USTC - Feuille de TD 2

Diego Izquierdo

1 Divisibilité dans les anneaux

Exercice 1 Soit $A = \mathbb{Z}[\sqrt{5}]$.

- 1) Montrer que A possède une infinité d'éléments inversibles.
- 2) Montrer que 2, $3 + \sqrt{5}$ et $3 \sqrt{5}$ sont irréductibles dans A.
- 3) Montrer qu'il n'y a pas d'unicité de la décomposition de 4 en facteurs irréductibles dans A.
- 4) Vérifier que 2 et $3 + \sqrt{5}$ sont associés dans $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$. De même, vérifier que 2 et $3 \sqrt{5}$ sont associés dans $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$.

Remarque : On verra dans l'exercice 25 que tout élément non nul de $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$ s'écrit comme produit d'irréductibles, et ce de manière unique à l'ordre et à une unité près.

Exercice 2 Soit $A = \mathbb{Z}[i\sqrt{5}]$.

- 1) Quels sont les éléments inversibles de A?
- 2) Montrer que 3, 7, $4 i\sqrt{5}$ et $4 + i\sqrt{5}$ sont irréductibles dans A.
- 3) Montrer qu'il n'y a pas d'unicité de la décomposition de 21 en facteurs irréductibles dans A.
- 4) Considérons les idéaux :

$$\mathfrak{p}_1 = (3, i\sqrt{5} - 1), \ \mathfrak{p}_2 = (3, i\sqrt{5} + 1),$$

$$\mathfrak{q}_1 = (7, i\sqrt{5} + 3), \quad \mathfrak{q}_2 = (7, i\sqrt{5} - 3).$$

Vérifier que ce sont des idéaux premiers et que :

$$(3) = \mathfrak{p}_1\mathfrak{p}_2, \ \ (7) = \mathfrak{q}_1\mathfrak{q}_2, \ \ (4 + i\sqrt{5}) = \mathfrak{p}_2\mathfrak{q}_2, \ \ (4 - i\sqrt{5}) = \mathfrak{p}_1\mathfrak{q}_1.$$

Remarque : On peut montrer que, dans l'anneau A, tout idéal s'écrit comme produit d'idéaux premiers, et ce de manière unique à l'ordre près.

Exercice 3 Soit A un anneau commutatif.

1) Supposons A intègre. Rappeler pourquoi, si a et b sont deux éléments de A tels que (a)=(b), alors il existe $u\in A^{\times}$ tel que a=bu.

Prenons maintenant $A = \mathbb{Q}[X, Y, Z]/(X - XYZ)$. On note x, y et z les classes de X, Y et Z dans A.

- 1) Vérifier que A n'est pas intègre.
- 2) Montrer que (x) = (xy).
- 3) Montrer qu'il n'existe pas d'élément $u \in A^{\times}$ tel que xu = xy.

2 Anneaux euclidiens et principaux

Exercice 4 Montrer que l'anneau des nombres décimaux (c'est-à-dire les nombres rationnels dont le développement décimal est fini) est principal. Quel est le pgcd de 0,6 et de 30,4?

Exercice 5 Soit A un anneau commutatif. Montrer que si A n'est pas un corps, alors A[X] n'est pas principal.

Exercice 6 Soit \mathcal{C} (resp. \mathcal{C}^{∞}) l'anneau des fonctions continues (resp. \mathcal{C}^{∞}) de [0,1] dans \mathbb{R} .

1) Montrer que les idéaux maximaux de \mathcal{C} sont les

$$I_x = \{ f \in \mathcal{C} \mid f(x) = 0 \}$$

pour $x \in [0, 1]$. Sont-ils principaux?

2) Montrer que les idéaux maximaux de \mathcal{C}^{∞} sont les $I_x \cap \mathcal{C}^{\infty}$. Sont-ils principaux?

Exercice 7

- 1) Trouver tous les couples $(x,y) \in \mathbb{Z}^2$ tels que $y^2 = x^3 + 16$.
- 2) Trouver tous les couples $(x,y) \in \mathbb{C}[T]^2$ tels que $y^2 + T = x^3$.

Exercice 8 Dans cet exercice, on étudie l'anneau des entiers de Gauss $\mathbb{Z}[i]$.

- 1) Rappeler pourquoi l'anneau $\mathbb{Z}[i]$ est principal. Quelles sont ses unités ?
- 2) Soit p un nombre premier impair. Montrer que les assertions suivantes sont équivalentes :
 - i) p n'est pas irréductible dans $\mathbb{Z}[i]$.
 - ii) Il existe $(a, b) \in \mathbb{Z}^2$ tel que $p = a^2 + b^2$.
 - iii) -1 est un carré dans $\mathbb{Z}/p\mathbb{Z}$.
 - iv) p est congru à 1 modulo 4.
- 3) L'élément 2 est-il irréductible dans $\mathbb{Z}[i]$?
- 4) a) Montrer que tout irréductible de $\mathbb{Z}[i]$ divise un unique nombre premier de \mathbb{Z} .
 - b) En déduire la liste des éléments irréductibles de $\mathbb{Z}[i]$

Exercice 9 Déduire de l'exercice précédent qu'un entier naturel n est somme de deux carrés si, et seulement si, pour tout premier p congru à 3 modulo 4, la valuation $v_p(n)$ est paire.

Exercice 10 Factoriser -3 + 15i en irréductibles dans $\mathbb{Z}[i]$.

Exercice 11 En utilisant l'exercice 8, trouver toutes les seules solutions entières de l'équation $y^2 + 4 = x^3$.

Exercice 12 Dans cet exercice, on étudie l'anneau des entiers d'Eisenstein $\mathbb{Z}[j]$, avec $j = e^{2i\pi/3}$.

- 1) Montrer que l'anneau $\mathbb{Z}[j]$ est principal. Quelles sont ses unités?
- 2) Soit p un nombre premier différent de 3. Montrer que les assertions suivantes sont équivalentes :
 - i) p n'est pas irréductible dans $\mathbb{Z}[i]$.
 - ii) Il existe $(a, b) \in \mathbb{Z}^2$ tel que $p = a^2 ab + b^2$.
 - iii) Le polynôme $X^3 1$ a une racine dans $\mathbb{Z}/p\mathbb{Z}$ autre que 1.
 - iv) p est congru à 1 modulo 3.
- 3) L'élément 3 est-il irréductible dans $\mathbb{Z}[j]$?
- 4) a) Montrer que tout irréductible de $\mathbb{Z}[j]$ divise un unique nombre premier de \mathbb{Z} .
 - b) En déduire la liste des éléments irréductibles de $\mathbb{Z}[j]$

Exercice 13 Utiliser l'exercice précédent pour déterminer quels entiers naturels n s'écrivent sous la forme $a^2 - ab + b^2$ avec $a, b \in \mathbb{Z}$.

Exercice 14 Factoriser $9 + 3j + 6j^2$ en irréductibles dans $\mathbb{Z}[j]$.

Exercice 15 [Théorème de Fermat pour n=3] Supposons qu'il existe des éléments non nuls x,y,z dans A tels que

$$x^3 + y^3 = z^3$$
,

et posons $A=\mathbb{Z}[j].$ On note $N:w\mapsto w\overline{w}$ la norme usuelle. On pourra utiliser librement l'exercice 12.

- 1) Montrer que l'on peut supposer x, y, z premiers entre eux, ce que l'on suppose dans la suite.
- 2) Montrer que tout élément de A est congru à 0,1 ou -1 modulo $\theta := i\sqrt{3}$.
- 3) Soit ξ et η dans A non divisibles par $\theta.$ Montrer que

$$\xi \equiv 1 \mod \theta \implies \xi^3 \equiv 1 \mod 9$$

$$\xi \equiv -1 \mod \theta \implies \xi^3 \equiv -1 \mod 9$$

$$\xi^3 + \eta^3 \equiv 0 \mod \theta \implies \xi^3 + \eta^3 \equiv 0 \mod 9$$

$$\xi^3 - \eta^3 \equiv 0 \mod \theta \implies \xi^3 + \eta^3 \equiv 0 \mod 9$$

- 4) Montrer que θ divise et et un seul des entiers x, y, z.
- 5) On suppose qu'il existe x, y, z dans A tels que θ ne divise pas xyz, des unités $\varepsilon_1, \varepsilon_2$ et un entier r > 0 tels que

$$x^3 + \varepsilon_1 y^3 + \varepsilon_2 (\theta^r z)^3 = 0.$$

Montrer que $\varepsilon_1 = \pm 1$ et $r \geqslant 2$.

6) Considérons x,y,z non nuls dans A vérifiant $x^3+y^3+\varepsilon(\theta^rz)^3=0$, avec $r\geqslant 2$, ε une unité de A et θ ne divisant pas xyz. Supposons que $N(x^3y^3z^3\theta^{3r})$ soit minimale dans \mathbb{Z} . Obtenir une contradiction en construisant un autre triplet (x',y',z') de norme strictement plus petite et conclure.

Exercice 16 On considère l'anneau $A = \mathbb{Z}[i\sqrt{2}]$. Montrer que A est un anneau euclidien et en déduire les solutions entières de l'équation $y^2 + 2 = x^3$.

Exercice 17 Soit R un anneau euclidien qui n'est pas un corps.

1) Montrer que l'on peut trouver un élément non inversible x de R tel que la restriction à $R^{\times} \cup \{0\}$ de la projection canonique de R sur R/(x) soit surjective. On pourra choisir x tel que $\phi(x)$ soit minimal parmi les éléments $x \notin R^{\times}$, où ϕ désigne le stathme d'une division euclidienne de R.

Soient
$$\alpha = \frac{1 + i\sqrt{19}}{2}$$
 et $A = \mathbb{Z}[\alpha]$.

- 2) Déterminer A^{\times} .
- 3) Montrer que A n'est pas euclidien.
- 4) Si $a, b \in A \setminus \{0\}$, montrer qu'il existe $q, r \in A$ tels que r = 0 ou |r| < |b| et qui vérifient, soit a = bq + r, soit 2a = bq + r.
- 5) Montrer que l'idéal engendré par 2 dans A est maximal.
- 6) Montrer que A est un anneau principal.

Exercice 18 Soit A un anneau intègre dans lequel tout idéal premier est principal. Montrer que l'anneau A est principal (*Indication*: on pourra considérer un élément maximal I dans la famille des idéaux non principaux de A, des éléments x et y de $A \setminus I$ tels que $xy \in I$, un générateur z de l'idéal I + (x), un générateur w de l'idéal $\{a \in A \mid az \in I\}$, et montrer que zw engendre I).

Exercice 19 Trouver toutes les solutions entières de l'équation 999x - 49y = 5000, puis celles de l'équation 147x + 258y = 369.

Exercice 20 Soit $P = X^3 + 1$ et $Q = X^2 + 1$. Montrer que P et Q sont premiers entre eux dans $\mathbb{Q}[X]$ et trouver $U, V \in \mathbb{Q}[X]$ tels que UP + VQ = 1.

Exercice 21 Résoudre les systèmes :

$$\begin{cases} x \equiv 2 \mod 25 \\ x \equiv 3 \mod 8 \\ x \equiv 1 \mod 3. \end{cases}, \qquad \begin{cases} P \equiv X \mod X^3 - X + 1 \\ P \equiv X^2 + 1 \mod X^4. \end{cases}$$

3 Anneaux factoriels

Exercice 22 Chercher un exemple d'anneau factoriel non principal et deux éléments a et b de cet anneau tel que l'inclusion d'idéaux $(a,b) \subset (a \wedge b)$ soit stricte.

Exercice 23 Soit K un corps. Montrer que le sous-anneau $K[X^2, X^3]$ de K[X] engendré par X^2 et X^3 n'est pas factoriel.

Exercice 24 L'anneau $A = \mathbb{Z}[i\sqrt{3}]$ est-il factoriel? Et l'anneau $\mathbb{Z}\left[\frac{1+i\sqrt{3}}{2}\right]$?

Exercice 25 Soit A un anneau commutatif intègre et soit K son corps des fractions. On dit qu'un élément x de K est entier sur A s'il existe un polynôme $P = a_0 + a_1 X + \ldots + a_{n-1} X^{n-1} + X^n$ à coefficients dans A tels que P(x) = 0.

- 1) Montrer que si A est factoriel, les éléments de K entiers sur A sont les éléments de A. On dit alors que A est intégralement clos.
- 2) Dans l'exercice 1, nous avons vu que l'égalité $2 \cdot 2 = (3 + \sqrt{5})(3 \sqrt{5})$ prouve la non factorialité de $\mathbb{Z}[\sqrt{5}]$. Par contre, elle ne permet pas de déterminer si l'anneau $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$ est factoriel ou non. Les questions qui suivent visent à expliquer ce phénomène.
 - a) Montrer que $\mathbb{Z}[\sqrt{5}]$ n'est pas intégralement clos.
 - b) Montrer que $\frac{1+\sqrt{5}}{2}$ appartient au corps des fractions de $\mathbb{Z}[\sqrt{5}]$ et est entier sur $\mathbb{Z}[\sqrt{5}]$.
 - c) Montrer que $\mathbb{Z}\left\lceil \frac{1+\sqrt{5}}{2}\right\rceil$ est intégralement clos.
 - d) Mieux, montrer que $\mathbb{Z}\left\lceil\frac{1+\sqrt{5}}{2}\right\rceil$ est euclidien, donc principal, donc factoriel.

Des phénomènes analogues expliquent les résultats de l'exercice 24 : l'anneau $\mathbb{Z}\left[\frac{1+i\sqrt{3}}{2}\right]$ est intégralement clos alors que l'anneau $\mathbb{Z}[i\sqrt{3}]$ ne l'est pas.

3) Dans l'exercice 2, nous avons vu que l'anneau $\mathbb{Z}[i\sqrt{5}]$ n'est pas factoriel. Vérifier que ce résultat ne s'explique pas par le fait que $\mathbb{Z}[i\sqrt{5}]$ soit non intégralement clos.

Exercice 26 Considérons les anneaux $A = \mathbb{Z}[i\sqrt{11}]$ et $B = \mathbb{Z}[i\sqrt{13}]$.

- 1) Montrer que A et B ne sont pas des anneaux factoriels.
- 2) Faire la liste des idéaux premiers de A qui contiennent l'idéal (2). En déduire que l'idéal (2) ne s'écrit pas comme produit d'idéaux premiers de A.
- 3) À l'inverse, montrer que les idéaux (2), (3) et (7) s'écrivent bien comme des produit d'idéaux premiers de l'anneau B.
- 4) Vérifier que B est intégralement clos mais que A ne l'est pas.

Remarque : Dans B, on peut montrer que tout idéal s'écrit comme produit d'idéaux premiers de manière unique à l'ordre près. Le même résultat valait pour l'anneau $\mathbb{Z}[i\sqrt{5}]$ de l'exercice 2. Ce n'est pas un hasard que ces deux anneaux, qui sont intégralement clos, vérifient cette propriété.

Exercice 27

- 1) Montrer que l'anneau $A = \mathbb{C}[X, Y, Z, T]/(XY ZT)$ est intègre mais pas factoriel.
- 2) Montrer que l'anneau $B = \mathbb{Z}[\sqrt{10}]$ n'est pas factoriel, mais que tout élément non nul de B s'écrit sous la forme $up_1...p_n$ avec $u \in B^{\times}$ et p_i irréductible pour chaque i.
- 3) Plus généralement, est-il vrai que, si p et q sont deux nombres premiers distincts, alors l'anneau $\mathbb{Z}[\sqrt{pq}]$ n'est pas factoriel?

Exercice 28

1) Soit k un corps et considérons l'anneau des séries formelles k[[X]]. Montrer que c'est un anneau principal. Montrer que ses idéaux sont $\{0\}$ et les $I_m = (X^m)$ pour chaque $m \in \mathbb{N}$. (On pourra montrer que l'ensemble des éléments non inversibles de k[[X]] est un idéal et que c'est donc le seul idéal maximal).

- 2) Exhiber un élément de $\mathbb{Z}[X]$ qui n'est pas irréductible, mais qui est irréductible dans $\mathbb{Z}[[X]]$.
- 3) Exhiber un élément irréductible de $\mathbb{Z}[X]$, mais qui n'est pas irréductible dans $\mathbb{Z}[[X]]$.

Remarque : Les questions concernant la factorialité de A[[T]] sont difficiles. Pierre Samuel a montré en 1960 les faits suivants :

- Si A est un anneau principal et n un entier naturel, alors l'anneau $A[[T_1, T_2, ..., T_n]]$ est factoriel;
- Il existe des anneaux factoriels A tels que A[[T]] n'est pas factoriel : par exemple, $A = \mathbb{Z}/2\mathbb{Z}[X,Y,Z]/(Z^2-X^3-Y^7)$.

Exercice 29 Soit A un anneau factoriel tel que tout idéal premier non nul est maximal.

- 1) Soient x, y des éléments non nuls de A, que l'on suppose premiers entre eux. Montrer qu'il existe $u, v \in A$ vérifiant ux + vy = 1.
- 2) Soit I un idéal non nul de A. Montrer qu'il existe $d \in I$ non nul qui est un pgcd de tous les éléments de I.
- 3) Conclure que A est principal.