BARSOTTI-TATE GROUPS WITH RAMIFIED ENDOMORPHISM STRUCTURE

ANDREA MARRAMA

École Polytechnique

Journées Arithmétiques Nancy, 3 July 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction

In joint work with Stéphane Bijakowski (arXiv:2303.06166), we associate a new invariant, called the *integral Hodge polygon*, to objects as in the title.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction

In joint work with Stéphane Bijakowski (arXiv:2303.06166), we associate a new invariant, called the *integral Hodge polygon*, to objects as in the title.

The aim of this talk is to introduce this invariant focusing on a particular example of these objects.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Dieudonné theory

Setup:

k perfect field of characteristic p > 0; W(k) Witt vectors with coefficients in k; $\sigma \colon W(k) \to W(k)$ Frobenius lift.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Dieudonné theory

Setup:

k perfect field of characteristic p > 0; W(k) Witt vectors with coefficients in k; $\sigma: W(k) \rightarrow W(k)$ Frobenius lift.

(Barsotti-Tate groups over k)^{op} $\xrightarrow{\sim}$ (Dieudonné modules over k) $H \mapsto (\mathbb{D}, \varphi)$

Here:

$$\begin{split} \mathbb{D} \text{ finite free } W(k)\text{-module;} \\ \varphi \colon \mathbb{D} \to \mathbb{D} \text{ injective, } \sigma\text{-linear, satisfying } p\mathbb{D} \subseteq \varphi\mathbb{D}; \\ \text{height of } H: \quad \text{ht } H = \text{rk}_{W(k)} \mathbb{D} \in \mathbb{N}; \\ \text{invariant differentials of } H: \quad \omega \cong \mathbb{D}/\varphi\mathbb{D}, \text{ finite } k\text{-vector-space.} \end{split}$$

Example in special fibre

Let H be the Barsotti-Tate group over k corresponding to:

$$\mathbb{D} = W(k)^{6}, \qquad \varphi = \begin{pmatrix} 0 & p & 0 & & \\ 0 & 0 & p & 0 & \\ 1 & 0 & 0 & & \\ & & 0 & 0 & p \\ 0 & & 1 & 0 & 0 \\ & & & 0 & 1 & 0 \end{pmatrix} \sigma.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example in special fibre

Let H be the Barsotti-Tate group over k corresponding to:

$$\mathbb{D} = W(k)^{6}, \qquad \varphi = \begin{pmatrix} 0 & p & 0 & & \\ 0 & 0 & p & 0 & \\ 1 & 0 & 0 & & \\ & & 0 & 0 & p \\ 0 & & 1 & 0 & 0 \\ & & & 0 & 1 & 0 \end{pmatrix} \sigma.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We have:

ht H = 6; dim $H := \dim_k \omega = \dim_k \mathbb{D}/\varphi \mathbb{D} = 3$.

Example in special fibre

Let H be the Barsotti-Tate group over k corresponding to:

$$\mathbb{D} = W(k)^{6}, \qquad \varphi = \begin{pmatrix} 0 & p & 0 & & \\ 0 & 0 & p & & 0 \\ 1 & 0 & 0 & & \\ & & 0 & 0 & p \\ 0 & & 1 & 0 & 0 \\ & & & 0 & 1 & 0 \end{pmatrix} \sigma.$$

We have:

ht H = 6; dim $H := \dim_k \omega = \dim_k \mathbb{D}/\varphi \mathbb{D} = 3$.

Let us put some *ramified endomorphism structure* on *H*.

Ramified endomorphism structure

More setup:

 $F := \mathbb{Q}_p(\pi) \text{ with } \pi^3 = p;$ $\mathcal{O}_F \subseteq F \text{ ring of integers;}$ $d := [F : \mathbb{Q}_p] = 3.$

Ramified endomorphism structure

More setup:

 $F := \mathbb{Q}_p(\pi) \text{ with } \pi^3 = p;$ $\mathcal{O}_F \subseteq F \text{ ring of integers;}$ $d := [F : \mathbb{Q}_p] = 3.$

We obtain an action of \mathcal{O}_F on H by letting π act on (\mathbb{D}, φ) via:

$$[\pi] = \begin{pmatrix} 0 & 0 & p & & \\ 1 & 0 & 0 & & \\ 0 & 1 & 0 & & \\ & & 0 & 0 & p \\ 0 & & 1 & 0 & 0 \\ & & & 0 & 1 & 0 \end{pmatrix}$$

Note: $[\pi] \circ \varphi = \varphi \circ [\pi]$, $[\pi]^3 = p \cdot id_{\mathbb{D}}$, \mathbb{Z}_p acts linearly.

・ロト・日本・モト・モー シック

Ramified endomorphism structure

More setup:

 $F := \mathbb{Q}_p(\pi) \text{ with } \pi^3 = p;$ $\mathcal{O}_F \subseteq F \text{ ring of integers;}$ $d := [F : \mathbb{Q}_p] = 3.$

We obtain an action of \mathcal{O}_F on H by letting π act on (\mathbb{D}, φ) via:

$$[\pi] = egin{pmatrix} 0 & 0 & p & & & \ 1 & 0 & 0 & & \ 0 & 1 & 0 & & & \ & & & 0 & 0 & p \ 0 & & 1 & 0 & 0 \ & & & 0 & 1 & 0 \end{pmatrix}$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Note: $[\pi] \circ \varphi = \varphi \circ [\pi]$, $[\pi]^3 = p \cdot id_{\mathbb{D}}$, \mathbb{Z}_p acts linearly.

We would like to lift H to a mixed characteristic base ring.

Grothendieck-Messing theory

Setup:

 $K|\mathbb{Q}_p$ completely valued field with residue field k; $v: K^{\times} \to \mathbb{R}$ normalised at v(p) = 1; $\mathcal{O}_K \subseteq K$ valuation ring; assume that K contains a Galois closure of F; embeddings $\tau_i: F \to K, \pi \mapsto \tau_i(\pi), i = 1, 2, 3$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Grothendieck-Messing theory

Setup:

 $K|\mathbb{Q}_p$ completely valued field with residue field k; $v: K^{\times} \to \mathbb{R}$ normalised at v(p) = 1; $\mathcal{O}_K \subseteq K$ valuation ring; assume that K contains a Galois closure of F; embeddings $\tau_i \colon F \to K, \ \pi \mapsto \tau_i(\pi), \ i = 1, 2, 3$.

(Lifts of H to $\mathcal{O}_{\mathcal{K}}$)^{op} $\xrightarrow{\sim}$ ($\mathcal{O}_{\mathcal{K}}$ -direct-summands of $\mathbb{D} \otimes \mathcal{O}_{\mathcal{K}}$ (...)) $\tilde{H} \mapsto \tilde{\omega}$

Here:

 $\tilde{\omega}$: invariant differentials of \tilde{H} , free $\mathcal{O}_{\mathcal{K}}$ -module, rk $\tilde{\omega} = \dim H$; (...) stands for: $\tilde{\omega} \otimes k \cong p\varphi^{-1}\mathbb{D}/p\mathbb{D} \subseteq \mathbb{D}/p\mathbb{D}$.

Example in mixed characteristic

Let $c \in K$ with $0 < v(c) < \frac{1}{2}$, write $\mathbb{D} \otimes \mathcal{O}_K = \bigoplus_{i=1}^6 \mathcal{O}_K \cdot f_i$.

Let H_c be the lift of H to \mathcal{O}_K corresponding to:

$$\omega_c := < f_2 + cf_4, \ f_3 + cf_5, \ \frac{p}{c}f_1 + f_6 > \subseteq \mathbb{D} \otimes \mathcal{O}_K.$$

Example in mixed characteristic

Let $c \in K$ with $0 < v(c) < \frac{1}{2}$, write $\mathbb{D} \otimes \mathcal{O}_K = \bigoplus_{i=1}^6 \mathcal{O}_K \cdot f_i$.

Let H_c be the lift of H to \mathcal{O}_K corresponding to:

$$\omega_{c} := < f_{2} + cf_{4}, \ f_{3} + cf_{5}, \ \frac{p}{c}f_{1} + f_{6} > \subseteq \mathbb{D} \otimes \mathcal{O}_{K}.$$

Since $\omega_c \subseteq \mathbb{D} \otimes \mathcal{O}_K$ is stable under $[\pi]$, the \mathcal{O}_F -action on H lifts to an \mathcal{O}_F -action on H_c .

We obtain a family of Barsotti-Tate groups H_c over \mathcal{O}_K with an action $\iota_c \colon \mathcal{O}_F \to \text{End}(H_c)$, lifting H and its \mathcal{O}_F -action.

Example in mixed characteristic

Let $c \in K$ with $0 < v(c) < \frac{1}{2}$, write $\mathbb{D} \otimes \mathcal{O}_K = \bigoplus_{i=1}^6 \mathcal{O}_K \cdot f_i$.

Let H_c be the lift of H to \mathcal{O}_K corresponding to:

$$\omega_{c} := < f_{2} + cf_{4}, \ f_{3} + cf_{5}, \ \frac{p}{c}f_{1} + f_{6} > \subseteq \mathbb{D} \otimes \mathcal{O}_{K}.$$

Since $\omega_c \subseteq \mathbb{D} \otimes \mathcal{O}_K$ is stable under $[\pi]$, the \mathcal{O}_F -action on H lifts to an \mathcal{O}_F -action on H_c .

We obtain a family of Barsotti-Tate groups H_c over \mathcal{O}_K with an action $\iota_c \colon \mathcal{O}_F \to \text{End}(H_c)$, lifting H and its \mathcal{O}_F -action.

Let us attach some invariants to (H_c, ι_c) and see if they record some variation along the family.

The Pappas-Rapoport polygon

We have an (eigenspace) decomposition:

$$\omega_{c} \otimes_{\mathcal{O}_{K}} K = \bigoplus_{i=1}^{3} \omega_{c,K,i}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

such that $[\pi]$ acts as $\tau_i(\pi)$ on $\omega_{c,K,i}$.

In fact: dim_K $\omega_{c,K,i} = 1$ for all *i*'s.

The Pappas-Rapoport polygon

We have an (eigenspace) decomposition:

$$\omega_{c} \otimes_{\mathcal{O}_{K}} K = \bigoplus_{i=1}^{3} \omega_{c,K,i}$$

such that $[\pi]$ acts as $\tau_i(\pi)$ on $\omega_{c,K,i}$.

In fact: dim_K $\omega_{c,K,i} = 1$ for all *i*'s.

$$\mathsf{PR}(H_c,\iota_c) \coloneqq \frac{1}{d} \sum_{i} (\underbrace{\underbrace{1,\ldots,1}_{i},0,\ldots,0}_{\mathsf{ht}\,H/d}) = (1,0)$$

The facts that $\operatorname{ht} H/d \in \mathbb{N}$ and that $\dim_{K} \omega_{c,K,i} \leq \operatorname{ht} H/d$ are general phenomena.

Picture

The integral Hodge polygon

 $[\pi]: \omega_c \longrightarrow \omega_c$ is an injective map of free \mathcal{O}_K -modules. Thus:

$$[\pi] \approx \begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_{dim_H} \end{pmatrix} \text{ for suitable bases of } \omega_c,$$

the a_j 's uniquely determined up to units and permutations. In fact:

$$f_2 + cf_4 =: e_1 \mapsto e_2$$

$$f_3 + cf_5 =: e_2 \mapsto ce_3$$

$$\frac{p}{c}f_1 + f_6 =: e_3 \mapsto \frac{p}{c}e_1$$

The integral Hodge polygon

$$[\pi] \colon \omega_c \longrightarrow \omega_c, \qquad [\pi] \approx \begin{pmatrix} \frac{p}{c} & & \\ & c & \\ & & 1 \end{pmatrix}$$

 $\begin{aligned} \mathsf{Hdg}^{\mathrm{int}}(H_c,\iota_c) &\coloneqq (\underbrace{\mathsf{valuations of non units } a_j \text{'s in} \geq \mathrm{order}, 0, \dots, 0}_{\operatorname{ht} H/d}) \\ &= (v\left(\frac{p}{c}\right), v(c)) = (1 - v(c), v(c)) \end{aligned}$

The fact that # { non units a_j 's } $\leq \operatorname{ht} H/d$ is a general phenomenon.

▲□▶▲□▶▲□▶▲□▶ = のへの

Picture

In general

Let *F* be a finite, totally ramified extension of \mathbb{Q}_p .

Let (H, ι) be a *p*-divisible group over \mathcal{O}_K with an action of \mathcal{O}_F . Then $\mathsf{PR}(H, \iota)$ and $\mathsf{Hdg}^{int}(H, \iota)$ have the same end point

 $\left(\frac{\operatorname{ht} H}{d}, \frac{\operatorname{dim} H}{d}\right)$

and $PR(H, \iota)$ lies above $Hdg^{int}(H, \iota)$.

In general

Let *F* be a finite, totally ramified extension of \mathbb{Q}_p .

Let (H, ι) be a *p*-divisible group over \mathcal{O}_K with an action of \mathcal{O}_F . Then $\mathsf{PR}(H, \iota)$ and $\mathsf{Hdg}^{int}(H, \iota)$ have the same end point

 $\left(\frac{\operatorname{ht} H}{d}, \frac{\operatorname{dim} H}{d}\right)$

and $PR(H, \iota)$ lies above $Hdg^{int}(H, \iota)$.

If (H, ι) is a family of objects over a *p*-adic analytic space, then: $PR(H, \iota)$ is locally constant; $Hdg^{int}(H, \iota)$ varies continuously below $PR(H, \iota)$.

Geometric picture

In our example, the family (H_c, ι_c) is defined over a *p*-adic open annulus: the distance from the center is measured by $p^{-\nu(c)}$ and it is detected by $Hdg^{int}(H_c, \iota_c)$.

Where to find this in nature: integral models of Shimura varieties, Rapoport-Zink spaces, ...

Thank you for your attention!

・ロト・日本・ヨト・ヨー うへの