Final exam 2022/2023 - Answers

Solution to Question 1 : It is the subgroup spanned by the g.c.d. of 60, 80 and 110. In other words, it is $10 \mathbb{Z}$.

Solution to Question 2 : Take $G=\mathbb{Z}$ and $H=2 \mathbb{Z}$. The group G has no elements with finite order other than 0 , hence $\mathbb{Z} / 2 \mathbb{Z}$ is not isomorphic to a subgroup of G.

Solution to Question 3 : See course notes.

Solution to Question 4 :

$$
\begin{aligned}
\mathbb{Z} / 16 \mathbb{Z} \times \mathbb{Z} / 49 \mathbb{Z}, & \mathbb{Z} / 16 \mathbb{Z} \times(\mathbb{Z} / 7 \mathbb{Z})^{2}, \\
\mathbb{Z} / 8 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 49 \mathbb{Z}, & \mathbb{Z} / 8 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times(\mathbb{Z} / 7 \mathbb{Z})^{2}, \\
(\mathbb{Z} / 4 \mathbb{Z})^{2} \times \mathbb{Z} / 49 \mathbb{Z}, & (\mathbb{Z} / 4 \mathbb{Z})^{2} \times(\mathbb{Z} / 7 \mathbb{Z})^{2}, \\
\mathbb{Z} / 4 \mathbb{Z} \times(\mathbb{Z} / 2 \mathbb{Z})^{2} \times \mathbb{Z} / 49 \mathbb{Z}, & \mathbb{Z} / 4 \mathbb{Z} \times(\mathbb{Z} / 2 \mathbb{Z})^{2} \times(\mathbb{Z} / 7 \mathbb{Z})^{2}, \\
(\mathbb{Z} / 2 \mathbb{Z})^{4} \times \mathbb{Z} / 49 \mathbb{Z}, & (\mathbb{Z} / 2 \mathbb{Z})^{4} \times(\mathbb{Z} / 7 \mathbb{Z})^{2} .
\end{aligned}
$$

Solution to Question 5 : See course notes.

Solution to Question 6 :

Action of \mathscr{S}_{3} on \ldots	Faithful?	Transitive?	Number of fixed points?
the set $\{1,2,3\}$	Yes	Yes	0
the set $\{-1,1\}$ by the formula $\sigma \cdot \epsilon=\operatorname{sign}(\sigma) \epsilon$	No	Yes	0
itself by conjugation	Yes	No	1

Solution to Question 7 :

$\square \mathbb{Z} / 81 \mathbb{Z}$.
$\square \mathbb{Z} / 101 \mathbb{Z}$.
$\nabla \mathscr{A}_{100}$.
$\square \mathscr{A}_{5} \times \mathscr{A}_{5}$.
\mathscr{S}_{3}.
$\square \mathscr{A}_{4}$.
$\square D_{50}$.
\square A 2-Sylow subgroup of \mathscr{A}_{2022}.
\square An 11-Sylow subgroup of \mathscr{A}_{13}.
Solution to Question 8 : We have :

$$
\begin{gathered}
\sigma=\left(\begin{array}{lll}
2 & 6 & 5
\end{array}\right) \\
\tau=\left(\begin{array}{ll}
1 & 4
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right)
\end{gathered}
$$

Hence :

$$
\operatorname{type}(\sigma)=(1,1,1,3) \neq(1,1,2,2)=\operatorname{type}(\tau)
$$

and σ and τ are not conjugate.

Solution to Question 9 : Consider the signature morphism sign : $\mathscr{S}_{7} \rightarrow\{-1,1\}$. It is surjective and its kernel is \mathscr{A}_{7}. Hence, by the universal property :

$$
\mathscr{S}_{7} / \mathscr{A}_{7}=\mathscr{S}_{7} / \operatorname{ker}(\operatorname{sign}) \cong \operatorname{im}(\operatorname{sign})=\{-1,1\} .
$$

Solution to Question 10 :

1. Since n is odd, $r=r^{n+1}=\left(r^{2}\right)^{\frac{n+1}{2}} \in H$. We deduce that H contains $\langle r, s\rangle$. But $\langle r, s\rangle=D_{2 n}$. Hence $H=D_{2 n}$.
2. (a) Observe that:

$$
\begin{gathered}
r r^{2} r^{-1}=r^{-1} r^{2} r r^{2} \in H, s r^{2} s^{-1}=s^{-1} r^{2} s=r^{-2} \in H, \\
r s r^{-1}=s r^{-2} \in H, r^{-1} s r=s r^{2} \in H, s s s^{-1}=s^{-1} s s=s \in H .
\end{gathered}
$$

Since $D_{2 n}$ is spanned by r and s and H is spanned by r^{2} and s, we deduce that H is normal in $D_{2 n}$.
(b) The group H contains the set $X=\left\{1, r^{2}, r^{4}, \ldots, r^{n-2}, s, s r^{2}, s r^{4}, \ldots, s r^{n-2}\right\}$. Moreover, $l \in X$ and, for every $k, l \in \mathbb{Z}$:

$$
\begin{gathered}
r^{2 k} r^{-2 l}=r^{2(k-l)} \in X, \\
r^{2 k}\left(s r^{2 l}\right)^{-1}=s r^{2(-k+l)} \in X, \\
s r^{2 k} r^{-2 l}=s r^{2(k-l)} \in X, \\
s r^{2 k}\left(s r^{2 l}\right)^{-1}=r^{2(-k+l)} \in X .
\end{gathered}
$$

We deduce that X is a subgroup of G, and hence that $X=H$. In particular, H has order n
(c) By Lagrange's theorem, $D_{2 n} / H$ is a group of order $\frac{2 n}{n}=2$. It is therefore isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$.

Solution to Question 11 :

1. Consider the reduction modulo 2 morphism $f: \mathrm{GL}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z})$. Its kernel is H. Moreover, the elements of $\mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z})$ are the matrices :

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right),
$$

which can all be lifted to $\mathrm{GL}_{2}(\mathbb{Z})$. We deduce that f is surjective, and hence, by the universal property, G / H is isomorphic to $\mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z})$.
2. Consider the $\mathbb{Z} / 2 \mathbb{Z}$-vector space $V:=(\mathbb{Z} / 2 \mathbb{Z})^{2}$ and the natural action of $\mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z})$ on $V \backslash\{0\}$. This action is faithful, and hence it induces an injective morphism :

$$
\phi: \mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z}) \rightarrow \operatorname{Bij}(V \backslash\{0\}) \cong \mathscr{S}_{3} .
$$

Since both $\mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z})$ and \mathscr{S}_{3} have order 6 , we deduce that ϕ is an isomorphism. We conclude that $G / H \cong \mathscr{S}_{3}$.
Solution to Question 12 :

1. Observe that $14872=2^{3} \cdot 11 \cdot 13^{2}$. Let n_{13} be the number of 13 -Sylow subgroups of G. By the Sylow theorems :

$$
n_{13} \equiv 1 \quad \bmod 13, \quad n_{13} \mid 2^{3} \cdot 11
$$

Hence $n_{13}=1$. The group G therefore has a unique 13-Sylow subgroup H, which has to be normal. In particular, G is not simple.
2. Let m_{11} be the number of 11 -Sylow subgroups of G / H. Since G / H has $2^{3} \cdot 11$ elements, the Sylow theorems show that :

$$
m_{11} \equiv 1 \quad \bmod 11, \quad m_{11} \mid 8 .
$$

Hence $m_{11}=1$. The group G / H therefore has a unique 11-Sylow subgroup K, which is necessarily normal.
Now, K is an 11-group and $(G / H) / K$ is a 2-group : we deduce that K and $(G / H) / K$ are both solvable, and hence so is G / H. But H is also solvable since it is a 13group. Hence G is solvable.

Solution to Question 13 :

1. Let $f: \mathscr{A}_{5} \rightarrow \mathrm{GL}_{3}(K)$ be a morphism. The kernel of f is a normal subgroup of \mathscr{A}_{5}, and hence it is either $\{1\}$ or \mathscr{A}_{5}. Since $\left|\mathscr{A}_{5}\right|=60 \nmid 168=\left|\mathrm{GL}_{3}(K)\right|$, the morphism f cannot be injective, so that $\operatorname{ker}(f) \neq\{1\}$. We deduce that $\operatorname{ker}(f)=\mathscr{A}_{5}$, and hence f is trivial.
2. (a) Take $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in K^{5}$ and $\sigma, \tau \in \mathscr{A}_{5}$. Then :

$$
\operatorname{Id} \cdot\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right),
$$

$$
\begin{aligned}
\sigma \cdot\left(\tau \cdot\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)\right) & =\sigma \cdot\left(x_{\tau^{-1}(1)}, x_{\tau^{-1}(2)}, x_{\tau^{-1}(3)}, x_{\tau^{-1}(4)}, x_{\tau^{-1}(5)}\right) \\
& =\left(x_{\tau^{-1} \sigma^{-1}(1)}, x_{\tau^{-1} \sigma^{-1}(2)}, x_{\tau^{-1} \sigma^{-1}(3)}, x_{\tau^{-1} \sigma^{-1}(4)}, x_{\tau^{-1} \sigma^{-1}(5)}\right) \\
& =\left(x_{(\sigma \tau)^{-1}(1)}, x_{(\sigma \tau)^{-1}(2)}, x_{(\sigma \tau)^{-1}(3)}, x_{(\sigma \tau)^{-1}(4)}, x_{(\sigma \tau))^{-1}(5)}\right) \\
& =(\sigma \tau) \cdot\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) .
\end{aligned}
$$

The suggested formula therefore defines a group action.
(b) The zero-vector is a fixed point. In particular, the action is not transitive. The action is faithful since :

$$
\sigma \cdot(1,2,3,4,5)=\left(\sigma^{-1}(1), \sigma^{-1}(2), \sigma^{-1}(3), \sigma^{-1}(4), \sigma^{-1}(5)\right) \neq(1,2,3,4,5)
$$

for $\sigma \in \mathscr{A}_{5} \backslash\{\mathrm{Id}\}$.
(c) Let V be the hyperplane of K^{5} defined by the equation $x_{1}+x_{2}+x_{3}+x_{4}+$ $x_{5}=0$. Then, for any $\sigma \in \mathscr{A}_{5}$ and any $\nu=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in$ K^{5} :

$$
\sum_{i=1}^{5} x_{\sigma^{-1}(i)}=\sum_{i=1}^{5} x_{i}=0
$$

and hence $\sigma \cdot v \in V$.
(d) Restrict the action of question 2(b) to V. It induces a morphism :

$$
\phi: \mathscr{A}_{5} \rightarrow \operatorname{Bij}(V) .
$$

But, for each $\sigma \in \mathscr{A}_{5}$, the bijection $\phi(\sigma)$ is linear. Hence the image of ϕ is contained in $\mathrm{GL}(V) \cong \mathrm{GL}_{4}(K)$. We therefore obtain a morphism :

$$
\phi: \mathscr{A}_{5} \rightarrow \mathrm{GL}_{4}(K) .
$$

This morphism is not trivial because the action of \mathscr{A}_{5} on V is not trivial.
(e) The kernel of ϕ is a normal subgroup of \mathscr{A}_{5} other than \mathscr{A}_{5}. We deduce that $\operatorname{ker}(\phi)=\{1\}$, and hence ϕ is injective.

