MAT 562 - Introduction to algebraic geometry and elliptic curves

Exam - 13th March 2023-3 hours

Allowed documents : course notes, notes from the classes and tutorials, printed dictionnary. You can write in English or in French.

The exam consists in 4 independent exercises that concern different parts of the course :

Exercise 1	Affine and projective varieties
Exercise 2	Elliptic curves over \mathbb{C}
Exercise 3	Elliptic curves over finite fields
Exercise 4	Elliptic curves over \mathbb{Q}

The exercises are not ordered by difficulty : do not hesitate to treat them in the order of your choice.

Exercise 1 Let k be a field of characteristic 0 .

1) (Preliminary question) Let $n \geqslant 1$ be an integer. Let $F, G \in k\left[X_{0}, \ldots, X_{n}\right]$ be two non-constant homogeneous polynomials. Prove that, if F and G are coprime, then the set $V_{p}(F) \backslash V_{p}(G)$ is dense in $V_{p}(F)$.
Let now Z be the set of points

$$
A=\left[x_{0}: x_{1}: x_{2}: x_{3}: x_{4}: x_{5}\right] \in \mathbb{P}_{k}^{5}
$$

such that the polynomial $\pi_{A}(S, T):=x_{0} S^{2}+x_{1} T^{2}+x_{2} S T+x_{3} S+x_{4} T+x_{5}$ is neither constant nor irreducible in $k[S, T]$.
2) In this question, we study the irreducibility of Z.
a) Construct a rational map $f: \mathbb{P}_{k}^{5} \rightarrow \mathbb{P}_{k}^{5}$ and an open subset U of \mathbb{P}_{k}^{5} such that f is defined on U and $f(U)=Z$.
b) Deduce that Z is irreducible.
3) In this question, we study the closure of Z in \mathbb{P}_{k}^{5}.
a) Check that Z is not closed in \mathbb{P}_{k}^{5}.
b) i) Find a homogeneous polynomial $F \in k\left[X_{2}, X_{3}, X_{4}, X_{5}\right]$ of degree 2 such that:

$$
Z \cap V_{p}\left(X_{0}, X_{1}\right)=V_{p}\left(X_{0}, X_{1}, F\right) \backslash V_{p}\left(X_{2}\right) .
$$

ii) Let $A=\left[x_{0}: x_{1}: x_{2}: x_{3}: x_{4}: x_{5}\right] \in Z \backslash V_{p}\left(X_{0}\left(X_{2}^{2}-4 X_{0} X_{1}\right)\right)$. Prove that there exists a point $B \in Z \cap V_{p}\left(X_{0}, X_{1}\right)$ such that the affine varieties $V\left(\pi_{A}\right)$ and $V\left(\pi_{B}\right)$ are isomorphic. Write down the coordinates of B in terms of the coordinates of A.
iii) Deduce that the closure of Z in \mathbb{P}_{k}^{5} is :

$$
\bar{Z}=V_{p}\left(X_{5}\left(X_{2}^{2}-4 X_{0} X_{1}\right)+X_{4}^{2} X_{0}-X_{2} X_{3} X_{4}+X_{1} X_{3}^{2}\right)
$$

c) Compute the dimension of \bar{Z} and prove that the singular locus of \bar{Z} is the set of points $A \in \mathbb{P}_{k}^{5}$ such that the polynomial π_{A} is a square in $k[S, T]$.

Exercise 2

1) Let k be an algebraically closed field. In \mathbb{P}_{k}^{2}, consider an elliptic curve E given by a Weierstraß equation :

$$
y^{2} z=x^{3}+A x z^{2}+B z^{3},
$$

and endow it with the neutral element $O:=[0: 1: 0]$. Embed \mathbb{A}_{k}^{2} into \mathbb{P}_{k}^{2} via $(x, y) \mapsto[x: y: 1]$, and consider four points $P_{1}, P_{2}, P_{1}^{\prime}, P_{2}^{\prime}$ of $E \backslash\{O\}=E \cap \mathbb{A}_{k}^{2}$ such that:

$$
P_{1}+P_{2}=P_{1}^{\prime}+P_{2}^{\prime} \neq O .
$$

In \mathbb{A}_{k}^{2}, introduce the following lines :

$$
\begin{aligned}
& \Delta:=\left\{\begin{array}{l}
\text { line passing through } P_{1} \text { and } P_{2} \text { if } P_{1} \neq P_{2} \\
\text { line tangent to } P_{1} \text { if } P_{1}=P_{2},
\end{array}\right. \\
& \Delta^{\prime}:=\left\{\begin{array}{l}
\text { line passing through } P_{1}^{\prime} \text { and } P_{2}^{\prime} \text { if } P_{1}^{\prime} \neq P_{2}^{\prime} \\
\text { line tangent to } P_{1}^{\prime} \text { if } P_{1}^{\prime}=P_{2}^{\prime}
\end{array}\right.
\end{aligned}
$$

Prove that Δ and Δ^{\prime} are parallel if, and only if, $\left\{P_{1}, P_{2}\right\}=\left\{P_{1}^{\prime}, P_{2}^{\prime}\right\}$.
Let now $\Lambda=\omega_{1} \mathbb{Z} \oplus \omega_{2} \mathbb{Z}$ be a lattice in \mathbb{C}. Denote by \wp the Weierstraß associated function.
2) a) Prove that there exists an odd meromorphic function ζ on \mathbb{C} such that:

$$
\forall z \in \mathbb{C} \backslash \Lambda, \quad \zeta^{\prime}(z)=-\wp(z)
$$

Write the ζ function as a convergent series. Is it a Λ-elliptic function?
b) Fix $y_{0} \in \mathbb{C} \backslash \frac{1}{2} \Lambda$, and introduce the meromorphic functions :

$$
\varphi(z)=\frac{1}{2} \cdot \frac{\wp^{\prime}(z)-\wp^{\prime}\left(y_{0}\right)}{\wp(z)-\wp\left(y_{0}\right)} \quad \text { and } \quad \psi(z)=\zeta\left(z+y_{0}\right)-\zeta(z)-\zeta\left(y_{0}\right) .
$$

Prove that they are Λ-elliptic.
c) Prove that the function $\rho:=\varphi-\psi$ is holomorphic on the whole complex plane.
d) Deduce that:

$$
\frac{1}{2} \cdot \frac{\wp^{\prime}(z)-\wp^{\prime}(y)}{\wp(z)-\wp(y)}=\zeta(z+y)-\zeta(z)-\zeta(y)
$$

for all $y, z \in \mathbb{C} \backslash \Lambda$ such that $z \pm y \in \mathbb{C} \backslash \Lambda$.
3) Let $\left(z_{1}, z_{2}, z_{1}^{\prime}, z_{2}^{\prime}\right) \in(\mathbb{C} \backslash \Lambda)^{4}$ be such that:

$$
\left\{\begin{array}{l}
z_{1}+z_{2}=z_{1}^{\prime}+z_{2}^{\prime} \notin \Lambda \\
\zeta\left(z_{1}\right)+\zeta\left(z_{2}\right)=\zeta\left(z_{1}^{\prime}\right)+\zeta\left(z_{2}^{\prime}\right) .
\end{array}\right.
$$

By using questions 1) and 2), prove that $\left\{z_{1}, z_{2}\right\}=\left\{z_{1}^{\prime}, z_{2}^{\prime}\right\}$. You may start by assuming that $z_{1}-z_{2} \notin \Lambda$ and $z_{1}^{\prime}-z_{2}^{\prime} \notin \Lambda$.

Exercise 3 Let k be a perfect field and let E be the projective curve defined over k by :

$$
y^{2} z=x^{3}+3 z^{3} .
$$

1) Under which condition on k is the curve E an elliptic curve?

In the subsequent questions, we will assume that this condition is always satisfied.
2) a) Compute the coordinates of the 2-torsion points in $E(\bar{k})$.
b) Compute the coordinates of the 3 -torsion points in $E(\bar{k})$.
3) By taking $k=\mathbb{F}_{5}$, compute the structure of the groups $E\left(\mathbb{F}_{5}\right), E\left(\mathbb{F}_{25}\right)$ and $E\left(\mathbb{F}_{125}\right)$.
4) Take now $k=\mathbb{F}_{31}$. Choose the point $P=(1,2) \in E\left(\mathbb{F}_{31}\right)$. The following table provides the coordinates of some multiples of P :

n	1	2	3	4	5	6	7	8
$n P$	$(1,2)$	$(16,10)$	$(22,24)$	$(24,30)$	$(26,8)$	$(5,2)$	$(25,29)$	$(30,8)$
n	9	10	11	12	13	14	15	16
$n P$	$(9,22)$	$(4,6)$	$(14,22)$	$(18,10)$	$(6,23)$	$(28,21)$	$(11,30)$	$(7,6)$
n	17	18	19	20	21	22	23	24
$n P$	$(20,6)$	$(17,24)$	$(27,1)$	$(8,9)$	$(23,7)$	$(23,24)$	$(8,22)$	$(27,30)$

a) i) What is the order r of P in $E\left(\mathbb{F}_{31}\right)$?
ii) Deduce that P generates $E\left(\mathbb{F}_{31}\right)$.

The following questions concern elliptic curve cryptography. The intial public data are always the elliptic curve E and the point P.
b) Arcanine ${ }^{1}$ and Bulbasaur ${ }^{2}$ would first like to produce a common secret key via the Diffie-Hellman method. Arcanine chooses the integer 17 as private key and he receives the point $P_{b}=(7,6)$ from Bulbasaur.
i) What is the private key of Bulbasaur?
ii) What is the produced common private key?
c) Arcanine now wants to securely send messages to Bulbasaur thanks to the ElGamal encryption algorithm seen in class. For that purpose, Bulbasaur starts by sending the point $B=(20,25)$ to Arcanine. He then receives the points $M_{1}=(6,23)$ and $M_{2}=(27,30)$ from Arcanine. Can you decrypt the message?

[^0]2. Plant/poison-type Pokémon
d) Finally, Arcanine decides to sign his messages to Bulbasaur, via the electronic signature algorithm described in class. For that purpose, he starts by sending the point $Q=(25,29)$ to Bulbasaur. Bulbasaur then receives the message $m=32$, as well as a signature consisting of the point $R=(14,22)$ and the element $z=26 \in \mathbb{Z} / r \mathbb{Z}$. Has the message been sent by Arcanine?

Exercise 4 Consider the projective curve E defined over \mathbb{Q} by :

$$
y^{2} z=x^{3}-64 x z^{2}+16 z^{3} .
$$

Set $O=[0: 1: 0]$.

1) Check that E is an elliptic curve.
2) Prove that there exists an integer $r \geqslant 1$ such that $E(\mathbb{Q}) \cong \mathbb{Z}^{r}$.

In the rest of the exercise, we aim at proving that $r \geqslant 2$.
3) Prove that it suffices to find three points P_{1}, P_{2}, P_{3} in $E(\mathbb{Q}) \backslash 2 E(\mathbb{Q})$ such that $P_{1}+P_{2}+P_{3}=O$.
In the next two questions, we settle two sufficient conditions for a point $P \in E(\mathbb{Q})$ not to be in $2 E(\mathbb{Q})$.
4) In this question, we study the set $E(\mathbb{R})$. For that purpose, we embed $\mathbb{A}_{\mathbb{R}}^{2}$ in $\mathbb{P}_{\mathbb{R}}^{2}$ via the map $(x, y) \mapsto[x: y: 1]$, and we endow $E(\mathbb{R}) \backslash\{O\}=E(\mathbb{R}) \cap \mathbb{A}_{\mathbb{R}}^{2}$ with the topology induced by the usual metric topology on $\mathbb{A}_{\mathbb{R}}^{2}=\mathbb{R}^{2}$.
a) Draw the curve $E(\mathbb{R}) \cap \mathbb{A}_{\mathbb{R}}^{2}$. Place the 2-torsion points on the picture.
b) Prove that $E(\mathbb{R}) \backslash E[2]$ has four connected components : two unbounded connected components C_{0}^{+}and C_{0}^{-}, and two compact connected components C_{1}^{+}and C_{1}^{-}.
c) Let C_{1} be the closure of $C_{1}^{+} \cup C_{1}^{-}$in $E(\mathbb{R}) \cap \mathbb{A}_{\mathbb{R}}^{2}$. Prove that :

$$
C_{1} \cap 2 E(\mathbb{R})=\emptyset .
$$

5) Let $P=\left[x_{P}: y_{P}: 1\right] \in E(\mathbb{Q})$ be such that $v_{2}\left(x_{P}\right)=3$. Assume that there exists a point $Q=\left[x_{Q}: y_{Q}: 1\right] \in E(\mathbb{Q})$ such that $P=2 Q$.
a) Write down a degree 4 polynomial equation satisfied by x_{Q}.
b) Get a contradiction and deduce that $P \notin 2 E(\mathbb{Q})$.
6) Use questions 4) and 5) to find points P_{1}, P_{2}, P_{3} satisfying the assumptions of question 3).

[^0]: 1. Fire-type Pokémon
