left(H_{c}, \iota_{c}\right)$ is defined over a p-adic open annulus: the distance from the center is measured by $p^{-v(c)}$ and it is detected by $\operatorname{Hdg}^{\mathrm{int}}\left(H_{c}, \iota_{c}\right)$.

Where to find this in nature: integral models of Shimura varieties, Rapoport-Zink spaces, ...

Thank you for your attention!

