Final EXAM - Part 1

No documents allowed - 30 min - Maximum 7 points NAME:

Question 1: (0.75 points) What is the subgroup of \mathbb{Z} spanned by 60,80 and 110 ?
\square

Question 2: (0.75 points) Give an example of a group G and a normal subgroup H such that G has no subgroups isomorphic to G / H. Briefly explain your answer.

Question 3: (0.5 point) Give the definition of a solvable group.

Question 4: (0.75 points) Make the list of all the abelian groups with order 784. No justification is needed.
\square Answer ——

Question 5: (0.5 point) Give the definition of a faithful action.
\square

Question 6: (1.5 points) Fill in the table. No justification is needed.

Action of \mathscr{S}_{3} on ...	Faithful?	Transitive?	Number of fixed points?
the set $\{1,2,3\}$			
the set $\{-1,1\}$ by the formula $\sigma \cdot \epsilon=\operatorname{sign}(\sigma) \epsilon$			
itself by conjugation			

Question 7: (0.75 points) Which of the following groups are simple? Tick ALL the correct answers. No justification is needed.
$\square \mathbb{Z} / 81 \mathbb{Z}$.
$\square \mathbb{Z} / 101 \mathbb{Z}$.
$\square \mathscr{S}_{3}$.
$\square \mathscr{A}_{4}$.
$\square D_{50}$.
$\square \mathscr{A}_{100}$.
$\square \mathscr{A}_{5} \times \mathscr{A}_{5}$.A 2-Sylow subgroup of \mathscr{A}_{2022}.
\square An 11-Sylow subgroup of \mathscr{A}_{13}.
Question 8: (0.75 points) Consider the permutations $\sigma=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\left(\begin{array}{ll}2 & 6\end{array}\right)\left(\begin{array}{ll}3 & 5\end{array}\right)$ and $\tau=\left(\begin{array}{llll}3 & 2 & 6\end{array}\right)\left(\begin{array}{lll}6 & 4 & 1\end{array}\right)\left(\begin{array}{lll}2 & 1 & 6\end{array}\right)$ in \mathscr{S}_{6}. Find their respective types, and decide whether they are conjugate of each other.

Answer

Question 9: (0.75 points) Explain how one can use the universal property to compute the quotient $\mathscr{S}_{7} / \mathscr{A}_{7}$.
\square

Final exam - Part 2

Course notes allowed - 90 min - Maximum 18 points

Question 10: (5 points) Let $n \geq 3$ be an integer. In the dihedral group $D_{2 n}$, let r be the rotation with angle $\frac{2 \pi}{n}$ and let s be some symmetry. Consider the subgroup H of $D_{2 n}$ spanned by r^{2} and s.

1. Assume first that n is odd. Prove that $H=D_{2 n}$.
2. Assume now that n is even.
(a) Prove that H is a normal subgroup of $D_{2 n}$.
(b) Prove that H has order n.
(c) Compute the quotient $D_{2 n} / H$.

Question 11: (3 points) Consider the group $G:=\mathrm{GL}_{2}(\mathbb{Z})$. Its elements are invertible matrices that have integer coefficients and whose inverse also has integer coefficients. Let H be the subgroup of G consisting of matrices that have odd entries on the diagonal and even entries elsewhere.

1. Prove that H is normal in G and that $G / H \cong \mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z})$.
2. Deduce that $G / H \cong \mathscr{S}_{3}$.

Hint : Use a group action!

Question 12: (3 points) Let G be a group with order 14872.

1. Prove that G is not simple.
2. Prove that G is solvable.

Question 13: (7 points) We consider the field $K:=\mathbb{Z} / 2 \mathbb{Z}$.

1. Prove that there are no non-trivial morphisms from \mathscr{A}_{5} to $\mathrm{GL}_{3}(K)$.
2. (a) Prove that the formula $\sigma \cdot\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, x_{\sigma^{-1}(3)}, x_{\sigma^{-1}(4)}, x_{\sigma^{-1}(5)}\right)$ defines a group action of \mathscr{A}_{5} on K^{5}.
(b) Is it transitive? Is it faithful? Are there any fixed points?
(c) Find a 4-dimensional sub- K-vector space of K^{5} such that $\sigma \cdot v \in V$ for all $\sigma \in \mathscr{A}_{5}$ and all $v \in V$.
(d) Deduce from the previous question that there exists a non-trivial group homomorphism from \mathscr{A}_{5} to $\mathrm{GL}_{4}(K)$.
(e) Is it injective?
