RTG 2553:

Symmetries and classifying spaces: Analytic, arithmetic and derived

UNIVERSITÄT
DULSBURG

Open-Minded

Hodge-Newton filtration for *p*-divisible groups with ramified endomorphism structure

Andrea Marrama

Doctoral Researcher (04/2020-09/2020), Funding: other

Master ALGANT: Leiden, Duisburg-Essen

1. Advisor: Prof. Dr. Ulrich Görtz,

Essen Seminar for Algebraic Geometry and Arithmetic

Where does the problem come from?

Classical invariants have been attached to a p-divisible group H over k:

- the *Newton polygon* Newt(*H*);
- the *Hodge polygon* Hdg(*H*).

These invariants tell something about the structure of H, e.g.:

- if $H = \mathcal{A}[p^{\infty}]$ for an abelian variety \mathcal{A} over k, then Newt(H) detects whether \mathcal{A} is supersingular, ordinary, etc.;
- if a break point z of Newt(H) lies on Hdg(H), then there exists a corresponding Hodge-Newton decomposition $H = H_1 \oplus H_2$ (Katz 1979).

Suppose that H is endowed with additional endomorphism structure $\iota: \mathcal{O}_F \to \operatorname{End}(H)$. Then:

- the Newton polygon and the Hodge polygon can be refined to new invariants Newt(H, ι) and Hdg(H, ι) taking the \mathcal{O}_F -action into account;
- the Hodge–Newton decomposition with respect to the refined invariants upgrades to an " ι -equivariant" decomposition $(H, \iota) = (H_1, \iota_1) \oplus (H_2, \iota_2)$ (Mantovan–Viehmann '10, Bijakowski–Hernandez '17).

Question. What can be said for *p*-divisible groups over \mathcal{O}_K ?

Background and notation

- p a prime number;
- k a perfect field of characteristic p, e.g. $k = \mathbb{F}_p$;
- \mathcal{O}_K a complete discrete valuation ring with residue field k and fraction field K of characteristic 0, e.g. $\mathcal{O}_K = \mathbb{Z}_p$;
- a *p-divisible group* over k (respectively \mathcal{O}_K) is an inductive system of p-power-torsion finite (flat) group schemes over k (respectively \mathcal{O}_K) satisfying a certain regularity, e.g.:
- the *p*-power roots of unity $\mu_{p^{\infty}} = (\mu_{p^i})_{i \geq 1}$,
- -the *p*-power-torsion $\mathcal{A}[p^{\infty}] = (\mathcal{A}[p^i])_{i \geq 1}$ of an abelian scheme \mathcal{A} ;
- the endomorphisms of a p-divisible group H always form a \mathbb{Z}_p -algebra $\operatorname{End}(H)$;
- let $F|\mathbb{Q}_p$ be a finite field extension with ring of integers \mathcal{O}_F ;
- a p-divisible group with endomorphism structure for \mathcal{O}_F is a pair (H, ι) consisting of a p-divisible group H and a map of \mathbb{Z}_p -algebras $\iota : \mathcal{O}_F \to \operatorname{End}(H)$.

Main result

Let H be a p-divisible group over \mathcal{O}_K with endomorphism structure $\iota : \mathcal{O}_F \to \operatorname{End}(H)$. One may consider suitable invariants $\operatorname{Newt}(H, \iota)$ and $\operatorname{Hdg}(H, \iota)$ as before.

If a break point of Newt(H, ι) lies on Hdg(H, ι), then in general one does not have a decomposition of (H, ι) , however one can still obtain a *Hodge–Newton filtration*.

Theorem ([Ma22]). If a break point z of Newt(H, ι) lies on Hdg(H, ι), then there exists a unique subobject $(H_1, \iota_1) \subseteq (H, \iota)$ such that:

- Newt(H_1 , ι_1) and Hdg(H_1 , ι_1) equal respectively the part of Newt(H, ι) and Hdg(H, ι) between the origin and z;
- if (H_2, ι_2) denotes the quotient of (H, ι) by (H_1, ι_1) , then Newt (H_2, ι_2) and Hdg (H_2, ι_2) equal respectively the rest of Newt (H, ι) and Hdg (H, ι) after z (up to a shift of coordinates setting the origin in z).

The result was previously know only for $F|\mathbb{Q}_p$ unramified (Mantovan–Viehmann '10, Shen '13, Hong '19).

Remark. If $F|\mathbb{Q}_p$ is unramified, one may define Newt(H, ι) and Hdg(H, ι) as those of the reduction of (H, ι) to the residue field K of \mathcal{O}_K . In general, this only works for Newt(H, ι) but extra care is needed for Hdg(H, ι).

Sketch of proof

The proof makes use of the *Harder–Narasimhan theory* for finite flat group schemes over \mathcal{O}_K developed by Fargues:

to the *p*-power-torsion parts $H[p^i]$ of H are associated a sequence of *Harder–Narasimhan polygons* $HN(H[p^i])$, $i \ge 1$, which converge uniformly from above to a polygon HN(H).

In the situation of the theorem, one can show that z is also a break point of HN(H).

Key Lemma. HN(H[p]) lies between HN(H) and $Hdg(H, \iota)$.

Thus, in the situation of the theorem z also lies on HN(H[p]). To conclude, we prove the following.

Proposition. If z is a break point of HN(H) lying on HN(H[p]), then there exists a corresponding filtration $H_1 \subseteq H$.

One finally checks that $H_1 \subseteq H$ is ι -stable and satisfies the conditions of the theorem.

Where does the problem go?

Taken in families, *p*-divisible groups with endomorphism structure (or more general additional structures) give rise to interesting geometric objects called *Rapoport–Zink spaces*.

1. The Hodge–Newton filtration allows to relate certain "non basic" Rapoport–Zink spaces \mathcal{M}_G to simpler ones \mathcal{M}_M , passing through a space \mathcal{M}_P parametrising the filtered objects. This ultimately gives new insight into the *Harris–Viehmann conjecture*, which is part of the local Langlands program.

- 2. An alternative way to generalise the definition of the Hodge polygon from the unramified case to the general situation is considered in [BM23], leading to the notion of *integral Hodge polygon*. This:
 - provides a finer bound than $Hdg(H, \iota)$ for HN(H[p]) as in the key lemma;
 - ullet defines a continuous function on \mathcal{M}_G describing its geometry in the ramified case.

References

[Ma22] A. Marrama, *Hodge–Newton filtration for p-divisible groups with ramified endomorphism structure*; Documenta Mathematica 27: 1805-1863, 2022.

[BM23] S. Bijakowski, A. Marrama, *The integral Hodge polygon for p-divisible groups with endomorphism structure*; preprint, arXiv:2303.06166.