

FINAL EXAM - PART 1

No documents allowed - 30 min - Maximum 7 points NAME:

Question 1: (0.75 points) What is the subgroup of \mathbb{Z} spanned by 60, 80 and 110?

Answer -

Question 2: (0.75 points) Give an example of a group G and a normal subgroup H such that G has no subgroups isomorphic to G/H. Briefly explain your answer.

- Answer -

Question 3: (0.5 point) Give the definition of a solvable group.

Answer -

Question 4: (0.75 points) Make the list of all the abelian groups with order 784. No justification is needed.

- Answer -

Question 5: (0.5 point) Give the definition of a faithful action.

– Answer –

Question 6: (1.5 points) Fill in the table. No justification is needed.

Action of \mathscr{S}_3 on	Faithful?	Transitive?	Number of fixed points?
the set {1,2,3}			
the set $\{-1,1\}$ by the			
formula $\sigma \cdot \epsilon = \operatorname{sign}(\sigma)\epsilon$			
itself by conjugation			

Question 7: (0.75 points) Which of the following groups are simple? Tick ALL the correct answers. No justification is needed.

$\Box \mathbb{Z}/81\mathbb{Z}.$	$\Box \mathbb{Z}/101\mathbb{Z}.$	$\Box \mathscr{S}_3.$	$\Box \mathscr{A}_4.$	$\Box D_{50}.$
$\Box \mathscr{A}_{100}.$	$\Box \mathscr{A}_5 \times \mathscr{A}_5.$	\Box A 2-Sylow subgroup of \mathscr{A}_{2022} .		
□ An 11-Sylow	subgroup of \mathscr{A}_{13} .			

Question 8: (0.75 points) Consider the permutations $\sigma = (1 \ 2 \ 3)(2 \ 6 \ 5)(3 \ 5 \ 1)$ and $\tau = (3 \ 2 \ 6)(6 \ 4 \ 1)(2 \ 1 \ 6)$ in \mathscr{S}_6 . Find their respective types, and decide whether they are conjugate of each other.

- Answer —

Question 9: (0.75 points) Explain how one can use the universal property to compute the quotient $\mathcal{S}_7/\mathcal{A}_7$.

Answer –

2

FINAL EXAM - PART 2

Course notes allowed - 90 min - Maximum 18 points

Question 10: (5 points) Let $n \ge 3$ be an integer. In the dihedral group D_{2n} , let r be the rotation with angle $\frac{2\pi}{n}$ and let s be some symmetry. Consider the subgroup H of D_{2n} spanned by r^2 and s.

- **1.** Assume first that *n* is odd. Prove that $H = D_{2n}$.
- **2.** Assume now that *n* is even.
 - (a) Prove that *H* is a normal subgroup of D_{2n} .
 - (b) Prove that *H* has order *n*.
 - (c) Compute the quotient D_{2n}/H .

Question 11: (3 points) Consider the group $G := GL_2(\mathbb{Z})$. Its elements are invertible matrices that have integer coefficients and whose inverse also has integer coefficients. Let *H* be the subgroup of *G* consisting of matrices that have odd entries on the diagonal and even entries elsewhere.

- **1.** Prove that *H* is normal in *G* and that $G/H \cong GL_2(\mathbb{Z}/2\mathbb{Z})$.
- **2.** Deduce that $G/H \cong \mathscr{S}_3$. *Hint : Use a group action!*

Question 12: (3 points) Let *G* be a group with order 14872.

- **1.** Prove that *G* is not simple.
- **2.** Prove that *G* is solvable.

Question 13: (7 points) We consider the field $K := \mathbb{Z}/2\mathbb{Z}$.

- **1.** Prove that there are no non-trivial morphisms from \mathcal{A}_5 to $GL_3(K)$.
- **2.** (a) Prove that the formula $\sigma \cdot (x_1, x_2, x_3, x_4, x_5) = (x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, x_{\sigma^{-1}(3)}, x_{\sigma^{-1}(4)}, x_{\sigma^{-1}(5)})$ defines a group action of \mathcal{A}_5 on K^5 .
 - (b) Is it transitive? Is it faithful? Are there any fixed points?
 - (c) Find a 4-dimensional sub-*K*-vector space of K^5 such that $\sigma \cdot v \in V$ for all $\sigma \in \mathscr{A}_5$ and all $v \in V$.
 - (d) Deduce from the previous question that there exists a non-trivial group homomorphism from \mathcal{A}_5 to $GL_4(K)$.
 - (e) Is it injective?