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Abstract. Let p be a prime number, let OF be the ring of integers of a finite field
extension F of Qp and let OK be a complete valuation ring of rank 1 and mixed
characterstic (0, p). We introduce and study the integral Hodge polygon, a new invariant of
p-divisible groups H over OK endowed with an action ι of OF . If F |Qp is unramified, this
invariant recovers the classical Hodge polygon and only depends on the reduction of (H, ι)
to the residue field of OK . This is not the case in general, whence the attribute “integral”.
The new polygon lies between Fargues’ Harder-Narasimhan polygons of the p-power
torsion parts of H and another combinatorial invariant of (H, ι) called the Pappas-
Rapoport polygon. Furthermore, the integral Hodge polygon behaves continuously in
families over a p-adic analytic space.
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1 Introduction

Let p be a prime number. When one studies the geometry of the modular curve over
a base ring of mixed characteristic (0, p), one often considers not the universal elliptic
curve E, but rather its p-divisible group E[p∞]. Indeed, Serre-Tate theory ensures that
deforming an elliptic curve in positive characteristic amounts to deforming the associated
p-divisible group. More generally, when studying the p-adic geometry of Shimura varieties
(such as the Hilbert modular variety or the Siegel modular variety), one is especially
interested in the p-divisible group associated to the universal abelian scheme.
As far as the special fibre is concerned, several invariants have been attached to a
p-divisible group H over an algebraically closed field of characteristic p. The Newton
polygon Newt(H) classifies the isogeny class of H and leads to the Newton stratification
of Shimura varieties. The Hodge polygon Hdg(H) is determined by the dimension of H
and always lies above the Newton polygon (all polygons are concave in this article).
In the context of Shimura varieties, however, one is led to consider objects endowed
with additional structure, such as an endomorphism structure. Let OF be the ring
of integers of a finite field extension F of Qp (possibly ramified) and assume that H
comes with an action ι of OF . One can then refine the previous invariants and define
polygons Newt(H, ι) and Hdg(H, ι), taking this action into account (see [BH1, §1]). The
polygon Newt(H, ι) is just a renormalization of Newt(H), but Hdg(H, ι) is genuinely
different from Hdg(H).
When F |Qp is ramified, the necessity of a good integral model of the Shimura variety
suggests to impose a Pappas-Rapoport condition on (H, ι), encoding the action of OF on
the module ωH of invariant differential forms of H (see [BH1, Définition 2.2.1]). This
condition is based on a fixed combinatorial datum µ, which in turn determines a new
polygon, the Pappas-Rapoport polygon, lying above Newt(H, ι). It is then proved in
[BH1, Théorème 1.3.1] that Hdg(H, ι) lies between Newt(H, ι) and the Pappas-Rapoport
polygon associated to µ; its variation throughout the reduction of Shimura varieties is
used to study the geometry of the latter (cf. [BH2]).
Turning now our attention to the generic fibre (after p-adic completion), the objects of
interest become p-divisible groups with endomorphism structure (H, ι) as above, but
defined over a complete valuation ring OK of rank 1 and mixed characteristic (0, p). In
this case, the datum µ is determined by (H, ι) itself and the reduction (Hk , ι) of (H, ι)
to the residue field k of OK naturally inherits a compatible Pappas-Rapoport condition,
see §3.4. The associated Pappas-Rapoport polygon has already been considered in [Ma],
where it is referred to as the “Hodge polygon” of (H, ι). Actually, if F |Qp is ramified,
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this polygon may be different from the Hodge polygon of (Hk , ι) mentioned above. In
order to avoid any confusion and in accordance with the previous discussion, here we
write PR(H, ι) for the Pappas-Rapoport polygon associated to the datum µ determined
by (H, ι) and call this the “Pappas-Rapoport polygon” of (H, ι).
Other invariants of (H, ι) to be considered stem from the Harder-Narasimhan theory for
finite locally free group schemes developed by Fargues in [Fa1]. Namely, the theory allows
to attach a Harder-Narasimhan polygon HN(H[pi], ι) to each pi-torsion part of (H, ι).
These polygons contain information about certain finite locally free sub-group-schemes
of H and converge from above to an invariant HN(H, ι) of the whole p-divisible group
(the presence of ι only accounts for a renormalisation of the polygons in this case); an
application to the p-adic geometry of Shimura varieties may be found in [Fa3]. Under
the assumption that OK is discretely valued, it is proved in [Ma, Proposition 2.14] that
HN(H[p], ι), and along with it the other Harder-Narasimhan polygons HN(H[pi], ι), lie
below PR(H, ι).

In this article, we define the integral Hodge polygon Hdgint(H, ι) of a p-divisible group
with endomorphism structure (H, ι) over OK , a new invariant describing the action of
a uniformiser π of OF on ωH . If F |Qp is unramified, this polygon only depends on the
reduction of (H, ι) to k and recovers Hdg(Hk , ι). This is not the case in general, whence
the attribute “integral”. The basic feature of the integral Hodge polygon is that it lies
between HN(H[p], ι) and PR(H, ι).

Theorem 1.1 (Corollary 4.4, Theorem 4.8). Let (H, ι) be a p-divisible group over OK

with endomorphism structure for OF . Then:

HN(H[p], ι) ≤ Hdgint(H, ι) ≤ PR(H, ι).

This refines and generalises the inequality HN(H[p], ι) ≤ PR(H, ι) obtained in [Ma,
2.14] for OK discretely valued. More conceptually, this result tells that the presence of
additional (ramified) endomorphism structure on H produces a constraint on HN(H[p], ι),
with consequences on the possible subobjects of H, see Remark 4.5.
The integral Hodge polygon of (H, ι) is in general unrelated to the Newton polygon and
the Hodge polygon of (Hk , ι), see §5.2. An exception is the limit case when Hdgint(H, ι) =
PR(H, ι), which happens if and only if Hdg(Hk , ι) = PR(H, ι), see Proposition 4.10. This
situation is realised for instance when OF acts on ωH through a fixed embedding OF →
OK , that is, when (H, ι) is a p-divisible OF -module. The case of OF -modules also falls
within a class of objects which we call π-diagonalisable, meaning that the action of π
on ωH is diagonalisable. This condition is detected by Hdgint(H, ι) if F |Qp is tamely
ramified and it always implies that Hdgint(H, ι) = Hdg(Hk , ι), see §4.6.
Another notable feature of the integral Hodge polygon, especially in view of geometric
applications, is that it behaves continuously in families.

Theorem 1.2 (Theorem 5.2). Let X be a formal scheme as in §5.1 and denote by Xan

its generic fibre as a Berkovich analytic space. Let (H, ι) be a p-divisible group over X
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with endomorphism structure for OF and suppose that H has constant height. Then, the
function Hdgint(H, ι) from Xan to the space of polygons is continuous. Moreover, for
every fixed polygon f0, the subset:

Xan
Hdgint≤f0

:=
{
x ∈ Xan

∣∣∣ Hdgint(Hx, ι) ≤ f0
}
⊆ Xan

defines a closed analytic domain of Xan.
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2 Setup and notation

Let p be a prime number. Let K be a field extension of the p-adic numbers Qp and
assume that K is complete with respect to a valuation v with values in R extending the
p-adic valuation (thus normalised at v(p) = 1). Denote by OK the valuation ring of K
and by k its residue field, which is then of characteristic p.

Let F be a finite field extension of Qp of degree d, with ring of integers OF and
residue field kF ; we choose a uniformiser π ∈ OF . Denote by F nr the maximal unramified
subextension (or inertia subfield) of F |Qp and by OF nr its ring of integers, so that F nr|Qp

is an unramified extension of degree f(F |Qp), the inertia degree of F |Qp, and F |F nr is a
totally ramified extension of degree e(F |Qp), the ramification index of F |Qp.

We assume throughout the document that k is perfect and that K contains a Galois
closure of F over Qp (and hence that k contains kF ), although we do not fix an embedding.
However, let us remark that the main definitions can be given without these assumptions,
as they are invariant under suitable base change (we will indicate when this is the case).
In particular, the statements depending only on these definitions hold in general.

Write W (k) for the ring of Witt vectors with coefficients in k, which is naturally a
subring of OK , and let K0 be its fraction field, a subfield of K. We denote by σ the
Frobenius endomorphism of W (k) and its extension to K0.

For n ∈ N, we write Rn
+ := { (ai)n

i=1 ∈ Rn | a1 ≥ · · · ≥ an } for the set of decreasing
n-tuples of real numbers. As a subset of Rn, note that Rn

+ is closed under addition and
nonnegative scalar multiplication. We endow Rn

+ with the following partial order:

(ai)n
i=1 ≤ (bi)n

i=1 if
j∑

i=1
ai ≤

j∑
i=1

bi for all 1 ≤ j ≤ n and
n∑

i=1
ai =

n∑
i=1

bi.

An element f = (ai)n
i=1 ∈ Rn

+ can be viewed as a piecewise affine linear, continuous,
concave function f : [0, n]→ R starting at (0, 0) and proceeding with slope ai on [i− 1, i].
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In this sense, there is an obvious notion of break points of f , from which we exclude the
extremal points (0, 0) and (n, f(n)). The partial order defined above extends naturally
to the set of all piecewise affine linear, continuous, concave functions f : [0, n]→ R with
f(0) = 0, namely f ≤ g if we have pointwise inequality and f(n) = g(n).

3 Recalls and definitions

3.1 p-divisible groups with endomorphism structure

Let R be a commutative p-adically complete local ring.
We call p-group over R any finite locally free commutative group scheme over SpecR

of p-power order. If H is such an object, we denote by htH the height of H, i.e. the
logarithm to base p of its order, and we write ωH for the cotangent space of H along
the identity section, a finitely presented R-module. Recall that the association H 7→ ωH ,
from the category of finite locally free commutative group schemes over SpecR to that
of R-modules, defines a contravariant additive functor which is compatible with base
change and right exact (cf. [Me, Proposition II.3.3.4]). The notation HD stands for the
Cartier dual of H.

For H = (H[pi])i≥1 a p-divisible group over SpecR (or, for short, over R), we denote
by htH the height of H (which equals the height of the p-group H[p] over R) and we set
ωH := lim←−i≥1 ωH[pi]. If p is nilpotent in R, then ωH = ωH[pi] for i ≥ 1 sufficiently large
and this is a finite free R-module (cf. [BBM, 3.3.1] and recall that R is a local ring). In
general, since R is p-adically complete, we have that ωH is anyway a finite free R-module,
with ωH/p

iωH = ωH[pi] for all i ≥ 1. The dimension of H, denoted by dimH, is the rank
of ωH over R. The association H 7→ ωH , from the category of p-divisible groups over R
to that of R-modules, defines a contravariant Zp-linear functor which is compatible with
base change (to other p-adically complete local rings). We write HD = (H[pi]D)i≥1 for
the Cartier dual of H.

If H is a p-divisible group over k, we denote by (D(H), φH) its contravariant Dieudonné
module (cf. [Fo, §III]). Recall that this is composed of a free W (k)-module D(H)
of rank htH and an injective σ-linear endomorphism φH : D(H) → D(H) such that
pD(H) ⊆ φHD(H); in particular, (D(H), φH) is an F -crystal over k as in [BH1, Déf-
inition 1.1.1]. The association H 7→ (D(H), φH) determines a contravariant Zp-linear
functor from the category of p-divisible groups over k to that of F -crystals over k, inducing
an antiequivalence with the full subcategory of Dieudonné modules. This functor is
compatible with base change of perfect fields. Moreover, we have a natural identification
of k-vector-spaces:

D(H)/φHD(H) ∼= ωH . (3.1)
Definition 3.1. A p-group, respectively p-divisible group over R with endomorphism
structure for OF is a pair (H, ι) consisting of a p-group, respectively a p-divisible group H
over SpecR and a map of Zp-algebras ι : OF → End(H).

We denote by p−grR,OF
, respectively p−divR,OF

the category of p-groups, respectively
p-divisible groups over R with endomorphism structure for OF , with morphisms given
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by maps of p-groups, respectively p-divisible groups over R that are compatible with ι
(or OF -equivariant).

Remark 3.2. Note that the definition of the Dieudonné module used here is the one
given by Fontaine in [Fo, §III]. One may also use the Dieudonné crystal defined by
Berthelot, Breen and Messing in [BBM, §3.3], evaluated at W (k). The latter is naturally
isomorphic to the former up to a Frobenius twist (cf. [BBM, §4.2]).

3.2 The Hodge polygon in special fibre

Let (H, ι) be a p-divisible group over k with endomorphism structure for OF , where we
remind that k is a perfect field of characteristic p containing the residue field kF of F .
Let us recall from [BH1, §1.1] the definition of the Hodge polygon of (H, ι), which is
based on a more general invariant of F -crystals with OF -action.

In fact, the Dieudonné module (D(H), φH) of H inherits from ι a Zp-linear action of
OF , that is, a map of Zp-algebras ι : OF → End(D(H), φH). Because k contains kF , we
have a decomposition of finite free W (k)-modules:

D(H) =
⊕

υ : F nr→K0

D(H)υ,

where υ ranges through the f(F |Qp) embeddings of F nr in K0 and OF nr acts on D(H)υ

via υ : OF nr →W (k). The σ-linear endomorphism φH restricts then to injective maps:

φH : D(H)σ−1υ −→ D(H)υ,

ensuring that the ranks rkW (k) D(H)υ are all the same. Moreover, the decomposition
above reduces to a decomposition of k-vector-spaces:

D(H)/φHD(H) =
⊕

υ

D(H)υ/φHD(H)σ−1υ. (3.2)

Observe now, for each embedding υ, that D(H)υ is a module over the ring:

WOF ,υ(k) := OF ⊗OF nr ,υ W (k)

and that this is a discrete valuation ring, with uniformiser π ⊗ 1; in fact, it is the ring
of integers of a totally ramified extension of K0 of degree e(F |Qp). Without ambiguity,
we denote by v the valuation of WOF ,υ(k) normalised at v(p) = 1. Because D(H)υ is a
torsion free W (k)-module, it is again torsion free and hence free as a WOF ,υ(k)-module.
In fact, we have that rkW (k) D(H)υ = e(F |Qp) rkWOF ,υ(k) D(H)υ independently of υ, so
we may set:

n := rkWOF ,υ(k) D(H)υ ∈ N

for any υ. We remark that this means in particular that:

htH = rkW (k) D(H) =
∑

υ

rkW (k) D(H)υ = f(F |Qp)e(F |Qp)n = dn ∈ dN.
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Now, for every υ : F nr → K0, since WOF ,υ(k) is a valuation ring and φH is injective, we
may write:

D̄υ := D(H)υ/φHD(H)σ−1υ
∼=

n⊕
i=1

WOF ,υ(k)/aυ,iWOF ,υ(k)

for some nonzero elements aυ,1, . . . , aυ,n ∈WOF ,υ(k) with v(aυ,1) ≥ · · · ≥ v(aυ,n); these
elements are uniquely determined up to units of WOF ,υ(k). We set:

Hdg(H, ι)υ := (v(aυ,1), . . . , v(aυ,n)) ∈ Rn
+.

As a piecewise affine linear function, Hdg(H, ι)υ : [0, n]→ R interpolates the following
values:

Hdg(H, ι)υ(i) =
i∑

j=1
v(aυ,j) = v(Fitt0 D̄υ)− v(Fitti D̄υ), i ∈ { 0, . . . , n } ,

where Fitti D̄υ denotes the i-th Fitting ideal of the WOF ,υ(k)-module D̄υ; since Fitti D̄υ

is a principal ideal, it makes sense to consider its valuation. Note that D̄υ is a p-torsion
WOF ,υ(k)-module. Thus, if we write:

D̄υ[πj ] :=
{
w ∈ D̄υ

∣∣∣ (π ⊗ 1)jw = 0
}
⊆ D̄υ

for 0 ≤ j ≤ e(F |Qp), then we have the following alternative description:

Hdg(H, ι)υ : x 7−→ 1
e(F |Qp)

e(F |Qp)∑
j=1

min
{
x, dimk D̄υ[πj ]/D̄υ[πj−1]

}
, x ∈ [0, n].

Indeed, dimk D̄υ[πj ]/D̄υ[πj−1] equals the number of indices i ∈ { 1, . . . , n } such that
e(F |Qp)v(aυ,i) ≥ j. In particular, the end point of Hdg(H, ι)υ is:

Hdg(H, ι)υ(n) = 1
e(F |Qp)

e(F |Qp)∑
j=1

dimk D̄υ[πj ]/D̄υ[πj−1] = 1
e(F |Qp) dimk D̄υ. (3.3)

The Hodge polygon of (H, ι) is defined to be:

Hdg(H, ι) := 1
f(F |Qp)

∑
υ

Hdg(H, ι)υ ∈ Rn
+,

where υ ranges through the f(F |Qp) embeddings of F nr in K0. Its end point is given by
the average over υ of the equations (3.3):

Hdg(H, ι)(n) = 1
f(F |Qp)

∑
υ

1
e(F |Qp) dimk D̄υ = 1

d
dimk D(H)/φHD(H) = dimH

d
,
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the last equaliy due to the identification (3.1). We remark that up to reversing the order
of the slopes in order to get a convex polygon, Hdg(H, ι) equals the Hodge polygon of
the F -crystal (D(H), φH) with OF -action ι, as introduced in [BH1, Définition 1.1.7].

Note that the above definition is invariant under base change of (H, ι) to another
perfect field. Thus, one may define Hdg(H, ι) even if k is not perfect or does not contain
kF , namely as the Hodge polygon of the base change of (H, ι) to a sufficiently large
perfect field extension of k. In this case, we still find that htH = dn for some n ∈ N
and so Hdg(H, ι) ∈ Rn

+. All statements concerning Hdg(H, ι) will then hold in this more
general setup.

Remark 3.3. If F |Qp is an unramified extension, then we have that WOF ,υ(k) = W (k)
for every embedding υ of F nr = F in K0. In particular, for (H, ι) ∈ p−divk,OF

one sees
that in this case:

Hdg(H, ι)υ := (1, . . . , 1, 0, . . . , 0),

the number of 1’s being equal to dimk D(H)υ/φHD(H)σ−1υ. In fact, the notion of Hodge
polygon in this setting can be traced back to that of “Hodge point” for F -crystals with
additional (unramified) structure, introduced in [RR, §4].

3.3 The Pappas-Rapoport polygon

Let (H, ι) be a p-divisible group over OK with endomorphism structure for OF , where
we remind that OK is the valuation ring of a complete valued field extension (K, v) of Qp

containing a Galois closure of F over Qp. We will now define the Pappas-Rapoport polygon
of (H, ι). Note that htH = htHk ∈ dN, where Hk denotes the reduction of H to the
residue field k of OK ; thus, we may write htH = dn with n ∈ N. Set ωH,K := ωH ⊗OK

K
and observe that ι induces a map of Qp-algebras ι : F → EndK(ωH,K). Because K
contains a Galois closure of F over Qp, we have a decomposition of K-vector-spaces:

ωH,K =
⊕

τ : F →K

ωH,K,τ , (3.4)

given by ωH,K,τ = { w ∈ ωH,K | ∀a ∈ F : ι(a)(w) = τ(a)w } for each embedding τ of F
in K. Set rτ := dimK ωH,K,τ for every τ .

Remark 3.4. Recall from [Bi, Lemma 1.13] that we have an OF -equivariant exact
sequence of OK-modules:

0 −→ ωH −→ E −→ ω∨
HD −→ 0, (3.5)

where E is a free OF ⊗Zp OK-module of rank n and ω∨
HD := HomOK

(ωHD ,OK) carries
an OF -action induced naturally from ι. Write EK := E ⊗OK

K = ⊕
τ EK,τ in a similar

fashion as for ωH,K above. Since E is free of rank n over OF ⊗Zp OK , we have that
dimK EK,τ = n for every τ : F → K. Hence, because the K-vector-space ωH,K,τ injects
into EK,τ , we find that rτ = dimK ωH,K,τ ≤ n for all τ ’s.
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We may now set:

PR(H, ι)τ := (1, . . . , 1, 0, . . . , 0) ∈ Rn
+,

the number of 1’s being equal to rτ , for each τ : F → K. The Pappas-Rapoport polygon
of (H, ι) is defined to be:

PR(H, ι) := 1
d

∑
τ

PR(H, ι)τ ∈ Rn
+,

where τ ranges through the d embeddings of F in K. Equivalently, as a piecewise affine
linear function:

PR(H, ι) : x 7→ 1
d

∑
τ

min { x, rτ } , x ∈ [0, n].

Its end point is given by:

PR(H, ι)(n) = 1
d

∑
τ

rτ = 1
d

dimK ωH,K = dimH

d
.

Note that the above definition is invariant under base change of (H, ι) to the valuation
ring of a larger field K within our setup. Thus, one may define PR(H, ι) even if K does
not contain a Galois closure of F over Qp, namely as the Pappas-Rapoport polygon of
the base change of (H, ι) to the valuation ring of a sufficiently large finite field extension
of K. In addition, we did not really make use of the fact that k is perfect, so the Pappas-
Rapoport polygon is also defined without this assumption. All statements concerning
PR(H, ι) will then hold in this more general setup.

Remark 3.5. In the case that the valuation of K is discrete, the Pappas-Rapoport
polygon of an object (H, ι) ∈ p−divOK ,OF

was already considered in [Ma], although in
loc. cit. it is named “Hodge polygon” of (H, ι). Here, in accordance with the terminology
of [BH1], we choose to reserve the latter name for an invariant of objects over k. The
name “Pappas-Rapoport polygon” comes then from [BH1] as well and its use here is
motivated by the following observation.

For each embedding υ of F nr in K0, let τυ,1, . . . , τυ,e(F |Qp) be an ordering of the
embeddings τ : F → K which restrict to υ on F nr. Set then rυ,i := dimK ωH,K,τυ,i , with
notation as in (3.4), for every υ and 1 ≤ i ≤ e(F |Qp). Now, up to reversing the order of
the slopes in order to get a convex polygon, one finds that PR(H, ι) corresponds to the
“Pappas-Rapoport polygon” associated to the tuple µ := (rυ,i)υ,1≤i≤e(F |Qp) in [BH1, §1.2].

Remark 3.6. If F |Qp is unramified, the decomposition (3.4) for (H, ι) ∈ p−divOK ,OF

restricts to a decomposition of ωH into a direct sum of finite free OK-submodules, on
each of which OF acts via a single embedding of F = F nr in K0 ⊆ K (see (3.6) below).
The reduction of this to k recovers, via (3.1), the decomposition (3.2) relative to the
reduction (Hk , ι) of (H, ι) to k. Taking Remark 3.3 into consideration, we get that in
this case PR(H, ι) = Hdg(Hk , ι).

For a general extension F |Qp, we will see in the next section that one can still compare
the two polygons PR(H, ι) and Hdg(Hk , ι), see Proposition 3.8.

9



3.4 Comparison between Pappas-Rapoport and Hodge polygon

Let us keep the notation of the previous section, with (H, ι) ∈ p−divOK ,OF
and htH = nd.

Consider the OF -action induced by ι on ωH , a map of Zp-algebras ι : OF → EndOK
(ωH).

Looking at the restriction of ι to OF nr , we have a decomposition of finite free OK-modules:

ωH =
⊕

υ : F nr→K0

ωH,υ, (3.6)

where υ ranges through the f(F |Qp) embeddings of F nr in K0 and OF nr acts on ωH,υ

via υ : OF nr → W (k) ⊆ OK . Observe now that the OF -action ι restricts to each
component ωH,υ and the decomposition (3.4) restricts to:

ωH,υ ⊗OK
K =

⊕
τ |υ

ωH,K,τ , (3.7)

where τ |υ stands for the embeddings of F in K which agree with υ on F nr. Fix then
an ordering τυ,1, . . . , τυ,e(F |Qp) of the set { τ : F → K | τ |υ } for every υ : F nr → K0 and
consider the filtrations:

0 = ωυ,0 ⊆ ωυ,1 ⊆ · · · ⊆ ωυ,e(F |Qp) = ωH,υ (3.8)

given by the OK-submodules:

ωυ,i := ωH,υ ∩
i⊕

j=1
ωH,K,τυ,j

for 0 ≤ i ≤ e(F |Qp). In order to make use of these filtrations, we will need the first part
of the following lemma (the final statement will only be useful later on).

Lemma 3.7. Let M be a finitely generated and free OK-module, together with a map of
Zp-algebras ι : OF → EndOK

(M). Consider the decomposition of K-vector-spaces:

MK := M ⊗OK
K =

⊕
τ : F →K

MK,τ

given by MK,τ = { w ∈MK | ∀a ∈ F : ι(a)(w) = τ(a)w } for each embedding τ of F in
K, where ι is extended in the natural way to an F -action on MK . Then, for any
subset I ⊆ { τ : F → K } the OK-module:

MI := M ∩
⊕
τ∈I

MK,τ ⊆MK

is a direct summand of M , free of rank
∑

τ∈I dimK MK,τ . Moreover, setting:

ρI :=
∏
τ∈I

τ(π) ∈ OK ,

we have that ρIMI ⊆ ι(π)M .
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Proof. The inclusion M ⊆MK induces an injective map:

M/MI −→MK/
⊕
τ∈I

MK,τ
∼=
⊕
τ /∈I

MK,τ , (3.9)

ensuring that M/MI is a torsion free OK-module. Since OK is a valuation ring and
M/MI is finitely generated over it, it follows that M/MI is a free OK-module and, in
particular, projective. This proves that MI is a direct summand of M and, as such, it
is also torsion free and finitely generated over OK , hence a free OK-module. Now, the
inclusions MI ⊆

⊕
τ∈I MK,τ and (3.9) imply respectively that:

rkOK
MI ≤

∑
τ∈I

dimK MK,τ and rkOK
M/MI ≤

∑
τ /∈I

dimK MK,τ .

However, the left-hand sides of the above expressions sum to rkOK
M = dimK MK , which

also equals the sum of the right-hand sides. Thus, we actually have equality in both
expressions.

We prove the final statement by induction on the cardinality of I. If I is empty, then
MI = 0 and ρI = 1, so the assertion is clear. Assume now that I contains at least one
element and fix τ0 ∈ I. Set then I ′ := I \{ τ0 } and observe that MI′ = MI ∩

⊕
τ∈I′ MK,τ .

In particular, the inclusion MI ⊆
⊕

τ∈I MK,τ induces an injective map:

MI/MI′ −→
⊕
τ∈I

MK,τ/
⊕
τ∈I′

MK,τ
∼= MK,τ0 ,

ensuring that the OF -action induced by ι on MI/MI′ factors through τ0 : OF → OK .
Thus, for every element w ∈MI , we have that τ0(π)w and ι(π)(w) have the same image
in MI/MI′ , i.e. their difference lies in MI′ . By inductive hypothesis, then:

ρI′(τ0(π)w − ι(π)(w)) ∈ ι(π)M.

But this element can be rewritten as ρIw − ι(π)(ρI′w), so that ρIw belongs itself to
ι(π)M , proving the inductive step and hence the claimed statement.

Back to our discussion, the lemma implies that for every embedding υ of F nr in K0 the
filtration (3.8) of ωH,υ is byOK-direct-summands, with rkOK

ωυ,i/ωυ,i−1 = dimK ωH,K,τυ,i

for 1 ≤ i ≤ e(F |Qp). Furthermore, these filtrations are clearly OF -stable and the OF -
action induced on each graded piece ωυ,i/ωυ,i−1 is via τυ,i : OF → OK .

Let now (Hk , ι) denote the reduction of (H, ι) to k. Considering the OF -action induced
by ι on ωHk , or rather its restriction to OF nr , we have a decomposition of k-vector-spaces:

ωHk =
⊕

υ

ωHk ,υ, (3.10)

where υ ranges through the embeddings of F nr in K0 and OF nr acts on ωHk ,υ through
υ : OF nr →W (k)→ k (in fact, via (3.1) this recovers the decomposition (3.2) relative to
Hk). Note that (3.10) identifies OF -equivariantly with the reduction to k of (3.6). Then,
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putting together the previous observations, we have that for every υ the reduction to k
of (3.8) gives a filtration:

0 = ωυ,0,k ⊆ ωυ,1,k ⊆ · · · ⊆ ωυ,e(F |Qp),k = ωHk ,υ
∼= ωH,υ ⊗OK

k (3.11)

of ωHk ,υ by sub-k-vector-spaces satisfying the following conditions:

• ι(π)(ωυ,i,k) ⊆ ωυ,i−1,k for 1 ≤ i ≤ e(F |Qp), as the OF -action induced on the
quotient ωυ,i,k/ωυ,i−1,k is via τυ,i : OF → OK → k, which sends π to zero;

• dimk ωυ,i,k/ωυ,i−1,k = dimK ωH,K,τυ,i for 1 ≤ i ≤ e(F |Qp).

In other words, according to [BH1, Définition 2.2.1], the collection of the filtrations (3.11)
for varying υ yields a Pappas-Rapoport condition on (Hk , ι) for the tuple µ = (rυ,i)υ,i

defined by rυ,i := dimK ωH,K,τυ,i for all υ : F nr → K0 and 1 ≤ i ≤ e(F |Qp). Equivalently,
we have a Pappas-Rapoport condition for µ, in the sense of [BH1, Définition 1.2.1], on
the Dieudonné module (D(Hk), φHk ) of Hk , endowed with the OF -action corresponding
to ι. This allows us to deduce the next proposition from [BH1, Théorème 1.3.1] (after
reversing the order of the slopes of the polygons and taking the second observation of
Remark 3.5 into account).

Proposition 3.8 ([BH1], Théorème 1.3.1). Let (H, ι) be a p-divisible group over OK with
endomorphism structure for OF and denote by (Hk , ι) the reduction of H to k together
with the induced OF -action. Then:

Hdg(Hk , ι) ≤ PR(H, ι).

Remark 3.9. A closer look at the proof of [BH1, 1.3.1] shows that in fact, for (H, ι) ∈
p−divOK ,OF

and its reduction (Hk , ι) ∈ p−divk,OF
, we have:

Hdg(Hk , ι)υ ≤
1

e(F |Qp)
∑
τ |υ

PR(H, ι)τ

for all embeddings υ of F nr in K0. Consider now the limit case Hdg(Hk , ι) = PR(H, ι).
In the language of [BH1, Définition 3.1.1], this means that (Hk , ι) satisfies the generalised
Rapoport condition with respect to the tuple µ introduced above. Note that this is
equivalent to having an equality in all expressions above. Following then a similar
observation as in loc. cit., one finds that this condition is in turn equivalent to the fact
that for every υ the filtration (3.11) is given by:

ωυ,i,k = ωHk ,υ[πi] :=
{
w ∈ ωHk ,υ

∣∣∣ ι(πi)w = 0
}

for 1 ≤ i ≤ e(F |Qp).

3.5 The Harder-Narasimhan polygons

Let us recall from [Fa1] the definition of the Harder-Narasimhan polygon of a p-group C ∈
p−grOK

, which describes a certain filtration of C by finite locally free sub-group-schemes.
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After suitable renormalisation, this will allow us to attach similar invariants to objects of
p−grOK ,OF

and, passing to the limit, of p−divOK ,OF
.

First of all, to each nonzero object C ∈ p−grOK
is associated a value degC ∈ R,

called the degree of C (cf. [Fa1, §3]). Explicitely, if ωC has a presentation:

ωC
∼=

m⊕
i=1
OK/aiOK

for some m ∈ N and nonzero elements a1, . . . , am ∈ OK , then:

degC =
m∑

i=1
v(ai) = v(Fitt0 ωC).

The degree is additive in short exact sequences and satisfies the relation degC+degCD =
htC. One defines then the slope of C to be µ(C) := degC/htC ∈ R. By [Fa1, §4],
the category p−grOK

admits a Harder-Narasimhan formalism for the slope function µ.
More precisely, C is called semi-stable if for every nonzero subobject C ′ ⊆ C we have
µ(C ′) ≤ µ(C). In general, C possesses a unique Harder-Narasimhan filtration:

0 = C0 ⊊ C1 ⊊ · · · ⊊ Cr = C

in p−grOK
, with semistable graded pieces and µ(C1) > · · · > µ(C/Cr−1). The Harder-

Narasimhan polygon of C is defined to be:

HN(C) := (µ(C1)(ht C1), . . . , µ(C/Cr−1)(ht C/Cr−1)) ∈ Rht C
+ ,

where the superscripts denote the multiplicity of each slope. Note that HN(C)(htC) =
degC. Let us also remark that the Harder-Narasimhan filtration, and hence the associated
polygon, are invariant under base change of C to the ring of integers of a larger field K
within our setup.

Suppose now that C is endowed with endomorphism structure ι : OF → End(C) for
OF . Then, by [Fa1, Corollaire 10], the Harder-Narasimhan filtration is ι-stable. We
define the Harder-Narasimhan polygon of (C, ι) ∈ p−grOK ,OF

to be the piecewise affine
linear function:

HN(C, ι) : [0, htC/d] −→ R

x 7−→ 1
d

HN(C)(dx).

If (H, ι) is a p-divisible group over OK with endomorphism structure for OF , we may
consider the family of Harder-Narasimhan polygons of the objects (H[pi], ι) ∈ p−grOK ,OF

,
for i ≥ 1. In order to compare these among each other, we define the renormalised
Harder-Narasimhan polygons:

HNr(H[pi], ι) : [0, n] −→ R

x 7−→ 1
i

HN(H[pi], ι)(ix),
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where n = htH/d and i ≥ 1. It follows then from [Fa3, Théorème 1 and Théorème 7]
that the sequence of functions HNr(H[pi], ι) converges uniformly, for i → ∞, to a
piecewise affine linear, continuous, concave function HN(H, ι) : [0, n] → R, which is
equal to the infimum of the previous functions and satisfies HN(H, ι)(0) = 0 and
HN(H, ι)(n) = dimH/d. We recall that H (equivalently (H, ι)) is called of HN type if the
Harder-Narasimhan filtrations of H[pi], for i ≥ 1, form a filtration of H by sub-p-divisible
groups. By [Fa3, Proposition 7], this is equivalent to the fact that HN(H, ι) = HN(H[p], ι).

Note that for the definition of the above polygons we do not really need to assume
that K contains a Galois closure of F over Qp, nor that the residue field k of OK is
perfect. All statements concerning the Harder-Narasimhan polygons hold therefore in
this more general setup.

4 The integral Hodge polygon

4.1 The definition

Throughout this whole section, we let (H, ι) be a p-divisible group over OK with endomor-
phism structure for OF . We denote by (Hk , ι) the reduction of H to k together with the
induced OF -action and write htH = htHk = nd with n ∈ N. We now come to the defini-
tion of the integral Hodge polygon of (H, ι). Recall that we have a decomposition (3.6)
of finite free OK-modules:

ωH =
⊕

υ

ωH,υ,

where υ ranges through the f(F |Qp) embeddings of F nr in K0 and OF nr acts on ωH,υ

via υ : OF nr →W (k) ⊆ OK . Let [π] : ωH → ωH denote the endomorphism of ωH induced
by ι(π) and note that this restricts to each component ωH,υ. Because πe(F |Qp) equals p
times a unit in OF and ωH is torsion free, we have that [π] is an injective map. For every
embedding υ, then, since OK is a valuation ring, the endomorphism [π] : ωH,υ → ωH,υ

may be represented, with respect to suitable OK-bases, by a diagonal matrix with nonzero
entries aυ,1, . . . , aυ,rυ ∈ OK with v(aυ,1) ≥ · · · ≥ v(aυ,rυ ), where rυ = rkOK

ωH,υ; the
elements aυ,1, . . . , aυ,rυ are uniquely determined up to units of OK and can be found
unchanged even with a different choice of uniformiser π ∈ OF . Thus, we have an
isomorphism of OK-modules:

ωH,υ/[π]ωH,υ
∼=

rυ⊕
i=1
OK/aυ,iOK . (4.1)

We claim that this expression features at most n nontrivial summands. In order to see
this, it suffices to show that the dimension of the k-vector-space given by the reduction
along OK → k has dimension at most n. Note first that according to the decomposition
in (3.2), the identification (3.1) restricts to:

D(Hk)υ/φHkD(Hk)σ−1υ
∼= ωH,υ ⊗OK

k, (4.2)
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compatibly with the induced OF -action on both sides. In particular, ωH,υ ⊗OK
k

affords a surjection from D(Hk)υ, which we recall being a free module over WOF ,υ(k) =
OF ⊗OF nr ,υ W (k) of rank htHk/d = n. Quotienting by the action of π ∈ OF , then, we
find that (ωH,υ/[π]ωH,υ)⊗OK

k affords a surjection from a k-vector-space of dimension n,
proving the claim. This means that we may always write:

ω̄H,υ := ωH,υ/[π]ωH,υ
∼=

n⊕
i=1
OK/aυ,iOK (4.3)

by neglecting trivial summands from (4.1) or possibly setting aυ,i = 1 for i > rυ. Let
us remark that the last statement remains true even without the assumption that k is
perfect; in fact, in the argument for the previous claim one may pass to any perfect field
extension of k. We let:

Hdgint(H, ι)υ := (v(aυ,1), . . . , v(aυ,n)) ∈ Rn
+.

Note that the end point of Hdgint(H, ι)υ is:

Hdgint(H, ι)υ(n) =
n∑

i=1
v(aυ,i) = v(det([π]|ωH,υ)) = 1

e(F |Qp) rkOK
ωH,υ, (4.4)

the last equality due to the fact that πe(F |Qp) equals p times a unit in OF . More generally,
as a piecewise affine linear function, Hdgint(H, ι)υ : [0, n]→ R interpolates the following
values:

Hdgint(H, ι)υ(i) =
i∑

j=1
v(aυ,j) = v(Fitt0 ω̄H,υ)− v(Fitti ω̄H,υ), i ∈ { 0, . . . , n } ,

where Fitti ω̄H,υ denotes the i-th Fitting ideal (in this case principal) of the OK-
module ω̄H,υ. Observe that ω̄H,υ is a p-torsion OK-module. Thus, in the case that
the valuation of K is discrete, say of absolute ramification index eK , we have the
following alternative description:

Hdgint(H, ι)υ : x 7−→ 1
eK

eK∑
j=1

min
{
x, lg ω̄H,υ[ϖj ]/ω̄H,υ[ϖj−1]

}
, x ∈ [0, n],

where ϖ ∈ OK is a uniformiser (so that v(ϖ) = e−1
K ) and for 0 ≤ j ≤ eK :

ω̄H,υ[ϖj ] :=
{
w ∈ ω̄H,υ

∣∣∣ ϖjw = 0
}
.

We define the integral Hodge polygon of (H, ι) to be:

Hdgint(H, ι) := 1
f(F |Qp)

∑
υ

Hdgint(H, ι)υ ∈ Rn
+.
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Its end point is given by the average over υ of the equations (4.4):

Hdgint(H, ι)(n) = 1
f(F |Qp)

∑
υ

1
e(F |Qp) rkOK

ωH,υ = 1
d

rkOK
ωH = dimH

d
.

Note that the above definition is invariant under base change of (H, ι) to the valuation
ring of a larger field K within our setup. Moreover, it only makes use of the fact that k
contains kF , i.e. that K contains F nr, but not that it contains a whole Galois closure of F ,
nor that k is perfect. Thus, one may define Hdgint(H, ι) even without these assumptions,
possibly as the integral Hodge polygon of the base change of (H, ι) to the valuation ring
of a finite field extension of K whose residue field contains kF . All statements concerning
Hdgint(H, ι) will then hold in this more general setup.

Remark 4.1. Suppose that F |Qp is an unramified extension, so that p ∈ OF is a
uniformiser. In this case, we have that ωH,υ/[π]ωH,υ = ωH,υ/pωH,υ for every embedding υ
of F nr = F in K0. In particular, one sees that for (H, ι) ∈ p−divOK ,OF

:

Hdgint(H, ι)υ := (1, . . . , 1, 0, . . . , 0),

the number of 1’s being equal to rkOK
ωH,υ. By the identification (4.2), this number is

also equal to dimk D(Hk)υ/φHkD(Hk)σ−1υ. Thus, recalling the observation in Remark 3.3
and taking the average over υ, we obtain that in this case Hdgint(H, ι) = Hdg(Hk , ι).
Putting this together with the considerations of Remark (3.6), we conclude that if F |Qp

is unramified then Hdgint(H, ι) = Hdg(Hk , ι) = PR(H, ι).

Remark 4.2. Let H[π] denote the kernel of the endomorphism ι(π) : H → H, a closed
sub-group-scheme of H[p]. Note that ι(πe(F |Qp)−1) induces an epimorphism H[p]→ H[π],
so that the Hopf algebra of H[π] injects into that of H[p] and is therefore a torsion free
OK-module; since OK a valuation ring, it follows that H[π] is locally free over OK , i.e.
it is a p-group over OK . The OF -action on H clearly restricts to H[π]. However, since
by definition π acts trivially on this object, there is no loss of information in considering
H[π] equipped only with the restriction ιnr : OF nr → End(H[π]) of the induced action to
the unramified part. Observe now that we have an OF nr-equivariant identification:

ωH[π] ∼= ωH/[π]ωH . (4.5)

In particular, for (H, ι) ∈ p−divOK ,OF
the polygon Hdgint(H, ι) only depends on the

object (H[π], ιnr) ∈ p−grOK ,OF nr . In fact, if F |Qp is totally ramified, then Hdgint(H, ι) is
equal to the Hodge polygon of the p-group H[π] over OK , as defined by Fargues in [Fa1,
§8.2]. In general, Hdgint(H, ι) coincides with the Hodge polygon of the p-group with
unramified endomorphism structure (H[π], ιnr) over OK , as considered by Shen in [Sh,
Definition 3.8]. Here, we really want to view this polygon as an invariant of (H, ι), using
it to describe properties of the whole p-divisible group with endomorphism structure and
relating it to other invariants thereof.

16



4.2 Comparison with the Harder-Narasimhan polygons

Let us compare Hdgint(H, ι) with the Harder-Narasimhan polygons recalled in §3.5.
Consider the object (H[π], ιnr) ∈ p−grOK ,OF nr introduced in Remark 4.2. More generally,
for i ≥ 1 we can consider:

H[πi] := Ker(ι(πi) : H → H)

and similarly observe that this is a p-group over OK . For 1 ≤ j < i, then, we have exact
sequences:

0 −→ H[πj ] −→ H[πi] ι(π)j

−−−→ H[πi−j ] −→ 0. (4.6)

Since H[πe(F |Qp)] = H[p], an inductive reasoning shows that htH[π] = htH/e(F |Qp).
In particular, the function HN(H[π], ιnr) is defined on [0, n] and can be compared
with Hdgint(H, ι). In light of Remark 4.2, the following statement really concerns
(H[π], ιnr) ∈ p−grOK ,OF nr and, as such, it follows from [Sh, Proposition 3.10]. We will
anyway sketch its proof for completeness.

Proposition 4.3 ([Sh], Proposition 3.10). Let (H, ι) be a p-divisible group over OK with
endomorphism structure for OF . Then:

HN(H[π], ιnr) ≤ Hdgint(H, ι).

Proof. First, the OF nr-equivariant identification (4.5) implies:

Hdgint(H, ι)(n) = 1
f(F |Qp) degH[π] = HN(H[π], ιnr)(n).

Next, let H ′ ⊆ H[π] be a step of the Harder-Narasimhan filtration of H[π]; in particular,
H ′ is ιnr-stable. We have to check that:

degH ′

f(F |Qp) ≤ Hdgint(H, ι)
(

htH ′

f(F |Qp)

)
,

i.e. that:
degH ′ ≤

∑
υ

Hdgint(H, ι)υ

(
htH ′

f(F |Qp)

)
,

where υ ranges through the f(F |Qp) embeddings of F nr in K0. In fact, the inclusion
H ′ ⊆ H[π] induces a surjection:

ωH/[π]ωH
∼= ωH[π] −→ ωH′ ,

which splits into surjections ωH,υ/[π]ωH,υ → ωH′,υ for all υ’s. The result follows then
from basic properties of Fitting ideals with respect to exact sequences, together with
the observation that, for every υ : F nr → K0, the OK-module ωH′,υ is generated by
htH ′/f(F |Qp) elements (cf. the proof of [Sh, Proposition 3.10]).
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Corollary 4.4. Let (H, ι) be a p-divisible group over OK with endomorphism structure
for OF . Then:

HN(H[p], ι) ≤ Hdgint(H, ι).

In particular:
HN(H, ι) ≤ Hdgint(H, ι).

Proof. By repeated applications of [Fa1, Proposition 9] to the exact sequences (4.6) with
i = e(F |Qp), we find that HN(H[p], ι) ≤ HN(H[π], ιnr).

Remark 4.5. The previous corollary provides a sufficient condition for (H, ι) to be of
HN type, namely that Hdgint(H, ι) = HN(H, ι). Indeed, since HN(H[p], ι) is squeezed
between these two polygons, their equality implies that HN(H[p], ι) = HN(H, ι).

More specifically, if a break point of HN(H, ι) lies on Hdgint(H, ι), then the previous
corollary implies that it also lies on HN(H[p], ι). This is then sufficient to find an
ι-stable sub-p-divisible group of H corresponding to the break point at hand (cf. [Ma,
Corollary 3.4], at least if the valuation v is discrete).

Remark 4.6. One could look for a relation between the polygons HN(H[p], ι) and
Hdg(Hk , ι). This is in general hopeless, as the following example shows. Assume that
F |Qp is totally ramified of degree d = 2. Suppose moreover that htH = 4 = 2d, dimH = 2
and that, with notation as in §3.3, we have rτ = 1 for both embeddings τ : F → K. One
can attach to H two “primitive Hasse invariants” m,hasse ∈ [0, 1/2], such that the usual
Hasse invariant of H is given by ha(H) = 2hasse+(p+1)m ∈ [0, 1] (see [Bi, §1]). Assume
that ha(H) < 1/2 and p > 3. This ensures the existence of the “canonical subgroup” of
H[p] and hence that HN(H[p], ι)(1) = 1− ha(H)/2 (cf. [Fa2, Théorème 6]). Note that
under our assumptions we have 3/4 < 1− ha(H)/2 < 1. Now, by [Bi, Proposition 1.6]
we know that m = 0 if and only if ωH is free as an OF ⊗Zp OK-module. Thus, if m = 0
the polygon Hdg(Hk , ι) has slopes (1, 0) and is therefore above HN(H[p], ι), whereas if
m > 0 then Hdg(Hk , ι) = (1/2, 1/2) is below HN(H[p], ι).

4.3 Comparison with the Pappas-Rapoport polygon

We will now compare the integral Hodge polygon of (H, ι) ∈ p−divOK ,OF
with its

Pappas-Rapoport polygon. For this purpose, we are going to need the following lemma.

Lemma 4.7. Let M ′ →M be an injective homomorphism of finitely presented torsion
OK-modules and suppose we are given presentations:

M ∼=
m⊕

j=1
OK/ajOK , M ′ ∼=

m′⊕
j=1
OK/bjOK , (4.7)

for some m,m′ ∈ N and a1, . . . , am, b1, . . . , bm′ ∈ OK \{ 0 } with v(a1) ≥ · · · ≥ v(am) and
v(b1) ≥ · · · ≥ v(bm′). Then, for all j = 1, . . . ,min {m,m′ } we have that v(bj) ≤ v(aj)
and, if m′ > m, then for all j = m+ 1, . . . ,m′ we have that v(bj) = 0.
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Proof. Note first that by possibly adding trivial summands to either of the two presenta-
tions, we reduce to the case that m′ = m.

Let then e1, . . . , em be the standard basis of M ′ with respect to the given presenta-
tion. In particular, if these elements satisfy a linear equation ∑m

j=1 cjej = 0 for some
c1, . . . , cm ∈ OK , then v(bj) ≤ v(cj) for all j = 1, . . . ,m.

Now, since M is an a1-torsion module and M ′ → M is injective, we have that
a1e1 = 0, so that v(b1) ≤ v(a1). Fix then j ∈ { 2, . . . ,m } and note that the images of
aje1, . . . , ajej in M are all contained in the submodule ⊕j−1

l=1 OK/alOK ⊆M , because the
complementary submodule ⊕m

l=j OK/alOK is aj-torsion. Choosing lifts via the standard
surjection Oj−1

K →
⊕j−1

l=1 OK/alOK , we obtain j elements of a free OK-module of rank
j − 1. In particular, these elements must satisfy a nontrivial linear equation, where we
may assume that at least one coefficient is a unit. By projecting this equation back to⊕j−1

l=1 OK/alOK and due to the injectivity of M ′ → M , we find that ∑j
k=1 ckajek = 0

for some c1, . . . , cj ∈ OK , with ck0 ∈ O
×
K for some k0 ∈ { 1, . . . , j }. It follows that

v(bk0) ≤ v(ck0aj) = v(aj) and hence that v(bj) ≤ v(bk0) ≤ v(aj). This completes the
proof of the lemma.

We now have all the tools that we need in order to prove the following statement.

Theorem 4.8. Let (H, ι) be a p-divisible group over OK with endomorphism structure
for OF . Then:

Hdgint(H, ι) ≤ PR(H, ι).

Proof. First of all, we have that Hdgint(H, ι)(n) = dimH/d = PR(H, ι)(n). Next, recall
that we have decompositions (3.6), respectively (3.4):

ωH =
⊕

υ : F nr→K0

ωH,υ, ωH,K := ωH ⊗OK
K =

⊕
τ : F →K

ωH,K,τ

and that for every υ : F nr → K0 the latter equation restricts to (3.7):

ωH,υ,K := ωH,υ ⊗OK
K =

⊕
τ |υ

ωH,K,τ ,

where τ |υ stands for the embeddings of F in K which agree with υ on F nr. By taking
the average over the f(F |Qp) embeddings υ of F nr in K0, it suffices to prove that for
each of these υ and 0 ≤ i ≤ n we have:

Hdgint(H, ι)υ(i) ≤ 1
e(F |Qp)

∑
τ |υ

min { i, rτ } ,

where rτ = dimK ωH,K,τ . Fix then υ : F nr → K0 and write:

ω̄H,υ := ωH,υ/[π]ωH,υ
∼=

n⊕
i=1
OK/aiOK
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with a1, . . . , an ∈ OK \ { 0 }, v(a1) ≥ · · · ≥ v(an), as in (4.3). We need to show that for
0 ≤ i ≤ n and any subset I ⊆ { τ : F → K | τ |υ } we have:

i∑
j=1

v(aj) ≤ 1
e(F |Qp)

∑
τ /∈I

rτ + i|I|

 ,
where |I| denotes the cardinality of I. So we fix i and I as above and consider the
OK-module:

ωI := ωH,υ ∩
⊕
τ∈I

ωH,K,τ ⊆ ωH,υ,K .

By Lemma 3.7, this is a direct summand of ωH,υ, free of rank rI := ∑
τ∈I rτ . Moreover,

because [π] : ωH,υ → ωH,υ restricts to an injective endomorphism of ωI and OK is a
valuation ring, we may write:

ω̄I := ωI/[π]ωI
∼=

rI⊕
j=1
OK/bjOK

for some nonzero elements b1, . . . , brI ∈ OK with v(b1) ≥ · · · ≥ v(brI ). The second
assertion of Lemma 3.7, together with the fact that [π]ωH,υ ∩ ωI = [π]ωI , tells us that ω̄I

is ρI -torsion, where ρI = ∏
τ∈I τ(π) ∈ OK . In other words:

v(bj) ≤ v(ρI) = |I|
e(F |Qp) (4.8)

for all j = 1, . . . , rI . Note that the inclusion ωI ⊆ ωH,υ induces an injective map ω̄I →
ω̄H,υ. This, by Lemma 4.7, implies that v(bj) ≤ v(aj) for all j = 1, . . . ,min { n, rI } and,
if rI > n, then v(bj) = 0 for all j = n+ 1, . . . , rI . In particular:

rI∑
j=i+1

v(bj) ≤
n∑

j=i+1
v(aj). (4.9)

Finally, because πe(F |Qp) equals p times a unit in OF , we have:
rI∑

j=1
v(bj) = v(det([π]|ωI)) = 1

e(F |Qp) rkOK
ωI = rI

e(F |Qp) .

This allows us to rewrite:
i∑

j=1
v(aj) = Hdgint(H, ι)υ(n)−

n∑
j=i+1

v(aj)

= 1
e(F |Qp) rkOK

ωH,υ −
n∑

j=i+1
v(aj)

= 1
e(F |Qp)

∑
τ /∈I

rτ +
rI∑

j=1
v(bj)−

n∑
j=i+1

v(aj).
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But using first (4.9) and then (4.8), we see that:

rI∑
j=1

v(bj)−
n∑

j=i+1
v(aj) ≤

rI∑
j=1

v(bj)−
rI∑

j=i+1
v(bj) =

min{ i,rI }∑
j=1

v(bj) ≤ i|I|
e(F |Qp) ,

thus concluding the proof of the theorem.

Combining the above statement with Corollary 4.4 we obtain the following inequality,
which generalises [Ma, Proposition 2.14] beyond the case when the valuation v is discrete
(note that in loc. cit. the Hodge polygon of an object (H, ι) ∈ p−divOK ,OF

refers to what
we call here the Pappas-Rapoport polygon PR(H, ι), as already observed in Remark 3.5).

Corollary 4.9. Let (H, ι) be a p-divisible group over OK with endomorphism structure
for OF . Then:

HN(H[p], ι) ≤ PR(H, ι).

Consider now the limit case when the integral Hodge polygon is equal to the Pappas-
Rapoport polygon. It turns out that this situation is also detected by the Hodge polygon
in special fibre.

Proposition 4.10. Let (H, ι) be a p-divisible group over OK with endomorphism structure
for OF and denote by (Hk , ι) the reduction of H to k together with the induced OF -action.
The equality Hdgint(H, ι) = PR(H, ι) is equivalent to Hdg(Hk , ι) = PR(H, ι).

Proof. Let us recover the same notation as in the previous proof and set:

PR(H, ι)υ := 1
e(F |Qp)

∑
τ |υ

PR(H, ι)τ

for every embedding υ of F nr in K0. Note that the argument for the previous theorem
shows that in fact Hdgint(H, ι)υ ≤ PR(H, ι)υ for every υ. Together with Remark 3.9, this
allows us to reduce to proving that for every υ, the equality Hdgint(H, ι)υ = PR(H, ι)υ

is equivalent to Hdg(Hk , ι)υ = PR(H, ι)υ. Fix then υ : F nr → K0 and, for τ |υ, order the
elements rτ = dimK ωH,K,τ as r1 ≥ r2 ≥ · · · ≥ re, where e := e(F |Qp). This gives an
ordering τ1, . . . , τe of the set { τ : F → K | τ |υ }. Recall now from §3.4 that from this we
can define an OF -stable filtration (3.8):

0 = ωυ,0 ⊆ ωυ,1 ⊆ · · · ⊆ ωυ,e = ωH,υ (4.10)

by OK-direct-summands, with rkOK
ωυ,i/ωυ,i−1 = ri for 1 ≤ i ≤ e and OF -action acting

via τi on each graded piece ωυ,i/ωυ,i−1. Choosing then an OK-basis of ωH,υ adapted to
this filtration, we may write [π] : ωH,υ → ωH,υ as a matrix:

P =


τ1(π)Ir1 A1 . . . ∗

0 τ2(π)Ir2
. . . ...

... . . . . . . Ae−1
0 . . . 0 τe(π)Ire

 ,
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where, for m ∈ N, Im denotes the identity matrix of rank m. Thus, for 1 ≤ i ≤ e− 1, Ai

is a ri × ri+1-matrix. We will prove that both conditions in the statement are equivalent
to the fact that for all i = 1, . . . , e− 1 the reduction Āi of the matrix Ai along OK → k
has rank ri+1.

Let us first prove the equivalence of the last assertion with Hdg(Hk , ι)υ = PR(H, ι)υ.
Consider the filtration 0 = ωυ,0,k ⊆ ωυ,1,k ⊆ · · · ⊆ ωυ,e,k = ωH,υ ⊗OK

k obtained as the
reduction to k of (4.10) and note, recalling the discussion in §3.4, that the action of π
induces maps ωυ,i+1,k/ωυ,i,k → ωυ,i,k/ωυ,i−1,k for 1 ≤ i ≤ e − 1. In fact, each of these
maps can be represented respectively by the matrix Āi. Now, Āi having rank ri+1 for
all i = 1, . . . , e − 1 is equivalent to all these maps being injective. This, in turn, is
realised if and only if ωυ,i,k is equal to the ι(π)i-torsion submodule of ωH,υ ⊗OK

k for all
i = 1, . . . , e. However, as observed in Remark 3.9, this last condition is equivalent to
Hdg(Hk , ι)υ = PR(H, ι)υ.

Assume now that Hdgint(H, ι)υ = PR(H, ι)υ. Looking at the number of nonzero
entries of both polygons, we find on one side rkOK

ωH,υ minus the rank of the reduction P̄
of the matrix P to k and on the other side the number r1. Since these must be equal and
rkOK

ωH,υ = ∑e
i=1 ri, it follows that the rank of P̄ is equal to r2 + · · ·+ re. Now, because

the blocks along the diagonal of P reduce to zero, this implies that for 1 ≤ i ≤ e − 1
the rank of Āi is maximal, hence equal to ri+1. Conversely, assume that the rank of Āi

is equal to ri+1 for all 1 ≤ i ≤ e − 1. We will compute the polygon Hdgint(H, ι)υ by
induction on e, where e is seen simply as the number of diagonal blocks of P . The cases
e = 1, 2 are easily done. Let then e ≥ 3 and assume that the result is true for e − 1.
Let ϖ ∈ OK be an element of valuation 1/e, so that v(ϖ) = v(τi(π)) for any i. Then,
applying the inductive hypothesis to the restriction of [π] to ωυ,e−1 (i.e. considering the
top left submatrix of P containing the first e− 1 diagonal blocks), one can make a change
of bases such that the matrix P transforms to:

Is0 0 . . . 0 B0

0 ϖIs1
. . . ... B1

... . . . . . . 0
...

... . . . ϖe−1Ise−1 Be−1
0 . . . . . . 0 τe(π)Ire


,

where s0 = r2 + · · ·+ re−1, s1 = r1 − r2, . . . , se−2 = re−2 − re−1, se−1 = re−1. It is also
possible to do this in such a way that the reduction of the matrix Be−1 along OK → k
has the same rank as Āe−1, that is, re. Up to a further change of bases, one can then
reduce to the case where:

Be−1 =
(
Ire

0

)
, the zero block having size (re−1 − re)× re,

and Bi = 0 for 0 ≤ i ≤ e − 2. By an explicit computation, one finally finds that
Hdgint(H, ι)υ = PR(H, ι)υ.
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Remark 4.11. Concerning a direct comparison between the integral Hodge polygon of
(H, ι) ∈ p−divOK ,OF

and the Hodge polygon of its reduction to k, the above proposition
is unluckily the best that one can obtain, unless (H, ι) is “π-diagonalisable” (see §4.6,
in particular Remark 4.19). In general, we will see in §5.2 that the two polygons are
unrelated.

4.4 Behaviour with respect to Cartier duality

Consider the Cartier dual HD of the p-divisible group H over OK . It carries an OF -
action ιD : OF → End(HD) induced by ι and functoriality of Cartier duality. Then, the
integral Hodge polygon of (HD, ιD) ∈ p−divOK ,OF

is related to Hdgint(H, ι) as in the
following statement.

Proposition 4.12. Let (H, ι) be a p-divisible group over OK with endomorphism structure
for OF and write htH = dn with n ∈ N. Let υ be an embedding of F nr in K0. If
Hdgint(H, ι)υ = (λυ,1, . . . , λυ,n) ∈ Rn

+, then Hdgint(HD, ιD)υ = (1 − λυ,n, . . . , 1 − λυ,1).
Thus, if Hdgint(H, ι) = (λ1, . . . , λn) ∈ Rn

+, then Hdgint(HD, ιD) = (1− λn, . . . , 1− λ1).

Proof. With notation as in (3.6), note that the exact sequence (3.5) restricts to an
OF -equivariant exact sequence of OK-modules:

0 −→ ωH,υ −→ Eυ −→ ω∨
HD,υ −→ 0,

where Eυ is a free OF ⊗OF nr ,υ OK-module of rank n and ω∨
HD,υ

= HomOK
(ωHD,υ,OK)

carries the OF -action induced naturally from that on ωHD,υ. Since ωH,υ ∩ (π ⊗ 1)Eυ =
[π]ωH,υ, one deduces an exact sequence:

0 −→ ωH,υ/[π]ωH,υ −→ (OK/pOK)n −→ ω∨
HD,υ/[π]∨ω∨

HD,υ −→ 0,

where [π]∨ denotes the endomorphism of ω∨
HD,υ

given by the action of π. Observe
that if [π] : ωHD,υ → ωHD,υ is represented by a certain matrix with respect to two
OK-bases of ωHD,υ, then [π]∨ may be represented by the transpose of this matrix.
In particular, if we have a presentation of ωHD,υ/[π]ωHD,υ as in (4.3), which is what
defines Hdgint(HD, ιD)υ, then we may find the same presentation for ω∨

HD,υ
/[π]∨ω∨

HD,υ
.

The result can now be deduced by the following consideration. Let N ⊆ On
K denote

the preimage of ωH,υ/[π]ωH,υ via the standard surjection On
K → (OK/pOK)n. Then,

we have a chain of inclusions pOn
K ⊆ N ⊆ On

K with N/pOn
K
∼= ωH,υ/[π]ωH,υ and

On
K/N

∼= ω∨
HD,υ

/[π]∨ω∨
HD,υ

.

4.5 Behaviour with respect to subobjects

Given (H, ι) ∈ p−divOK ,OF
and an ι-stable sub-p-divisible group H ′ ⊆ H, we would like

to understand what we can say about the integral Hodge polygon of H ′ (equipped with
the induced OF -action) in comparison to Hdgint(H, ι). For this, we need a dual version
of Lemma 4.7.
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Lemma 4.13. Let M → M ′ be a surjective homomorphism of finitely presented tor-
sion OK-modules and suppose we are given presentations as in (4.7). Then, the same
conclusions as in Lemma 4.7 hold.

Proof. For any finitely presented torsion OK-module N , we define a new OK-module:

N∗ := HomOK
(N,K/OK).

Note that if N = OK/aOK with a ∈ OK nonzero (i.e. if N is cyclic), then N∗ ∼= OK/aOK ,
the element 1 + aOK ∈ OK/aOK corresponding to the map defined by 1 + aOK 7→
a−1 +OK . In general, if N has a certain presentation as direct sum of cyclic modules,
then we can present N∗ in the same way.

Now, our surjective map M → M ′ gives rise to an injection M ′∗ → M∗. Since, as
observed above, M ′∗ and M∗ can be presented in the same way as M ′ and M respectively,
we are then reduced to the statement of Lemma 4.7.

Suppose now that we have an ι-stable sub-p-divisible group H ′ of H. Write htH ′ = dn′

with n′ ∈ N and let ι′ denote the restriction of ι to H ′. The inclusion H ′ ⊆ H induces
an OF -equivariant surjective map ωH → ωH′ . According to the decomposition (3.6),
this map splits as a direct sum of surjections ωH,υ → ωH′,υ, with υ ranging through
the embeddings of F nr in K0. Quotienting by the action of π, we obtain a surjective
map ω̄H,υ → ω̄H′,υ for each υ, with notation as in (4.3). Applying now the previous lemma,
we deduce that for every i = 1, . . . , n′ the slope of Hdgint(H ′, ι′)υ on the interval [i− 1, i]
is less than or equal to the slope of Hdgint(H, ι)υ on the same interval. Taking the average
over υ, we find a similar statement for the full integral Hodge polygons Hdgint(H ′, ι′) and
Hdgint(H, ι). In particular, the end point (n′,dimH ′/d) of Hdgint(H ′, ι′) lies on or below
Hdgint(H, ι). In fact, if this point lies on Hdgint(H, ι), then Hdgint(H ′, ι′) is forced to be
equal to the restriction of Hdgint(H, ι) to [0, n′]. Note that this is for instance the case if
H ′ is the subobject corresponding to a break point of HN(H, ι) lying on Hdgint(H, ι), as
in Remark 4.5.

Let us sum up the above conclusions in the following proposition.

Proposition 4.14. Let (H, ι) be a p-divisible group over OK with endomorphism struc-
ture for OF , let H ′ ⊆ H be an ι-stable sub-p-divisible group, write htH ′ = dn′ with
n′ ∈ N and let ι′ denote the restriction of ι to H ′. Then, for every i = 1, . . . , n′ the
slope of Hdgint(H ′, ι′) on [i− 1, i] is at most the slope of Hdgint(H, ι) on the same inter-
val. Moreover, if (n′, dimH ′/d) lies on Hdgint(H, ι), then Hdgint(H ′, ι′) is equal to the
restriction of Hdgint(H, ι) to [0, n′].

Remark 4.15. Consider the situation of the proposition just stated and let H ′′ be the
quotient of H by H ′; it has an induced OF -action, which we denote by ι′′. Then, arguing
by duality, we see that for every i = 1, . . . , n− n′ the slope of Hdgint(H ′′, ι′′) on [i− 1, i]
is at least the slope of Hdgint(H, ι) on [n′ + i− 1, n′ + i]. Moreover, if (n′, dimH ′/d) lies
on Hdgint(H, ι), then Hdgint(H ′′, ι′′) is equal to the restriction of Hdgint(H, ι) to [n′, n],
up to a shift of coordinates setting the origin in (n′,dimH ′/d).
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4.6 The π-diagonalisable case

In this section we are going to study a special case of p-divisible groups over OK with
endomorphism structure for OF , defined as follows.

Definition 4.16. The object (H, ι) ∈ p−divOK ,OF
is called π-diagonalisable if the

endomorphism [π] of the free OK-module ωH is diagonalisable.

Remark 4.17. Recall that K is assumed to contain a Galois closure of F over Qp.

1. If [π] : ωH → ωH is diagonalisable, then the eigenspace decomposition of ωH must
recover (3.4) after inverting p, hence each eigenspace of ωH is contained in a
corresponding ωH,K,τ ⊆ ωH ⊗OK

K. In particular, we deduce that [π] : ωH → ωH

is diagonalisable if and only if the decomposition (3.4) restricts to:

ωH =
⊕

τ

(ωH ∩ ωH,K,τ ) (4.11)

(in general we only have a containment relationship). This also means that for
(H, ι) ∈ p−divOK ,OF

the notion of being π-diagonalisable does not actually depend
on the choice of the uniformiser π ∈ OF .

2. If F |Qp is unramified, then every object (H, ι) ∈ p−divOK ,OF
is π-diagonalisable. In

general, using (3.6), the π-diagonalisability reduces to a condition on the restrictions
of [π] to ωH,υ for each υ : F nr → K0. Observe now that if [π] : ωH → ωH is
diagonalisable, then its eigenvalues belong to { τ(π) ∈ OK | τ : F → K }, so they
are all elements of valuation 1/e(F |Qp). Thus, if (H, ι) is π-diagonalisable, then
for every υ : F nr → K0 we have:

Hdgint(H, ι)υ =
(

1
e(F |Qp) , . . . ,

1
e(F |Qp) , 0, . . . , 0

)
,

the number of nonzero entries being equal to rkOK
ωH,υ; in particular, rkOK

ωH,υ ≤
n = htH/d for each υ. In this sense, the polygons Hdgint(H, ι)υ give a measure of
the obstruction to the diagonalisability of the endomorphism [π] : ωH → ωH .

3. A converse to the statement above is false in general. Let for instance F = Qp(π)
with π2 = p = 2. Consider then a p-divisible group H over OK of height 4
and dimension 2, endowed with an OF -action ι : OF → End(H) such that the
endomorphism [π] of ωH induced by ι(π) is given, with respect to some OK-
basis (e1, e2), by a matrix: (√

2 c

0 −
√

2

)

with c ∈ OK satisfying 1/2 ≤ v(c) < 3/2. Now, because [π](e1) =
√

2e1 and
[π](e2) = −

√
2(e2 − c/

√
2e1), we have that Hdgint(H, ι) = (1/2, 1/2). However, if

we denote by τ+ and τ− the two embeddings of F in K, defined by τ+(π) =
√

2
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and τ−(π) = −
√

2, then we see that ωH ∩ ωH,K,τ+ = OK · e1 and ωH ∩ ωH,K,τ− =
OK · (e1 − 2

√
2/ce2), which together do not span the whole ωH . Note that in this

example F |Qp is a wildly ramified extension. It turns out that if we rule out this
possibility, then the properties deduced in part (2) of this remark characterise the
π-diagonalisability completely.

Proposition 4.18. Assume that F |Qp is tamely ramified and let (H, ι) be a p-divisible
group over OK with endomorphism structure for OF . Write htH = dn with n ∈ N and
consider the decomposition ωH = ⊕

υ ωH,υ as in (3.6). Then, (H, ι) is π-diagonalisable
if and only if for every υ we have that rkOK

ωH,υ ≤ n and:

Hdgint(H, ι)υ =
(

1
e(F |Qp) , . . . ,

1
e(F |Qp) , 0, . . . , 0

)
, (4.12)

the number of nonzero entries being equal to rkOK
ωH,υ.

Proof. One direction of the double implication is the content of part (2) of the remark
above. For the other direction, assume that for every embedding υ : F nr → K0 we have
that rυ := rkOK

ωH,υ ≤ n and Hdgint(H, ι)υ satisfies the formula in the statement, with
as many 1/e(F |Qp) entries as rυ. By the first part of Remark 4.17, it suffices to prove
that (3.4) restricts to ωH = ⊕

τ (ωH ∩ ωH,K,τ ) or, equivalently, that for each υ we have:

ωH,υ =
⊕
τ |υ

(ωH ∩ ωH,K,τ ),

where τ |υ denotes the embeddings τ : F → K which agree with υ on F nr. Fix then
υ : F nr → K0 and note that for every τ |υ, by Lemma 3.7 the OK-module ωH ∩ ωH,K,τ is
a direct summand of ωH,υ, free of rank dimK ωH,K,τ . We set:

ω̃H,τ := (ωH ∩ ωH,K,τ )⊗OK
k ⊆ ωH,υ ⊗OK

k.

By Nakayama’s lemma, it is enough to show that ωH,υ ⊗OK
k is equal to the sum over

τ |υ of the sub-k-vector-spaces ω̃H,τ . However, since:∑
τ |υ

dimk ω̃H,τ =
∑
τ |υ

dimK ωH,K,τ = rυ = dimk(ωH,υ ⊗OK
k),

the claim is equivalent to the fact that, for varying τ |υ, the ω̃H,τ ’s have pairwise intersec-
tion 0.

In order to prove this, recall that because F |Qp is tamely ramified, we may choose
the uniformiser π of OF in such a way that πe(F |Qp) ∈ F nr. Then, the elements τ(π)
for τ |υ are exactly the different e(F |Qp)-th roots of υ(πe(F |Qp)) in K. Thus, fixing one
embedding τ0 : F → K with τ0|υ, we may write { τ : F → K | τ |υ } = {τ0, . . . , τe(F |Qp)−1}
with τi(π) = ζiτ0(π), where ζ ∈ OK is a primitive e(F |Qp)-th root of 1. Now, by
assumption the endomorphism [π] : ωH,υ → ωH,υ may be represented, with respect to
suitable OK-bases, by a diagonal matrix with nonzero entries a1, . . . , arυ ∈ OK all
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of valuation 1/e(F |Qp). By rescaling the elements of one of the two bases by the
appropriate units of OK , we may even represent [π] by a scalar matrix of coefficient any
element a ∈ OK with v(a) = 1/e(F |Qp); let us take a = τ0(π). This allows us to write
[π] = τ0(π)ψ with ψ an invertible endomorphism of ωH,υ. Let ψ̄ denote the reduction of ψ
to ωH,υ ⊗OK

k. Note at this point that for every i = 0, . . . , e(F |Qp)− 1, the restriction of
[π] to ωH∩ωH,K,τi ⊆ ωH,υ coincides with the multiplication by τi(π), hence the restriction
of ψ to the same submodule coincides with the multiplication by τi(π)/τ0(π) = ζi. This,
in turn, implies that the restriction of ψ̄ to ω̃H,τ equals the multiplication by the image ζ̄i

of ζi in k. However, since e(F |Qp) is coprime to p, the elements ζ̄i ∈ k are distinct for
i = 0, . . . , e(F |Qp)− 1, ensuring that the sub-vector-spaces ω̃H,τ0 , . . . , ω̃H,τe(F |Qp)−1 have
pairwise intersection 0. This concludes the proof of the proposition.

Remark 4.19. Write ωH = ⊕
υ ωH,υ as in (3.6). Let then υ be an embedding of

F nr in K0 and suppose that rkOK
ωH,υ ≤ n. We claim that if Hdgint(H, ι)υ satisfies the

formula (4.12), then the same holds for Hdg(Hk , ι)υ. In particular, if (H, ι) ∈ p−divOK ,OF

is π-diagonalisable, then taking into consideration the second part of Remark 4.17, we
have that for every υ : F nr → K0:

Hdg(Hk , ι)υ =
(

1
e(F |Qp) , . . . ,

1
e(F |Qp) , 0, . . . , 0

)
= Hdgint(H, ι)υ

and ultimately Hdg(Hk , ι) = Hdgint(H, ι).
To prove the claim, recall first the OF -equivariant identification (4.2):

D(Hk)υ/φHkD(Hk)σ−1υ
∼= ωH,υ ⊗OK

k,

where the left-hand side is part of the decomposition (3.2). Observe next, as in the
previous proof, that by assumption (and up to base changing to the ring of integers of
a suitable finite field extension of K) the restriction of [π] : ωH → ωH to ωH,υ can be
expressed as the multiplication by an element of OK of valuation 1/e(F |Qp), composed
with an invertible endomorphism. Now, the reduction of this map to ωH,υ ⊗OK

k is zero.
Thus, given the above identification, we have that D(Hk)υ/φHkD(Hk)σ−1υ is π⊗1-torsion
as a module over WOF ,υ(k) = OF ⊗OF nr ,υ W (k), and this proves the claim.

The converse to the statement which we just showed is false in general. Consider again
the case F = Qp(π) with π2 = p (for any p) and assume that K contains an element c
with 0 < v(c) < 1/2. Let then (H, ι) ∈ p−divOK ,OF

with htH = 4, dimH = 2 and such
that [π] : ωH → ωH is given, with respect to some OK-basis (e1, e2), by a matrix:(√

p c
0 −√p

)
.

Then, because the reduction of this matrix to k is zero, we have that Hdg(Hk , ι) =
(1/2, 1/2). However, over OK we see that [π](e2) = c(e1−

√
p/ce2) and [π](e1−

√
p/ce2) =

p/ce2, hence Hdgint(H, ι) = (1− v(c), v(c)) ̸= (1/2, 1/2).
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The case of OF -modules. As examples of π-diagonalisable p-divisible groups over OK

with endomorphism structure for OF , we should mention a particularly relevant class of
objects defined as follows. Fix an embedding τ0 : F → K. The object (H, ι) ∈ p−divOK ,OF

is called a p-divisible OF -module if the OF -action induced by ι on ωH is via τ0 : OF → OK .
In this case, the decomposition (3.4) reduces to ωH,K = ωH,K,τ0 , so that the equality
in (4.11) is clearly satisfied. In fact, the previous formulas simplify considerably for
p-divisible OF -modules. First of all, we have that dimH ≤ n = htH/d by Remark 3.4.
Furthermore, the polygons Hdgint(H, ι)υ are zero for all embeddings υ : F nr → K0 except
for the one given by the restriction of τ0. Thus:

Hdgint(H, ι) = 1
f(F |Qp)

(
1

e(F |Qp) , . . . ,
1

e(F |Qp
, 0, . . . , 0

)
=
(1
d
, . . . ,

1
d
, 0, . . . , 0

)
,

the number of nonzero entries being equal to dimH. By Remark 4.19, a similar situation
holds for the polygons Hdg(Hk , ι)υ and Hdg(Hk , ι). Finally, note that even the Pappas-
Rapoport polygon of (H, ι) has only slopes 1/d and 0, so that in the end:

Hdgint(H, ι) = Hdg(Hk , ι) = PR(H, ι) =
(1
d
, . . . ,

1
d
, 0, . . . , 0

)
.

In particular, p-divisible OF -modules are also an example of the special case considered
in Proposition 4.10.

5 The integral Hodge polygon in families

5.1 Continuity of the integral Hodge polygon

In this section, we let E be a complete valued field extension of Qp and denote by
OE its valuation ring. We assume that E contains F nr, although we do not fix
an embedding. Let ϖ ∈ OE be a pseudouniformiser. For r, s ∈ N, we denote by
OE{S1, . . . , Sr} the ϖ-adic completion of OE [S1, . . . , Sr] and, if E is discretely val-
ued, we denote by OE{S1, . . . , Sr}[[T1, . . . , Ts]] the (ϖ,T1, . . . , Ts)-adic completion of
OE [S1, . . . , Sr, T1, . . . , Ts]. Recall that these rings have a description in terms of (con-
verging) power series, in particular they do not depend on the choice of ϖ.

Let now X be a formal scheme over Spf OE and consider the following two situations.

(A) X is locally finitely presented over OE , i.e. it is a locally finite union of open affine
formal subschemes, say Spf Ai, with each Ai a topologically finitely presented
OE-algebra, that is, an OE-algebra of the form OE{S1, . . . , Sr}/I for some r ∈ N
and I ⊆ OE{S1, . . . , Sr} a finitely generated ideal.

(B) E is discretely valued and X is a special formal scheme over Spf OE , i.e. it is a locally
finite union of open affine formal subschemes, say Spf Ai, with each Ai a special
OE-algebra, that is, an OE-algebra of the form OE{S1, . . . , Sr}[[T1, . . . , Ts]]/I for
some r, s ∈ N and I ⊆ OE{S1, . . . , Sr}[[T1, . . . , Ts]] a finitely generated ideal. This
notion can also be found in the literature under the name of locally formally of
finite type (without the locally finiteness assumption).
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We let Xan denote the generic fibre of X as a Berkovich E-analytic space (see [Be2, §1] for
the construction in case (A) and [Be3, §1] in case (B)). Let us remark that the topological
space underlying Xan is Hausdorff and paracompact.

Observe that in both situations considered above, the formal scheme X is adic. If
I ⊆ OX is an ideal of definition of finite type, where OX is the structure sheaf of X, we
let Xi denote the scheme with the same underlying topological space as X and structure
sheaf OX/I

i+1, for i ≥ 0. Then, X is equal to the inductive limit of the schemes Xi, with
respect to the obvious transition maps. By a p-divisible group over X we shall mean a
family H = (Hi)i≥0 where each Hi is a p-divisible group over Xi, together with compatible
isomorphisms Hj ×Xj Xi

∼= Hi for j ≥ i. We say that H has constant height h ∈ N if
each Hi has constant height h over Xi (equivalently, if H0 has constant height h over
X0). A homomorphism of p-divisible groups over X is given by a compatible system of
homomorphisms of p-divisible groups over Xi, for i ≥ 0. We remark that these notions
are independent of the choice of the ideal of definition I.
Definition 5.1. A p-divisible group over X with endomorphism structure for OF is
a pair (H, ι) consisting of a p-divisible group H over X and a map of Zp-algebras
ι : OF → End(H). Note that if I ⊆ OX is an ideal of definition of finite type and
H = (Hi)i≥0 with notation as above, then ι amounts to a compatible system of maps of
Zp-algebras ιi : OF → End(Hi), for i ≥ 0.

Let then (H, ι) be a p-divisible group over X with endomorphism structure for OF

and suppose that H has constant height, say h ∈ N. For each point x ∈ Xan, we let
H (x) denote the completed residue field of x; it is a complete valued field extension
of E. Then, x induces a map of formal schemes Spf Ox → X over Spf OE , where Ox

is the valuation ring of H (x). By base change of (H, ι), we obtain a p-divisible group
over Spf Ox with endomorphism structure for OF . Recall that this amounts to the same
thing as a p-divisible group over SpecOx with endomorphism structure for OF (cf. [Me,
Lemma II.4.16]); we denote this object by (Hx, ι) ∈ p−divOx,OF

. Note that in particular
we have that h = htHx = dn, for some n ∈ N uniform on X. Consider now the integral
Hodge polygon Hdgint(Hx, ι) ∈ Rn

+ of (Hx, ι). This defines a function:

Hdgint(H, ι) : Xan −→ Rn
+

x 7−→ Hdgint(Hx, ι).

Let us endow Rn
+ with the topology induced by the usual topology of R. Then, we have

the following result.
Theorem 5.2. Let X be a formal scheme over Spf OE falling in situation (A) or (B) as
above and denote by Xan its generic fibre as a Berkovich E-analytic space. Let (H, ι) be a
p-divisible group over X with endomorphism structure for OF , suppose that H has constant
height h and write h = dn with n ∈ N. Then, the function Hdgint(H, ι) : Xan −→ Rn

+ is
continuous. Moreover, for every fixed element f0 ∈ Rn

+, the subset:

Xan
Hdgint≤f0

:=
{
x ∈ Xan

∣∣∣ Hdgint(Hx, ι) ≤ f0
}
⊆ Xan

defines a closed analytic domain of Xan.
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Proof. Let I ⊆ OX be an ideal of definition of finite type and write X = lim−→i≥0 Xi and
H = (Hi)i≥0 as above. For i ≥ 0, let ωHi denote the cotangent sheaf of Hi along the
identity section. Then, ωH := lim←−i≥0 ωHi is a finite and locally free OX-module (cf.
[BBM, 3.3.1] and recall that X is p-adically complete), with the property that for each
point x ∈ Xan, the pullback of ωH along Spf Ox → X identifies with ωHx . Note that ωH
is endowed with an action of OF induced by ι. Thus, because E contains F nr, we have
a decomposition ωH = ⊕

υ ωH,υ into finite locally free OX-submodules, where υ ranges
through the embeddings of F nr in E and OF nr acts on ωH,υ via υ : OF nr → OE → OX.
For each υ, let [π] : ωH,υ → ωH,υ denote the endomorphism induced by ι(π) and set
ω̄H,υ := ωH,υ/[π]ωH,υ, a coherent OX-module. For j ∈ N, then, we have coherent sheaves
of ideals Fittj ω̄H,υ which locally recover the Fitting ideals of ω̄H,υ (cf. [Ab, 2.8.13]). We
obtain a description of the function Hdgint(H, ι) as follows. Let x ∈ Xan, write vx for the
valuation on H (x) and, for j ≥ 0 and υ : F nr → E, denote by (Fittj ω̄H,υ)x the pullback
of Fittj ω̄H,υ along Spf Ox → X. Then:

Hdgint(H, ι)(x)(j) = 1
f(F |Qp)

∑
υ

Hdgint(Hx, ι)υ(j)

= 1
f(F |Qp)

∑
υ

(vx((Fitt0 ω̄H,υ)x)− vx((Fittj ω̄H,υ)x))

= Hdgint(Hx, ι)(n)− 1
f(F |Qp)

∑
υ

vx((Fittj ω̄H,υ)x)

= dimHx

d
− 1
f(F |Qp)vx

(∏
υ

(Fittj ω̄H,υ)x

)
, j ∈ { 0, . . . , n } .

Recall now, from the construction of Xan, that if X = ⋃
k Xk is a locally finite covering of

X by open affine formal subschemes, then the generic fibres Xan
k provide a locally finite

covering of Xan by closed analytic domains, so that both claimed statements may be
checked on each Xan

k independently. Thus, it suffices to treat the case that X is affine,
say X = Spf A, with A an OE-algebra which is topologically of finite type (in situation
(A)), respectively special (in situation (B)). Furthermore, we may assume without loss of
generality that ωH has constant rank over X, hence that x 7→ dimHx is constant over
Xan. Let now j ∈ { 0, . . . , n } and choose generators fj,1, . . . , fj,rj ∈ A of ∏υ Fittj ω̄H,υ;
observe that these elements define regular functions on Xan. The results follow then from
the fact that for every x ∈ Xan we have:

vx

(∏
υ

(Fittj ω̄H,υ)x

)
= min

{
vx(fj,1(x)), . . . , vx(fj,rj (x))

}
.

Remark 5.3. Assume that F |Qp is totally ramified and that we are in situation (B).
Then, in light of Remark 4.2, the above theorem also follows from [Fa1, Proposition 16].

Remark 5.4. Let us outline the meaning of the previous theorem first from the point of
view of classical rigid analytic geometry, then in terms of adic spaces.
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1. Let Xrig denote the generic fibre of X as a rigid analytic space over E (cf. [Bert,
§0.2]). We can identify Xrig with the rigid analytic space associated to the Berkovich
space Xan (cf. [Be1, §1.6]); as a set, it is given by the points x ∈ Xan such
that H (x) is a finite extension of E. Moreover, the intersection with Xrig of
any analytic domain of Xan is an open admissible subset of Xrig. Thus, the
final statement of Theorem 5.2 means that for every fixed element f0 ∈ Rn

+, the
subset Xrig

Hdgint≤f0
:= Xrig ∩ Xan

Hdgint≤f0
⊆ Xrig is open admissible. In fact, Xrig may

be constructed even without the locally finiteness assumption in (A) or (B), with
any open affine covering of X yielding an admissible covering of Xrig. Furthermore,
every point x ∈ Xrig induces again a map of formal schemes Spf Ox → X over
Spf OE , so that we can define the function Hdgint(H, ι) similarly as above. Then,
the above statement holds even in this generality, with an analogous proof to that
of the final statement of Theorem 5.2.

2. Let Xad denote the adic space associated with Xan (cf. [Hu, Remark 8.3.2]). As
topological spaces, we can identify Xan with the maximal Hausdorff quotient of
Xad (cf. loc. cit. Lemma 8.1.8). Then, by composing Hdgint(H, ι) : Xan → Rn

+
with the quotient map Xad → Xan, we obtain by Theorem 5.2 a continuous
function Hdgint(H, ι) : Xad → Rn

+. Note that, being Rn
+ a Hausdorff topological

space, it is really equivalent whether we consider Hdgint(H, ι) as a function from
Xad or from Xan.

5.2 An example

Let us study here a noteworthy example in the framework of the previous discussion.
Assume that E is discretely valued, that it contains a square root √p of p and that its
residue field kE is perfect. Let then F = Qp(π) with π3 = p, so that d = e(F |Qp) = 3.
We consider the special OE-algebra A = OE [[T,U ]]/(TU − √p) and the affine formal
scheme X = Spf A over Spf OE . Then, Xan is an open annulus inside the E-analytic
closed unit disc DE(1):

Xan =
{
x ∈ DE(1)

∣∣∣∣ 0 < vx(T ) < 1
2

}
⊆ DE(1) = (Spf OE{T})an.

We choose the ideal of definition I ⊆ OX generated by T,U and a uniformiser of E, so
that, with notation as before, X0 = Spec kE corresponds to the reduced special fibre of X.
Let now H be the p-divisible group over X0 whose contravariant Dieudonné crystal (in
the sense of [BBM, §3.3]) evaluated at W (kE) is given by:

DH = W (kE)6, φH =



0 p 0
0 0 p 0
1 0 0

0 0 p

0 1 0 0
0 1 0


σ.
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Here, W (kE) is the ring of Witt vectors with coefficients in kE and σ its Frobenius
endomorphism. We let π ∈ OF act on (DH , φH) via the matrix:

[π] =



0 0 p

1 0 0 0
0 1 0

0 0 p

0 1 0 0
0 1 0


,

which satisfies [π] ◦ φH = φH ◦ [π] and [π]3 = p · idDH
. Denoting by ι the corresponding

OF -action on H, we obtain an object (H, ι) ∈ p−divkE ,OF
, with htH = 6 = 2d.

Consider now the free A-module DH⊗W (kE)A = A6, denote by f1, . . . , f6 the standard
basis and let L be the free submodule generated by e1 := f2 + Tf4, e2 := f3 + Tf5,
e3 := U

√
pf1 + f6. Observe that the quotient A6/L is a free A-module and that

L⊗AA/I ⊆ A6⊗AA/I = DH/pDH identifies with the sub-kE-vector-space VHDH/pDH ,
where VH denotes the Verschiebung of (DH , φH), i.e. VHφH = p · idDH

. Then, by
Grothendieck-Messing theory, there exists a p-divisible group H = (Hi)i≥0 over X with
H0 = H and ωH = L, where ωH = lim←−i≥0 ωHi as in the proof of the previous theorem
(here, we apply [Me, Theorem V.1.6] inductively to the thickenings Xi+1 → Xi, for i ≥ 0;
since the defining ideal has square zero, these thickenings are endowed with the trivial
divided power structure). Note that L ⊆ DH ⊗W (kE) A is stable under the action of π
that we obtain extending [π] by linearity. Precisely, the restriction of [π] to L is given by
the matrix: 0 0 U

√
p

1 0 0
0 T 0

 (5.1)

with respect to the basis e1, e2, e3. In particular, ι upgrades to an OF -action on H, giving
rise to a p-divisible group (H, ι) over X with endomorphism structure for OF . Moreover,
the induced action of π on ωH = L is described by the above matrix. Using this, we can
then compute the function:

Hdgint(H, ι) : Xan −→ R2
+

x 7−→ Hdgint(Hx, ι) = (vx(U√p), vx(T )) = (1− vx(T ), vx(T )).

Observe that for each point x ∈ Xan, corresponding to the map of formal schemes
Spf Ox → X over Spf OE , the reduction of (Hx, ι) to the residue field kx of Ox coincides
with the base change of (H, ι) along kE → kx. In particular, its Hodge polygon is given
by:

Hdg(H, ι) =
(2

3 ,
1
3

)
,

as it can be seen reducing (5.1) modulo I. The same observation can be made with
regard to the “Newton polygon”, for whose definition in this context we refer to [BH1, 3.1
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and Proposition 1.1.9] (it is in fact just a rescaled version of the classical Newton polygon,
see loc. cit. Remarque 1.1.12). In our case, up to reversing the order of the slopes to
comply with our conventions, the Newton polygon of (H, ι), hence of the reduction of
(Hx, ι) to kx, is:

Newt(H, ι) =
(2

3 ,
1
3

)
.

In conclusion, the family (H, ι) provides examples of objects in p−divOK ,OF
(for suitable

complete valued fields K|E) whose integral Hodge polygon can be either above the Hodge
polygon and the Newton polygon of their reduction (for x ∈ Xan with 0 < vx(T ) ≤ 1/3)
or below them (for x ∈ Xan with 1/3 ≤ vx(T ) < 1/2).
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